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NEW METHOD FOR COMPUTATION OF DISCRETE SPECTRUM

Ivan ULEHLA and MiLosLAV HAVLICEK

(Received September 14, 1978)

A new method for computation of the discrete spectrum for a certain quantum
mechanical problem is presented. The method is based on a transition from the usual
boundary value problem to the solution of a first order nonlinear differential equation.
The proposed method yields the eigenvalues with the desired numerical accuracy.

I. INTRODUCTION

In quantum mechanics as well as in other fields of physics the following boundary
value problem is solved:

A second order differential equation

e, )
1.1 e Nu=o.
(1.1) (d'\_z

/
in which u = u(x, %) is a function of x = 0, is given. The parameter x is real and the
quantity v is a real function of x.

A solution of (1.1) continuous together with its first derivative and satisfying

(1.2) u(0, %) =0,
(1.3) u(oo, %) =0
is sought.

One may choose

(1.4) P

without a loss of generality.
The function v(x) which is called “potential” has in this paper the form:

v

(1.5) ' o(x) = U P4, =0

X
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(1.6) mxoy(x) =a. v <2, |o < oo,
x=0 5
(1.7) limx*oy(x)=p. u>2, f/)’l < .

For x > 0, v,\(x) is bounded and either continuous or piecewise continuous.
We say that a bound state occurs if a solution of (1.1 —3) for some eigenvalue of »
exists.

II. SOME FEATURES OF THE SOLUTION u(x, x)

First we shall recall several theorems concerning the solutions of the equation
(1.1) and their behaviour.

Theorem 2.1. If v(x) has the properties given above then there are two solutions
g(x. %) and h(x, %) for every », which are continuous together with their derivatives
for0 < x < o0. For x - 0y,

(2.1) g(x, %) = x"""[1 +0(x")]. 6>0.
(2.2) h(x,%) = x"'[1 + 0(x°)]. &>0.

Theorem 2.1 is proved in [1] for | = 0 and it can be proved for every | & 0 in
Sfull analogy with the case | = 0.

Evidently, only the solution (2.1) satisfies the boundary condition (1.2). One may
therefore put

(2.3) u(x. %) = g(x, %)

and only this solution will be considered in what follows.

Theorem 2.2. The zeros of u(x, %) are simple for 0 < x < .

Proof. For 0 < x < oo the usual conditions of the existence theorem and uni-
queness of the solution of (1.1) are fulfilied. If for some x4, 0 < x, < 00, u(xy, %) = 0
and u'(xq, ) = 0. then u(x, ») = 0 must hold.

Theorem 2.3 (Sturm). If u; = u(x.3;).i = 1,2, and %, > %, and if a and b are two
adjacent zeros of u, then there is at least one zero of u, in the open interval (a, b).
The proof can be performed in full analogy with [2].

Theorem 2.4. If u; = u(x.s;), i = 1,2, and %, > %, and if x| is the first zero
of uy, x; > 0, then

u(x, ) > u(x, %), 0 < x < x;.

The proof can be done in full analogy with [2].
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Theorem 2.5. If v(x) has the properties given above then for every x there are
1wo solutions ey(x, %) and e,(x, %) of (1.1) which for x — oo have the form

(2.4) e, %) = e=[1 + o(1)], x>0,
(2.5) ex(x, %) = e [1 + o(1)], x>0
and

(2.6) er(x,0) = x"'[1 +0(x7], >0,
(2.7) ex(x.0) = x"[1 + 0(x~%)], 6>0.

The proofforx # 0,andx = 0,/ = O isgivenin [3]and itcan be performed forx = 0,

[ # 0'in full analogy with [3].

Evidently, for x > 0 only the solution e,(x, x) satisfies the boundary condition
(1.3), for x = 0 again only e,(x, 0) satisfies (1.3) if I & 0. If % = 0 and | = O there is
no solution satisfying (1.3), i.e. there is no bound state.

III. TRANSFORMATION OF THE EQUATION (1.1)

We shall deal with the solution of (1.1) which is continuous together with its
derivative, satisfies (1.2) and has the form (2.3). By a modified Priifer’s transformation
[2] new functions p(x, ) and z(x, x) can be introduced:

(3.1 u(x, ») = p(x, »)sin z(x, %),
u'(x, %) = (I + 1) p(x, x) cos z(x, x).

