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(Received July 28, 1978)

A number of algorithms have been developed to find eigenvalues of a tridiagonal
matrix numerically. A survey is given in [1], other appeared later [2], [3]. We shall
present here a simple explicit formula which can be used to diminish the order of
thé tridiagonal matrix by one if one eigenvalue and the corresponding eigenvector
are known (without destroying the tridiagonal shape). Combined with some algo-
rithm for computing an eigenvalue and the eigenvector (in the symmetric case for the
nonnegative tridiagonal matrix or an M—matrix), one obtains a method for theoretical
computing all the eigenvalues and eigenvectors of such a matrix.

We shall present this formula in two cases: the symmetric case and the more general
nonsymmetric case in which the non-zero entries above the diagonal are normalized
to — 1. To the latter case, any tridiagonal irreducible matrix can be brought by a dia-
gonal similarity. We shall, in fact, start with this case and prove first a lemma.

Lemma. Let

(1) Ty, —1, 7]

- —'ﬂn-l* Oy
be a (complex) tridiagonal matrix for which f, 0, i=1,...n— 1L If u=
= (uy, ..., u,)" is an eigenvector of A then v = (v, ..., v,)" with

(2) U = BBrsy - Pooqtte, k=1,...nm—1, v,=u,

is the (up to a non-zero factor unique) eigenvector of AT corresponding to the same
eigenvalue. This eigenvalue is simple if and only if

() | 3 B o Bueai £ 0.
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Proof. Let u correspond to the eigenvalue ; so that
Au = uu.

The matrix A — pul has rank n — | so that to g, u is the only linearly independent
cigenvector. Therefore, AT has also only one linearly independent eigenvector
corresponding to p. However, it is easily checked that the vector v defined by (2) is
a non-zero vector which satisfies

Alv = uv.
The well known Schur lemma [4] states then that in such a situation, p is a simple

eigenvalue of Aif and only if vTu = 0. This yields exactly the condition (3).

Theorem 1. Let A be the tridiagonal matrix from (1) for which B, 0, i =
=1,..,n— 1. Let y = (y;) be a column eigenvector of A such that y, % 0, i =
1,...,n. Then all the remaining eigenvalues of A coincide with those of the
— 1) x (n — 1) matrix

(n
(4) i 55:- , ]

Il

B=| ...
_ﬁn~3’ a(nfz _l’
_ _ﬁnVZ’ Ay 1
where
(5) 8 =y + ViedVi = Vis2[Viers i=1n =2
&n—l = o, + yn/yn~1 H
Bi = ﬁi,viyi+2/,\yl‘2+l R i=1,...,n—2.

If z=(z;) is an eigenvector of A linearly independent of 'y then the vector
P = (pi)’
(6) pi = Viea(zifyi — Zisa[Visd)s P=1on—1
is a corresponding eigenvector of B. If y corresponds to a simple eigenvalue of A,
ie. if
(7) Zﬁk"'ﬁn-lylf*ov
k=1

then conversely, to an eigenvector p = (py,...,p,—1)" of B, z = (zq,...,2,)" is
a corresponding eigenvector of A where
j—1 n—1

(8) =V et Vi ok J= 1 an,
=1 i

k=j
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with

2
(9) O = — ‘A+1Z /fjn-” n-1Yj s
- 2
Or = ,\'Hlx Z Bjﬁj+l"'/}nf|yj‘ k=1 ...n.
j=k+ 1

Moreover, the common eigenvalues of both matrices A and B have the same multi-
plicities.

Remark. The diagonal entries &; of the matrix B can also be expressed as
(10) Gi=vioa/yi+ Byilyis, + 2. i=1L..n—1,

where 4 is the eigenvalue of A corresponding to the eigenvector y.
Proof. Let us show first the equivalence of (10) in the remark. If i = 1. ....n — 2,

Ui 1Yier = BibVi = Vie2 = AViey

whence
Aiyy — ,\'i+2/}’i+1 + ."i+1/)’1 = .ﬂ/ + By / Viep + A
Since also
Xy — /),n'l.‘.ngl = /:‘.‘vn »
we have

an+yn/."'nfl = ‘/‘1-! +ﬁn71‘n71 n+/

as well and the assertion follows.
Let us show now that the matrix A — Al can be written in the form

