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SVAZEK 25 (1980) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

DISTRIBUTIONS OF RANDOM BINARY SEQUENCES 

DAVID CULPIN 

(Received August 21, 1978) 

1. INTRODUCTION 

We are concerned with infinite binary sequences, denoted by X or {X1,X2, ...}, 
where each Xt is random and takes values 0 or 1. The simplest such sequence has the 
X/s independent and identically distributed, a Bernoulli sequence. 

Infinite binary sequences can be mapped onto the interval [0, 1] in many ways; 
for example . 

X-*HX=Y.X„j2n, 
л = l 

which is almost a one-to-one mapping. It is easily seen that if Xis Bernoulli then HX 

is uniformly distributed when P[Xn = 1] = \\ and Visek [ l ] has obtained the distri­

bution of HX when P[Xn = 1] 4= -\. It is of interest also to find the mapping Gof X 

onto [0, 1] for which GXis uniformly distributed when P[X„ = 1] has any particular 

value; and we could take this further and seek such a mapping when X is not 

a Bernoulli sequence. That is what is done in this article. 

2. THE BERNOULLI CASE 

If Xis Bernoulli, what is the distribution of HX? One thing that H does to sequences 

of 0's and l's is to order them in a lexicographical manner. Thus we can write x < y 

when Hx < Hy, and it can be seen that x < y means that if the first of the elements 

which differ between x and y is the nth, then xn < yn, except that it is not allowed 

that both xn + 1 = xn + 2 = . .. = 1 and yn+1 = yn + 2 = . . . = 0. It is also convenient 

to write x = y when Hx = Hy, in which case the corresponding elements of x and y 

need not be identical; when they are identical, we write x = y. 

Returning to the distribution of HX, 

P[HX < Hx] = P[X < JC] = 
oo oo n— 1 

= P[U(*i =x1,...,Xn_l= x„.uXn < x„)] = 2>„«rii>v~*', 
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where p = 1 - q = P[XH = 1]. It is easy to see that P[X = x] = 0 if 0 < p < 1, 
in which case P[X = x] = P[X < x] . We shall assume henceforth that 0 < p < 1. 

There are two things we can note about the above calculation which will assist 
in our further progress. Firstly, the above probability is a function of x, so we can 
write P[X = x] = Bx (B for Bernoulli), and hence 

oo n— 1 

P[HX ^ HX] = BX = x x„<7 n p v ~xi • 
n = 1 i = l 

Secondly, it can be seen that the only property of the function H that is involved 
in the calculation of the above probabilities is that Hx < Hy if and only if x < y, for 
any x and y. Let us call any such function strictly increasing. Then, for any func­
tion F that is strictly increasing, Fx = Fy if and only if x = y, and hence 

P[FX _ Fx] = Bx . 

Notice, now, that the function B is itself strictly increasing. This is readily proved 
directly, but there is no need to do so, as Theorem 1 provides a proof. We can there­
fore write 

P[BX _ Bx] = Bx . 

This suggests that BX is uniformly distributed on [0, 1]. To establish this it is 
necessary to know that B maps onto [0, 1]; for in that case for any t in [0, 1] there is 
an x such that Bx = t, and then P[BX :g t] = t for all t, showing that BX is uni­
formly distributed. That B maps onto [0, 1] may be proved directly, but the proof 
can be found in Theorem 2. 

Conversely, if BXis uniformly distributed, then, for any n and xl9 ..., xn, 

PLXi = xl9 . -,Xn = xn] — 

= R[{x1,...,x„,0} ^X^{Xi,...,x,„l}] = 

= P[B{xu ..., x„, 0} S BX S B{xu ..., x„, 1}] = 

= B{x 1 , . . . ,x ,„ l} - B{x . , . . . , x . .0} = 

i = i 

where 0 = {0, 0, 0, ...} and 1 = {1, 1, 1, . . . } , which shows that X is a Bernoulli 
sequence. 