It is shown in [2] that p(x, x) and z(x, x) can be defined as continuous functions

of x.
With the help of (3.1) one may define

(32) p(x, ) = \/(uz(x, At +‘ s x)) .

Then

(3.3) p(x,%) >0, 0<x< o0

because Theorem 2.2 holds.
Moreover, for x — 0,

(3.4) p(x, ») = x'[1 + 0(x?)], >0

because of Theorem 2.1.
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Therefore, for x — 0,
(3.5) z(x, %) = nm + x[1 + 0(x)], o>0,

where n is even (see (3.1)).
Without a loss of generality one can put n = 0, so that

(3.6) (%)= x[1 +0(x%)], 6>0, x=0.
Now (3.1) implies
(37) g =(x.2) = U *:I'()V”S)‘ %)

As the zeros of u(x, ») are simple (Theorem 2.2) and the function z(x, x) is con-
tinuous,

(3.8) z(xy, %) = km

where x; > 0 is the k-th zero of u(x, x).
From Egs. (1.1) and (3.1) we have

1 2
(3.9) 2= (I + l)coszz—-l—~—1 (v + »**)sin® z,
+
’ 2
(3.10) Pty 2 oz
p 2 I+ 1

It is easy to prove that there is a one to one correspondence between the solution
u(x, ») of (1.1) satisfying (1.2) and the solution z(x, x) of (3.9) satisfying (3.6).

The exact proof of this statement is based on the fact that the equation (3.10) is
linear with respect to p(x, ) and on the examination of this solution near the origin
with regard to the conditions (1.5) and (1.6) imposed on the potential v(x).

Now, we collect the fundamental properties of z(x, ») which will be useful in what
follows:

(i) z(x, %) is the continuous solution of (3.9) satisfying z(0, ) = 0, z'(0, x) = 1.
(i1) = is an eigenvalue if

(3.11) limtg z(x, %) = —(I + 1)/

X0

and it is not an eigenvalue if

(3.12) limtg z(x, %) = +(I + 1)[x.

X 00

For x = 0, the right-hand sides of (3.11) and (3.12) assume the value — o0 and + oo,
respectively.
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Proof. This property is a direct consequence of Theorem 2.5 and of the one to one
correspondence between u(x, x) and z(x, x).
(iii) Let z(x, x) be a solution satisfying (i), then for given x,, 0 < x, < 00, z(x,, %)
is a decreasing and continuous function of x.
The proof is given in Appendix A.
(iv) It =(xo. %) > kn, k = 0, 1,2, .... for some x, > 0, then =(x, %) > kn for every
x € (xg, o0).

Proof. Suppose that there is x; > x, for which z(x,, %) < kn. Then the con-
tinuity of z(x. %) implies that there is such x,. x, < x, < x,. for which z(x,, %) = kn
and z(x, x) is decreasing in x,. But this is a contradiction with the equation (3.8)
which yields
(3.13) Z(xx)=1+1>0.

(v) Letx # Oand let xo(x) be such that %> + v(x) = Oforevery x > x,. If 2(x;, %) <
<2k + 1)rf2, k=0,1,2,..., for x; > x,, then z(x.%) < 42k + 1) n for
~every x € (xy, o0).
The proof is done again by contradiction and with the help of the fact that if x, = x,
is such that
(xy2) = 2k + /2. x, = x,,

/
/

then the inequality
(3.14) (xan) = =+ o))+ 1) =20

holds.

(vi) =z(x.x) < n/2 for x great enough.
Proof is based on the properties (iii) and (v).
(vii) =(x, %) is bounded.

Proof. If z(x, %) were not bounded, the limits (3.11) or (3.12) would not exist.
If the function =(x, %) has the properties (i)—(vii), the following existence theorem
holds:

Theorem 3.1. If kn < z(x,%,) < (k + 1)m, k=0,1.2,.... for some x = x,
and for all x larger than some x, > 0, then there are either k + 1 or k eigenvalues
of x. Their number is k + 1 if 3, is an eigenvalue and their number is k if x, is not
an eigenvalue.

The proof is given in Appendix B.