(11) A - =PQ
where
1 0 0, 0 |
-p, Y1 L0 0, 0
V2
0 -5, 0 0
P = Y3
0, 0» _/;n——Z -}L”:__ 1
.Vn— 1
V-
0, 0, 0, Boey
Va
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Y20 0, 0
i
0o, o1, 0 0
Q=]
0 0. 0 1
0. 0. O .
yn— 1

thus Pis n x (n — 1), Qis (n — 1) x n. All ofl-diagonal entries of the matrix PQ
are evidently equal to the corresponding off-diagonal entries of A — Al. However,
since (A — /)y = 0 as well as Qy = 0 and thus PQy = 0, the diagonal entries
of both matrices also coincide.

It is easily seen by (10) that the product R = QP is equal to the matrix B — Al:

(12) R=B - /l.

Let now pu be an eigenvalue of A corresponding to a vector z, linearly independent
of y:
Az = nz.
By (11),
PQz =(u—/4)z.
The vector p defined in (6) satisfies
p=Qz

and is different zero. Therefore
(13) Pp =(pu—72)z.

It follows
Rp=QPp = (1~ 2)Qz=(n—4)p,
so that, by (12),
Bp = pup.

The proof of the first part is complete.

To prove the second part, assume first that all eigenvalues of A are simple. Then it
is easily seen that the formula (6) yields n — 1 linearly independent eigenvectors of B
corresponding to the remaining (linearly independent) eigenvectors of A. Moreover,
the correspondence between the eigenvectors z of A and p of B is one-to-one. To
compute the vector z from the vector p, observe that z satisfies the condition

viz=0
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where v is the eigenvector of AT corresponding to the same eigenvalue as y. By the
Lemma, v = (v, ..., ,)" is given by (2) so that z satisfies

M:

BiBis1 - Booiiz = 0.
1

k

Now the following proposition is easily proved.

Proposition 1. Let n be an integer, n = 2, let the numbers ay, ..., a, satisfy

n
Y a; % 0. Then the system of linear equations
j=1
X

i — Xig o =u;, i=1,..,n—-1,

has the unique solution

where

Setting a, = B, ... ﬁn—l)f* k=1,...nu; = Pi/}'f+1a Q; = ri/yi+1- 0; = Si/yH-h
i=1,...,n — 1, the condition ) a; # 0 being satisfied, we obtain that (8) and (9)

=1
yields the unique (up to a factor) and non-zero vector z corresponding to p.

It remains to prove the second part for the case that not all eigenvalues of A are
simple. It follows from the Lemma that there exists a sequence of matrices {Ai 2 such
that A is the limit of A;, each matrix A, is tridiagonal of the form (1), has simple
eigenvalues and an eigenvector y(” with non-zero coordinates which satisfies (8) and
converges to y if i — o0. ’

It follows from (5) that the corresponding matrices B; converge to the matrix B
corresponding to A. Moreover, the vectors p) from (6) are defined and converge
as soon as z"' converge. Therefore, the multiplicities of the common eigenvalues
of A and B coincide and even the formulas (8) and (9) hold. The proof is complete.

In the sequel, we shall use the notion of an M-matrix (or, equivalently, of the
matrix of class K [5]). As is well known [5], such a matrix is characterized by the
fact that all the off-diagonal entries are nonpositive and one of the following proper-
ties holds:

1° Ax > 0 for some nonnegative vector x;
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2° all real eigenvalues of A are positive;

3° A ! exists and is nonnegative:

in the case that A is irreducible, we have another condition:
4" Ax = 0, Ax =+ 0 for some positive vector x.

To an M-matrix, a positive eigenvalue w exists such that Re 4 > w for any eigen-
value and w corresponds to a nonnegative eigenvector. If Ais an irreducible M-matrix
then @ is simple and the corresponding nonnegative eigenvector is even positive.
Moreover, this is the only nonnegative eigenvector of A. Now we are able to prove
the following theorem.