We can now conclude that X is a Bernoulli sequence if and only if BXis uniformly 
distributed, where B is given by Bx = P[X = x] for all x, provided that 0 < 
< p[Xn = 1] < 1 for all n. 
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3. THE GENERAL CASE 

Notice the similarity between the above result and the corresponding result for 
a one-dimensional continuous random variable X, namely that FX is uniformly 
distributed if and only if X has distribution function F, provided that F is strictly 
increasing and continuous. This suggests that results like the above can be obtained 
whether or not X is a Bernoulli sequence. As a help in expressing more general 
results, we make some definitions and establish a couple of preliminary theorems. 

Let F be any real valued function defined on sequences of O's and Vs. F will be 
called continuous if, for any sequences x and y, F{x1, ..., xn, yn + 1, yn + 2, ...} -> Fx 
as n -> oo. If F is an increasing function, that is, if Fx ^ Fy whenever x < y, then 
to know that F is continuous it is sufficient to know that both F{x1? ..., xn, 0} and 
F{xt, ..., xn, 1} -> Fx as n -> oo. F will be called a continuous distribution function 
(abbreviated cts. d.f.) if F is increasing and continuous, with FO = 0 and Fl = 1. 
It is assumed, of course, that F is uniquely defined, in the sense that Fx = Fy 
when x = y (not necessarily x = y). The first theorem establishes a canonical 
form for cts. d.f.'s. 

Theorem 1. (a) F is a cts. d.f. if and only if it can be written in the form 

00 

Fx = Y.xnfn(*n . . . , x„ - 1 , 0 ) 
n = l 

for any x, where thefns are functions satisfying, for n = 1, 2, . . . and all x, 

(i)fn(Xl,...,xn) = Q, 

(ii) fn(x1,...,xn_1,0) +fn(x1, . . . , *„_! , 1) = / „ - i ( x 1 , . . . , x B . 1 ) (with f0 = 1), 

0-0 fn(*i, • • •- x„) -> 0 as /i -> oo. 

(b) The functions fn are uniquely determined by F according to the relation 

fn(xu ..., x„) = F{xl9 ..., xn, 1} - F{xx, . . . , x „ , 0 } . 

(c) F is strictly increasing if and only iffn(x1, ..., xn) > 0 for all n and x. 

The next theorem shows that for cts. d.f.'s the properties of continuity and mapping 
onto [0, 1] are equivalent. Notice that this situation is analogous to that holding 
for corresponding functions of single variables. 

Theorem 2. (a) Any cts. d.f. maps onto [0, 1]. 

(b) Any increasing function mapping onto [0, 1] is a cts. d.f.. 

Proo f of Theorems 1 and 2 can be found in the Appendix at the end of this article. 
Let us call a probability distribution P of a random sequence continuous if 

P\X = x] = 0 for all x, and positive if P[X1 = xl9 ...,Xn = xn]>0 for all n 
and x. We now make use of the above results to establish a relationship between 
cts. d.f.'s and continuous probability distributions of random sequences. 

410 



Theorem 3. (a) There is a one-to-one correspondence between cts. d.f.'s F and 
continuous probability distributions P of random sequences; the F corresponding 
to P is given by Fx = P\_X = x] , where X is a random sequence with probability 
distribution P. 

(b) In this correspondence, strictly increasing F's correspond to positive P's. 

(c) If X has positive continuous probability distribution P, then the F cor­

responding to P is such that FX is uniformly distributed on [0, 1]. 

(d) IfF is any strictly increasing function for which FX is uniformly distributed 

on [0. 1], then F is a cts. d.f. and the P corresponding to F is the probability dis­

tribution of X. 

Proof, (a) Let P be any continuous probability distribution and X a random 
sequence with P as its probability distribution. Define the functions fn by 

fn(xl9 ...,x,,) = PLKi = x l 5 ...9Xn = xn] 

for all n and x, and let 
00 

FX = Y,Xnfn(Xu . . . ,X„- l ,0) 
n=\ 

for all x. To show that F is a cts. d.f., it is sufficient to show that the conditions of 
Theorem 1(a) on the f„ are satisfied. These follow easily from the definition off„; 
in particular, f„(x1? ..., x„) -> P[X = x] = 0 as n -> oo, for all x. 