Theorem 3.1 has several consequences:

1. If kn < z(x,0) < (k + 1) & for some k, k =0,1.2,..., and for all x larger
than some x,, then to the potential v(x) k + 1 or k eigenvalues (bound states)

correspond. The number of eigenvalues is k + 1 if z(x,0) > (2k + 1) =2 for
x > x, = 0and their number is k if z(x, 0) < (2k + 1) 72 for x > x, 2 0.
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To prove this statement one has to use (3.11) or (3.12), i.e., if ¥ = Ois an eigenvalue
then

(3.15) limtg z(x,0) = — o0

X0
if » = 0is not an eigenvalue then

(3.16) limtg z(x,0) = 4+ o0

ESuded]

and in both cases

(3.17) lim z(x, 0) = 2k + 1) n/2.

X0
2. The eigenvalues form a decreasing and finite set

(3.18) Ho > %) > Uy > .. > %> ...>%,20

1\%

n

and the eigenfunction corresponding to x, has k zeros. For the proof one has to
apply (iii) from which we see that two different functions z(x, x) corresponding to
two different values of x have only one common point, i.e. x = 0. Then, from (iii)
we get that the functions z(x, x) are ordered and Theorem 3.1 defines the relation
between % = x, and the number of zeros of u(x, ).

3. The function z(oo, ) is discontinuous. The discontinuity points of z(co, x)
are just the eigenvalues g, %4, ..., %.

The proof is based on (i) and (3.11), (3.12) and Theorem 3.1 itself. (See also
Appendix B).

IV. NUMERICAL APPLICATIONS

From the point of view of analysis the computation of eigenvalues of a discrete
spectrum is straightforward. For the given function v(x) (1.5) one integrates the
equation (3.9) from zero to infinity for % = 0. Then, using (3.17), i.e.

(4.1) z(00,0) = (2k + 1) n/2

one determines the number of eigenvalues. When this is known, one integrates again
the equation (3.9) for various and increasing values of x until all eigenvalues are
obtained from the corresponding discontinuities of the function z(co, %) — (see
consequence 3, Sec. III).

In practice one usually cannot integrate to infinity. Nevertheless, the new method
yields accurate results.

Actual calculation is based on the proved properties of the function z(x, x). In
principle, to assure accuracy a certain x,,, as an upper limit of integration must
be determined.
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If there is such an Xmaw 0 < Xpa < 0, that

(4.2) 2+ o(x) Z 0 X 2 X

one can usc the properties (iv) and (v) of z(x, x) (Sec. 11I). Now, suppose (4.2) is
fulfilled. If
(4.3) kn < z(x

max»

%) < (2k + 1)m[2, forsome k=0,1,2,...,

then the function z(x, %) remains in the strip (km, (2k + 1) n/2) for all x > X,
Further, we apply the property (iii) and choose two values of x, say %, > x,, and the
corresponding x,..(x,).

Let

(4.4) kit < 2(Npas #2) < (2k + 1) /2, forsome k =1,2.

max?

(Notice that the value k = 0 would indicate immediately: there is no bound state)
and

(4.5) (k= )1 < z2(Xpae #1) < 2k — 1) 7[2
then the eigenvalue % certainly satisfies the inequality
(4.6) Hy < %< Ay

In principle, there are no bounds on %, and x,. If for some x;, i = 1,2, z(Xpyy, %) €
€ ((2k — 1) m[2, kr) then we can replace X, DY Xpue > Xpa and again use (4.6) to
achieve the desired accuracy.

For x% = 0, x,,, defined in (4.2) always exists.

For practical applications of the equation (4.1), which is important for the deter-
mination of the number of eigenvalues, one can find also a corresponding x We
are dealing now with the case ¥ = 0 and we limit the discussion to two actually
important cases.

If for x = x

max*

>0

max

@) Haomzo 1-0n2.

then the following assertions hold:

a) If z(x . 0) € (km, (2k + 1) /2), the number of eigenvalues is k.

This conclusion follows from the properties (iv) and (v) of the function z(xmux, 0)
and from (3.17).

b) If z(xpay 0) € ((2k — 1) 7/2, kn) and z'(xp,,. 0) = O then the number of
eigenvalues is k.

This statement is due to the properties (iv) and (v) and to Egs. (3.7) and (3.9).
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) If z(Xpays 0) € ((2k — 1) /2, kn) and ='(x,,,,, 0) < O then the number of eigen-
values is either k or k — 1.

To prove this conclusion one has to use again (iv), (v) and (3.17).