Theorem 2. Let A be defined by (1), let f; >0, i =1,....n — 1 and let y = (y;)
be a positive eigenvector of A corresponding to a positive eigenvalue w. Then A is
an M-matrix and the matrix B defined by (4) and (5) has the property that B — wl
is an M-matrix as well. In fact, (B — wl)u = 0 where u is the positive vector

u= (1/)’1, Bilyas /flﬁz/)'ss v BiBy - ﬂn—z/)’,,~1)T-

Proof. It follows from condition 1° that A is a (nonsingular) M-matrix since
Ay = wy, o > 0, y > 0. The matrix B — wl is then also a nonsingular M-matrix
since it has also all off-diagonal entries nonpositive and all its real eigenvalues —
being equal to o; — w where «; are eigenvalues of A different from w — are positive.

Another method how to prove this fact is by 4°, to show the last assertion. Let u
be the vector defined there. Observe that the k-th diagonal entry of B satisfies not only

G = oy + )"k+1/)'k - yk+2/yk+l .
&",1 = an + yn/yn—l ’
but also

G =@ + Yoo [Vi + BViVisrs k=1,...n—1.

It follows that, for the vector u defined above,

Valvs + Biyiya =1,
(B - wl)u = —Biyavslri, v3lya + Bayays

—/}n~2."n—2yn/y5Al- ."n/.“n—l + ﬂn—lyn—l/yn

1y, yalvi
ﬁl/,Vz _ 0

X .

By ~~-/}n.—z/."u—1 B --~/3n—1/)'n

which is nonnegative as asserted (B is irreducible).
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Theorem 3. Let

(14) oA, =Y.
i % T '

A= — 72
’ B
“VYn-1» %y

be a tridiagonal matrix,y; > 0,i = 1,...,n — L. Lety = (y,, ..., v,)7 be a positive
eigenvector of A corresponding to the smallest eigenvalue of A. Then the remaining
eigenvalues of A coincide with the eigenvalues of the tridiagonal matrix

(15)

X =71

A

A
)

i

—71s %y =72,
B = —2
Op—2s —VYu-2
—Vu-2 LA
where 6; = o + yiviga[yi = VisiVica/ Vi = 1.on =2,
(16) Ay = A, + ynf].\'n/."nfl ’
5 = (v . 2 12 .
(17) Ji = (Yih+1)'i)i+z/)’i+x) o= =2

If z = (z,.....2,)7 is an eigenvector of A linearly independent of y then p =
= (pys ..o pu_y)" is the eigenvector of B corresponding to the same eigenvalue
where

(18) Pi = (’})i)vi.vile)l/Z . (-".‘)';‘71 - —'i+|.\'i-+11)* P=1...n—=1.

Conversely, to an eigenvector p = (py,....p,-1) of B,z = (z,,....z,)7 isa cor-
responding eigenvector of A where

-1 p ko n-1 p n
2
(19) =Y e Sy > v
W1 (M) K0 (i) =k

Proof. Let us find a diagonal matrix D = diag {d,, ..., d,} such that DAD "' is
normalized as in (1).
Since the entries (1, 2), (2, 3), ..., (n — 1, n) of DAD"™ " should be — I, we have

(20) dydily =1, i=1,...,n—1
or,if wesetd, =1,
(21) di =9y, ... Y-y, I=2,..,n.

Considering the entries (2,1),(3,2),....(n,n — 1), we obtain d,, yd; ' = i
whence
yi=F i=1n—1.
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Moreover, the cigenvector y of A corresponds to the eigenvector Dy of DAD ',
and similarly for z. By Theorem I, the remaining cigenvalues of A except that cor-
responding to y coincide with thosc of the matrix corresponding to DAD ™' in (2).
Denote by B the matrix from (4) and (5). Since f§; is positive, we can find a diagonal
(n — 1) by (n — 1) matrix H = diag {h,, .... h,_,} such that B = HBH " is already
symmetric. These numbers h; should satisfy

hihiyo= hi Bl

If we denote this common value by ; and set /i,_, = 1, we obtain
(22) e = Tkiker - T2
and

) 22

Bi =i -

We shall thus set 9, as the positive square root:

('23) ;k = V'!(Bk)~

Let us show now that the matrix B = HBH ! coincides with the matrix B in (15).
From (5) we obtain, having in mind that the y;’s from (5) are coordinates of the

vector Dy, d; given by (21):

N = \v‘/(/}k) = (/fl\‘ll\.“l\([l.+2.“l\+lj(‘lk4 1k 1)2)] =

ﬁ(«, ~ . /1.2 )I,Z
= Pk 1V kVi+ 2/ Vi

i.e. (17).
The diagonal entries 2, of B are the sameas the diagonal entries of B. Using again
the formulae (5), we obtain

B = oy "'i+|,1’i+1/(di."i) - ‘[i+z,"i+z/(‘1i+1."i+1)- k=1.....n—=2.

A

Ty = %y + ‘[n,\‘n/(‘[n— 1Vn—1 ) .

Using (21), this yields (16).

Now let z be an eigenvector of A linearly independent of y. Then Dz is the cor-
responding eigenvector of the matrix DAD ™. By (6), the eigenvector p = (p;) of B
has coordinates

pi=d;, 1_\'i+x(:i/’."i — Zixq Vi)

Since B = HBH ! has eigenvector p = Hp, we obtain from (21) and (22) for

p=(n)
pi=hipi =y VT ?A'u—z."iu(:i/)'i - :i+1/."i+1) >
which yields, after dividing by y; ... 7,-3 \ (Ya- 13/3—1), the formula (18).

The converse follows from (18). All eigenvalues being simple by Lemma, the cor-

respondence between the eigenvectors z of A and p of B is one-to-one.

(o8
[
(9,



If we denote, for a moment, by p = (p;) the eigenvector of the normalized matrix
B = H 'BH. we have
. 1
(24) Pi = Pi-
h;
Similarly, if y = (#;) and z = (Z,) are eigenvectors of the normalized matrix DAD !,
we have
V= djyj S
Z; =d;z;.
Therefore, using (8), we obtain

j—1 n—1

z; = ,f’jZQkﬁk + .ijzo-kﬁk
k=1 k=j
where

k
TV Vam VL e Vit )

which can be written as

1 k
o =C(" e yins ny->, k=1on—1,

diy1Yivr i=1

C being independent of k; similarly

with the same C. By (24), leaving out the constant C,

n—1

i1 P k P n—1

oo K 2 K 2

R e W) Y L o
k=1 dy Vs q =1 k=i iy 1 Yy =K+ 1

From (22), (21) and (17), one gets (leaving out another factor independent of j)
(19). The proof is complete.
Let us conclude with an analogue of Theorem 2 for symmetric tridiagonal matrices.

Theorem 4. Let A be given by (14), let y; >0, i =1,...,n — 1 and let y = (y,)
be a positive eigenvector of A corresponding to a positive eigenvalue w. Then A
is an M-matrix and the matrix B defined by (15), (16) and (17) has the property
that B — wl is an M-matrix as well. Moreover, (B — wl)u = 0 where u is the

positive vector u = ((y;y1¥2) "% (120293) 72 o (e 1 m- 1) 72T

The proof follows for instance from Theorem 2 by transforming the vectors u, y
and the numbers B, using the formulae g; = y{, (21), (22) and (17).
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Souhrn

VZOREC PRO DEFLACI TRIDIAGONALNICH MATIC
MiroOSLAV FIEDLER

Jsou uvedeny explicitni vzorce, jimiz ze znalosti jednoho jednoduchého vlastniho
éisla a odpovidajiciho vlastniho vektoru tfidiagonalni matice fadu n lze vypodist
opét tfidiagonalni matici fadu n — 1, jejiz vlastni &isla jsou totozna se zbylymi
vlastnimi Cisly ptivodni matice. Rovnéz jsou uvedeny vzorce pro vzajemné prevadéni
zbylych vlastnich vektord pidvodni matice a vlastnich vektor nové matice. Pro
specidlni pfipad tfidiagonalni M-matice a kladného vlastniho vektoru je ziskana
matice opét M-matici.

Author’s address: Prof. Dr. Miroslav Fiedler, DrSc., Matematicky ustav CSAV, Zitna 25,
115 67 Praha 1.
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