Now let F be any cts. d.f.. By Theorem 1(a), 

00 

Fx = Yjxnfn(*n ...9xn_u0), 
n = l 

where the functions fn possess the properties listed in that theorem. Now define the 
function P by 

PLK! = x1? ..., Xn = xn] = fn(xl9 ..., x„) 

for all n and x. The properties possessed by the functions fn ensure that Pisa con­
tinuous probability distribution. This establishes the one-to-one correspondence, 

00 

Fx = X X P f K ! = x l5 . . . ,K n _ 1 = xn„l9Xn = 0] , 
n = l 

between cts. d.f.'s F and continuous probability distributions P of random sequences. 
Further, 

00 

Fx = YJP.[X1 = xl9...,Xn_1 = xn„l9Xn < xn] = 
n = l 

00 

= P [ ( J ( * 1 = * ! , . . . , * „ _ , =X„_ 1 ,X„ <*„) ] = 
n = l 

= P[X < x] = P[X _i x] . 
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(b) In the correspondence of (a), by Theorem 1(c), F is strictly increasing if and 
only if fn(xl9 ...,x„) > 0, that is P[X1 = xl9 ...,Xn = xn] > 0, for all n and x, 
that is, if and only if P is positive. 

(c) Suppose that X has positive continuous probability distribution P, which 
corresponds to the cts. d.f. F. By Theorem 2(a), for any t e [0, 1] there is an x such 
that Fx = t. Then 

P[FX ^ t] = P[FX ^ Fx] - P[X ^ x] = Fx = t, 

which shows that FAT is uniformly distributed. 

(d) If FXis uniformly distributed on [0, 1], then F must map onto [0, 1]. There­
fore, by Theorem 2(b), F is a cts. d.f.. It is required to show that the P corresponding 
to F is the probability distribution of1X. For any x and n9 the event [Xt = xl9 ... 
...,Xn = xn] is equivalent to [{x1? . . . , x„, 0} rg X ^ {x1? ..., xn9 1}], which is 
equivalent to 

[F{x 1 , . . . ,x n ,0} £FX£F{xl9...,xn,i}~\. 

The probability of this last event is 

F{x1? ...,xn, 1} - F{x1? . . . ,x n , 0} . 
00 

With Fx - ~~]xn P[K! = xl9 . . . ,K„ - 1 = xn„l9Xn = 0], Theorem 1(b) tells us that 

P[X1 = xl9 . . . ,K / I = xn] = F{xl9 . . . ,x„, 1} - F{xl9 . . . ,x n , 0} , 

which is therefore the probability of the event [Xx = xl9 ...,Xn = xn], This shows 
that P is the probability distribution of X, and completes the proof of Theorem 3. 

Theorem 3 answers the question which was posed at the beginning of this article. 
Suppose we have a random sequence X and want a criterion for its having a con­
tinuous probability distribution P. From Theorem 3(b) the cts. d.f. F corresponding 
to P can be found. In the case that Pisa Bernoulli distribution, F is the B which was 
defined earlier. From Theorem 3(c) and (d) the desired criterion is that FX be 
uniformly distributed. 

APPENDIX 

Proof of Theorem 1. Suppose F is a cts. d.f.. Let 

fn(xl9 ...,x„) = F{xj, . . . ,x„, 1} - F{x1? ...,xn9 0} . 

Then 
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лl 

£*«/.-,(* ľ " •>*!!-1>0) = 



= £ xn[ғ{xu ..., *__., 0, 1} - ғ{*„ .... *,-„ 0}] = 
и = l 

= _>я[F{*i, .-., x.-,, 1,0} - F{xu ..., *„_„ 0}] = 
и = 1 

N 

= I И * i , • - , xn> 0} - P{*i> •••> xn-l, <>}] = 
« = 1 

= F{xu ...,xN,0} . 