If ] =0 and

(4.8) tp(x) £ 0
for x = x,, x, = 0 the condition (1.7) implies that there exists such X, that
49) )z -

16x2

for all x > xp,,. Let us denote by z,,(x, 0) the solution of (3.9) with the actual

potential vy(x) replaced by —3/(16x?) for x,,, < x < oo. Then we have

(4.10) (%, 0) = 2(x,0), 0= x = X0

max”*

Zop(%, 0) = 2(x, 0), x> X

The relation (4.10) can be proved on the basis of (4.9) in full analogy with the proofs
of Lemmas Al and A2 from Appendix A.
From the solution of (1.1) and with the help of (3.7) we get

(4.11) tg (X, 0) = 4x ! i,(i‘)ji% DX > X
3¢, J(x) + ¢,

and from (3.9)

(4.12) Z(x,0) = 0. z(x,0) 20, x> X,

In (4.11), ¢, and ¢, are fixed real numbers.

Now it is evident:

a) if z(Xpay. 0) € ((2k — 1) 7/2, km) then the number of eigenvalues is just k;

b) if z(Xpa 0) € (km, (2k + 1) n/2) then the number of eigenvalues is either k
or k + 1.

We demonstrate this method, which has been already applied to compute actual
and quite complicated problems [4], on a simple example.

In (1.5) we put

(4.13) on(x) = —40 e:

If we choose x,,, = 20 the conditions (4.7) for | & 0 and (4.9) for I = 0 are well
satisfied.
The numerical integration of the equation (3.9) for vy(x) (4.13) and for » = 0,

I =0 gives

max

Z(Xpaxs 0) = 14:224

Thus the number of eigenvalues equals five.
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The integration of the equation (3.9) for non-zero » yields the function z(Xmax X)
as a function of » and this is presented in Fig. 1.

‘/" 2(Xpmay, M) @

143 1e inferval of x,

o
1
:
|
|
10 140 T
0 0,05
i
|
|
|
|

. ]
5 l
|
|
L
1
I
|
1
I
1
|
+ . ¥ - T—
0 x, %, 3 ®, 10 15 *, 20 *

The function z(x, ¢ %), Xmayx = 20, has very sharp slope near the eigenvalues »;, i = 0,1, 2,3
and it defines the interval in which the smallest eigenvalue », lies — A.

The curve has extremely sharp slope in the neighbourhood of the eigenvalues
with the exception of the smallest eigenvalue », for | = 0. The corresponding
eigenvalues are tabulated in Tab. I; they are given with an error +0-01. The value of x4
for | = 0 has been determined for greater X, then 20 (see the discussion after (4.6)).

Table 1

. S — 1 —
1=0 =1 =2  1=3
| i ‘
— — —. |

| |
[ % | 19.02 8.03 3.67 | - g
) 9.09 355 | 1.12 - |
%) 3.94 1.44 |
#3 1.58 - - w _ |
s | 0.04 - - :
‘ <
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For I = 1,2 and 3 we proceed in complete analogy with / = 0. There are only three
bound states for | = 1, only two for I = 2 and none for [ = 3, there are no bound
states for [ > 3.

CONCLUSION

A new approach to the problem of discrete spectrum belonging to the operator
defined by (1.1), (1.2) and (1.3) is given. It is suitable for numerical treatment and
leads to a quick and reliable computation of the spectrum.

The method is based on the transformation of the original linear second order
differential equation (1.1) to a non-linear first order differential equation (3.9) for
a certain function z(x, x).

An analogue of the Levinson Theorem [ 1] is proved for this function, i.e., its value
for x = oo and x = 0 determines the number of eigenvalues of the given operator.*)
A proof that this function as a function of x € (0, 00) for x = oo is discontinuous
just at the points at which x is equal to its eigenvalue, is also given.

Thus, the usual tedious and complicated problem of searching for eigenfunctions
and eigenvalues simultaneously, as for example in the Ritz variational method, is
replaced by an almost trivial integration of the equation for the function z(x, ).

It has been shown that the eigenvalues can be determined easily with the desired
accuracy.

Other numerical results not presented here indicate that the proposed method can
be applied also in some cases in which the number of eigenvalues is not limited. We
have in mind especially the potentials decreasing to zero slower than 1/x? for x — oo.

The authors would like to thank J. Kurzweil and J. Hoftejsi for valuable discussions
and useful comments.
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APPENDIX A

Theorem. If z(x, x) is a solution of (3.9) satisfying z(0, x) = 0, (0, %) = 1 then
for a given x,, 0 < x, < 00, z(xq, %) is a decreasing and continuous function of .