Letting N -» oo gives the required form for Fx. The properties required off, follow 
easily from properties of F. In particular, thef, are positive if F is strictly increasing. 

Suppose that 
oo 

Fx = J]xngn(xl9...9xn90)9 

n=l 

where the functions gn possess the same properties as thef,. Then 

Fix!, ..., xN, 1} - F{xl9 ..., xN, 0} == 
00 

= E 01.0*1, ...-*_*, i , . . . , i , o ) = 
n = N+l 

M 

= lira £ , „ ( X 1 , . . . , X J V J , . . , 1 , 0 ) = 
M-+oo n = N+l 

M 

= lim E [g«-i(X i ' -->XN> 1, .-., 1) ~ 9«(xi> ••••**> 1- .... 1)] = 
M->oo n = N+l 

- lim [g^(x!, ..., xN) - gM(x1? ..., xN, 1, ..., 1)] -
M-»oo 

= 9N(XI> - •> XN) 

for all N and x. 

This shows, firstly, that the functions f„ are uniquely determined by F. Secondly, 
it assists in the proof of the converse of part (a) of the theorem. Thus, if 

oo 

FX = Y,Xnfn(Xl> . . . ,XW-1,0), 
n = l 

then fn(xl9 ..., xn) = F{xl9 ..., xn, 1} - F{x1? ..., xn, 0}; in particular, f0 = Fl -
- F0. It is required to show that F is a cts. d.f.. Clearly F0 = 0. Hence Fl = f0 = l. 

Observe now that 
n 

F{xl9 ...,xn, 0} - %xsfs(xl9 ..., xs_l50)-+ 
5 = 1 

OO 

-* ZX*/*(X i ' •••, *s-i>°) = Fx as «-> oo ; 
_ = i 
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(1) F{xl9 ..., xn, 1} = fn(xl9...9 xn) + P{x1? ..., xn, 0} -> 0 + Px = Px 

as n —> oo . 

Once it is known that P is increasing, these two facts will be sufficient to establish 

the continuity of P. 

It is now shown that P is increasing and is uniquely defined in the sense required 

for a cts. d.f.. For n = 1, 2, ... let 

P(n)x = f x - / , ( x 1 , . . . , x - . 1 , 0 ) . 
s = n 

For N > n9 

N 

I 
s = п + l 

E (1 - *s)/_(x_, ...,X5-_, 1) = 
7 + 1 

= _Г (1 -x s )[F{x_,. . . ,x___,l} - F { x 1 , . . . , x s _ 1 , 0 , l } ] 
s = л + l 

ІV 

= E [F{-i. •••, *.-i>1} - F{xj, ...,x s, 1}] = 
s = n + l 

= F{x_,...,x„, 1} - F{xj, ...,Xjy,l} = 

= F ( " + 1 ) { x 1 , . . . , x „ , l } - F ( " + 1 ){x1,...,x J V,l} = 

= F { x „ . . . , x „ , l } - F { x 1 , . . . , x „ , 0 } - F ^ f o , . . . , „ • „ , _ . } = 

= / „ ( x 1 , . . . , x „ ) - F ( " + 1 ) {x 1 , . . . ,x w , l } . 

Letting N -> oo yields, in view of (1), 

OO 

(2) /„(x_, ..., x„) - F ( " + 1 ) x = _T (1 - x s )/ s (x 1 ; ..., xs__, 1 ) ^ 0 
s = n + l 

for all n. Now take any x and y for which x ^ J and x ^ y. For some n, 

x = {x 1,. . .,x n_ 1,0,x (" + 1)} 

and 

j = { x 1 , . . . , x „ _ 1 , l , / " + 1 ) } , 

where 

x(" + 1 ) = {xB + 1,xB + 2,...} 

and 

y(n+1) = {yn+l?yn + 2,...} 

(or else, when x = y, their roles may be interchanged). Then 

Fy - Fx =/ M (x 1 , . . . ,x n _ 1 ? 0) + P(" + 1 ) J - F<» + 1>x ^ 0 , 

by (2), with Fy - Px = 0 when x ( r t + 1 ) = 1 and y(" + 1 ) = 0, that is x = y. This 

shows that P is increasing and is uniquely defined. 
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Now suppose ihatfn(xl9 ..., xn) > 0 for all n and x, and let x < y. Then 

Fy = Fx =>fn(xl9 ...9 x„_ l5 0) = F(" + 1>x& F(" + 1 ) j = 0 => 

=> (using (2)) x(n + 1) = l&y(n + 1) = 0 => x = y . 