The proofis divided in four parts:

Lemma A.l. If %, > %, and if z, and z, are solutions of

x4+ v

(A.1) z; = (I + 1)cos? z; — “L——sin’ z,
I+ 1
%5 + v
2y = (I + 1)cos? z, — =2—"—sin? z,
I+ 1
satisfying the initial conditions given above, then z,(x) < z,(x) for x - 0, x > 0.

Proof. We start from a solution of (1.1)

u) — wiu, —vu; =0,
Wy — x3uy —vuy = 0.
By substraction and integration

(A.2) uguy — uguy = (e} — x%)f uyu, dx
0

and by (3.7),
(A.3) urztgziy = (0 + Duyg,.
Substituting (A.3) in (A.2) we have
l_i-E uyuy(tgz, —tgzy) = (] — x3) J':ulu2 dx .
The behaviour of u(x, x) for x — 0 is known from Theorem 2.1 and definition (2.3).

In this region u; , > 0, ujy , > 0, so that z, > z,.

Lemma A.2. If x; > x, and if z, and z, are solutions of (A.1) satisfying the given
initial conditions, then z,(x) < z,(x).

Proof. Suppose there is x, > 0 for which z,(x,) = z,(x,), then
i .
(A.4) ch (22 — zl)lx:xO = (xf - /3) 7: sin? Zl,x:xO .

Consider the smallest x, > 0, i.e. z;, — z; + 0 for x, 0 < x < x,. If z,(x,) + knm,
k=1,2,..., then Lemma A.2 is proved, because z, — z, is an increasing function
at the point x, and this is a contradiction with Lemma A.1.
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The case z,(xg) = z,(x¢) = kn, k = 1,2, ..., cannot occur: in the opposite case
u(x0) =0

(see (3.1)) and Theorem 2.3 of Sturm states that for x, 0 < x < x,, at least one zero
of u, must exist. Thus, u, has more zeros than u, in the corresponding interval, so
that

z4(x) * z3(xo) -
Lemma A.3. Let %, be given, 0 < %, < oo. There is such an a(x,) that for every x»
0 < xo < a(sx,), the function z(x,, %) is continuous at the poini x,.
Let us choose 3, 0 < %, < oo, and a fixed d,, 0 < d; < x,. Let us denote by

x; > 0 the first zero of u(x, %, — 8,) and by x| > 0 the first zero of u(x, 3%, + ;);
by Theorem 2.4, x| < x5. For » and x, satisfying

o — 0y <% <y + Oy,
’
0 < xy < xy,

Theorem 2.4 leads to u(x,, %) + 0
and

u(xo, %9 — 0,) < u(xg. %) < u(xg, %o + &) .
By using (3.7) and (A.2) we get casily

(I + 1) u(xq, %) u(xo, %0) [cotg z(x, %) — cotg z(x,. %0)] =
= (x* — %)) J'qu(x. %) u(x, %) dx

and with the help of the above derived inequalities we can establish an estimate:

(+1) |colg z(xy, %) — cotg z(x,, %o)l < |x — xo‘ (2% + &)

1 o R
B T — .[ u(x. 2+ 8,)] [u(x, 3%0)| dx = [ — 20| A(xo. 6. %) -
|u(x0, %) u(xo, %9 — 51)| o
Thus, Lemma A.3 is proved, because z(x,, x) < m for the admissible x, with
axg) = xi.

Lemma A.d. The function z(xq, %) is continuous at the point %, for any x,
0 < xy < o0 and the given x,.

This Lemma is a consequence of Lemma A.3 and of the standard theorems about
continuity of solutions of the differential equation with respect to the boundary
condition and to the parameter (see e.g. [5] Theorem 14.11 p. 241 and Remark
18.4.14 p. 329).
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APPENDIX B (M. Havlicek)

Theorem. If =(x, %) is a solution of (3.9) satisfying =z(0, x) = 0, z/(0, %) = | and
if for some x = % and every x, larger than some x,,

kr < z(x, %) <(k+ )m, k=0,1,2,...,

holds, then there are either k + 1 or k eigenvalues. Their number is k + | if %
is an eigenvalue and k if it is not.

Proof. Let ., be defined as follows:

X

crit

= inf {x > %| z(x, ) < kn for x €0, )} .
From this definition and from the property (iii) of the function z(x, %) we obtain
z(x, %) < kn

for every x > ;. Similarly z(x, %) > kn for all x larger than some xq if % > ..
We say that z(x, x) is of the Ist kind if for some x z(x, x) > k=x; in the opposite
case it is said to be of the 2nd kind.
Next we prove that z(x, %) is of the 2nd kind, i.e. z(x, %.;,) < kr for every x,
0 < x < oo. If z(x, ;) were of the Ist kind, then z(x,, %.,;,) > kn for some x;.
Then, it follows from (ii) that there is > x.;, such that z(x,, %) > kn. This is
a contradiction with the definition of x_;,.

Now
I+ 1
(B.1) lim z(x, %) = kn — arctg ——
X o ;{
or
. [+ 1
(B.2) lim z(x, %) = (k — 1) 7 + arctg — —
X0 %
if

(k — )m < z(x, %) < kn.

If 3% = %, only (B.1) is possible and at the same time

(B.3) limz(x, %) < (k — 1) m + »;t, > A -

X o0

To prove it let us suppose that for x = x.;, (B.2) holds, i.e.

I+ 1
A= (k- I)n+arctg~t~— < (k — l)n+§.
Herit 2
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Therefore, there is x, such that for every x; > x,,

:(xl’xcril) <A+ ) < (I\ - l)ﬂ + 7E
2

Because of (iii) there is a % < x.,;, such that

z(xp, %) < (k= 1)+ :

It is easy to see that x; can be chosen so large as to guarantee the property (v).
The function z(x, x) cannot then be greater than (k — 1) T + {x so that z(x, x) > kn.
This is again a contradiction with the definition of xi, and so (B.1) for » = x
must hold.

To prove (B.3), let us suppose that there is % > x,; such that

crit

limz(x, %) > (k — 1) + g,

X 00
i.e.
. [+
lim z(x, %) = kn — arctg —— .
X o0 %
Then

lim z(x, %) > lim z(x, %)

X o0 X+ o
and this implies that from some x
2(x, %) > (X, %erpy) -

But this is excluded by the definition of x.,;.. It has been proved that there is one
eigenvalue, i.e. (see (ii))
Herie = Hg—1»

crit
and it has been shown that
(k= )m < lim z(x, %) < k.
xX— o
Therefore the same proof can be repeated with the substitution of % — 3,_;. Thus
we prove that there are just k eigenvalues in the open interval (%, x,):

< Aoy < Hymg < oo < Uy < Ky

If lim z(x, %) > kn + 1m then % = i, is the (k + 1)-th eigenvalue.
izl
Remark. The properties of ., and the relation (B.3) leads to the conclusion
that the function
g(») = lim z(x, x)

X o0

is discontinuous at the point ¥ = x,;, and the discontinuity is equal to n.

cri
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Souhrn
[vaN ULEHLA, MiLOSLAY HAVLIGEK

NOVA METODA VYPOCTU DISKRETNIHO SPEKTRA RADIALNIHO
SCHRODINGEROVA OPERATORU

V praci je predloZena nova metoda vypodctu vlastnich hodnot radidlniho Schré-
dingerova operatoru —d*/dx* + v(x), x = 0. Tato t¥ida je vymezena m.j. pozadav-
kem, aby pro x — 0., resp. x > +00 se potencial v(x) choval jako x~2**, resp.
x 275 e = 0.

Schrédingerova rovnice se Priiferovou transformaci prevede na nelinearni diferen-
cidlni rovnici prvniho Fadu (3.9) pro funkci z(x, ») (x — parametr) a ukaZe se, Ze
hledané vlastni hodnoty jsou body nespojitosti funkce z(o, x). Kromé& toho z prii-
b&hu funkce z(Xa. %) (kde xp,, je hodnota ,,dostatetné velika“ a v textu specifiko-
van.zi‘), obdrzime disjunktni intervaly, z nichz kaZzdy obsahuje pravé jednu vlastni
hodnotu a jejichz délka se zmenSuje se vzristem Xx,.,.

Vypocet vlastnich hodnot pfedlozenou metodou je podstatné krat$ia méné naroény
na strojni ¢as neZ jinymi znamymi metodami.

Authors® addresses: Prof. Dr. Ivan Ulehla, DrSc., Ing. Miloslav Havli¢ek, DrSc., Nukledrni
centrum Matematicko-fysikalni fakulty UK, Pelc Tyrolka, 180 00 Prabha 8.
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