As x < y9 Fy cannot equal Fx; therefore Fy > Fx. This shows that F is strictly 
increasing when/„(x1? ..., xn) > 0 for all n and x. 

P r o o f of Theorem 2 

(a) Let F be a cts. d.f.. It has the form given by Theorem 1(a). To show that F 
maps onto [0, 1], for any t e [0, 1] we find an x such that Fx = t. Define the sequence 
v0, x1? vl9 x 2 , . . . as follows: v0 = t; for n = 1, 2 , . . . , xn = 0 or 1 according as vn_1 

is ^ or > fn(xl9 ...9xn-u0)9 and vn = vn.1 - xnfn(xl9 ...9xn_l90). Then 

(3) t = XX/sO*!, . . . ,X s _ l 9 0) + v„ 
s = l 

for n = 1, 2, ... . We show that 0 <I v„ <^fn(xl9 ..., x„) for all n. The inequality is 
true for n = 0 (with/0 = l). Suppose it to be true for n — 1. If xn = 0 then vn_1 :g 
^ / B ( x 1 , . . . , x I I . 1 , 0 ) and v„ = v„_1? so 0 <; vn = / M (x 1 ? ..., xw). If x„ = 1 then 
»n-i >fn(xx,.-.,xn-u0) and vn = v„_! - fn(xl9 ..., x - . l s 0), so 0 < vn S 
= /»-i(*i>.-->*,,-i) - / n ^ i , . . . ,xM_ l 50) =/M(x1 , . . . , x n ) . Thus in either case 0 ^ 
_̂  vn ^fn(xl9 ...9xn). This induction argument shows that 0 ^ vn ^fn(xl9 ...9xn) 
for all n9 so v., -> 0 as n -> oo. Letting n —> oo in (3) gives t = Fx. 

(b) Conversely, let F be an increasing function mapping onto [0, 1]. For any x, 

F{xl9 ...,xn9 0} <; Fx <L F{xl9 . . . ,x„, 1} , 

and the two outer quantities are respectively non-decreasing and non-increasing 
functions of n. Therefore there exist 

F0x = lim F{x1, ..., xn9 0} 
n~* oo 

and 

Fxx = limF{x1 , ..., xrt, 1} , 
n-* oo 

and F0x ^ Fx 51 F:x. Suppose that, for some x, F0x < Fx. As F maps onto [0, 1], 
there is a y such that F0x < Fy < Fx. But then y < x and so Fy ^ F0x, which is 
false. Therefore F0x = Fx for all x. Similarly FjX = Fx for all x. Therefore F is 
continuous. Clearly F0 = 0 and Fl = 1. Thus F is a cts. d.f.. 

Acknowledgement. I am grateful to Richard Cowan for introducing me to the 
problem and for his interest in seeing it clarified. 
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S o u h r n 

DISTRIBUCE NÁHODNÝCH BINÁRNÍCH POSLOUPNOSTÍ 

DAVID CULPIN 

Posloupnost {X1,X2, ...} je Bernoulliova posloupnost s P[_Xn = 1] = p = 1 — qy 

právě když 
oo n— 1 

n = 1 i = 1 

má stejnoměrné rozložení. Tento výsledek je v článku dokázán a zobecněn na po­
sloupnosti, které nejsou Bernoulliovy. 

Authoťs address: Dr. David Culpin, CSIRO, Division of Mathematics and Statistics, PO Box 
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