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1. INTRODUCTION

There exist many different approaches to the investigation of the characteristics
of learning systems. These approaches use different branches of mathematics, e.g.
gradient methods, mathematical programming, statistical decision, potential func-
tions etc. These various approaches being taken as starting points, different results
have been obtained. Some of them are too complicated and inapplicable in practice
while others, on the contrary, do not match the resulits of practical experiments.

This paper presents one example of the modelling of learning systems by means
of a stochastic automaton (abbreviation SA, cf. [1]). A basis for studying automata
as learning systems can be found in [2], 3], [4], where the behaviour of automata
in a random environment is studied. For a brief definition of SA see Appendix 1.

2. DESCRIPTION OF THE MODEL

Extremal control is used in the case when the extreme value of the controlled
variable x is required to be at the output of the controlled system and at the same time
the static time-dependent characteristic of the controlled system is unknown.

In this paper, the extremal regulator will be modelled by SA with variable struc-
ture, i.e. by SA whose transition matrix is time-dependent according to an algorithm

x(t+1)

y(t)

Fig. 1. The general block diagram of the model. A

x(t)
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with unknown parameters. A block diagram is in Fig. 1, where S means the controlled
system, A is SA as an extremal regulator. Let the action variable y lie in an interval
W = (Voyins Ymaxy and the controlled variable x in an interval (0, x,,,,>-

We shall assume the existence of noise which can influence the value of the action
variable y. Let us suppose that the maximum amplitude of the noise is +Ay/2.

First of all we shall find the minimum of the variable x. A general way of finding
this minimum, while considering the noise of the regulator, would be rather difficult.
We shall therefore simplify the problem by the assumption that the action variable y
changes its value within intervals of the length Ay. The interval % will be then divided
into

Voax — Veni
1 | = Z2max _ Jmin

g .
intervals

() Y= ogin + (0= 1) AY, Yoin +PAYY, i=1,..1

each of the length Ay. The center of the interval %, is given by
) Fi= Ymin + (i = DAY, i=1 0

Let us attach a state g, to each interval %, i = 1, ..., I. If SA is in the state g, then
a value y € %; with uniform distribution R(¥;, Ay) will be the output signal of SA.
To change its structure, SA requires information about the values of variables
x = S(y)for ye®,, i = 1,..., . The following variables are therefore intreduced:

(4) ui:—]—:*—J—A for ye®,, i=1,..,1, nisan integer.

xS

The mean value of u; within the interval %, is

1 1 1
) U, = J u;dy = — ——dy, i=1,...1
AyJa, Ay Ja, [SO)]"

It is obvious that the mean value of a random variable u; is
Eu,=U;, i=1,...,1.
Thus the problem of extremal control consists in finding such i* € {1, ..., [} that

(6) Uj = max U;.
Jj=1,..,1
However, the main difficulty of solving this problem is the unknown shape of the
function S(y), y € %;. The only information about this shape can be obtained during
single steps of the algorithm actions. We shall therefore determine estimates of Eu;,
i = 1,..., I by means of the so-called linear reinforcement algorithm; the estimate
of Eu, for the time (step) t will be denoted E®u;.
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SA as the extremal regulator works as follows: let the state distribution of SA
instept(r=0,1,...) be
A" = [n", .., "]

The automaton is transferred randomly into another state q(t‘) = ¢, according to
this distribution. The output of the automaton is then y(t) € %, in view of the uniform
distribution R(},, Ay).

The action variable y(r) on the input of the system determines the value of the
controlled variable for the next step:

(7) x(t + 1) = S(y(1))
where S is the unknown static characteristic of the controlled system.
According to (4) the value of u, for the step t + 1 is given by
1
[ + 1T

and the linear reinforcement algorithm gives estimates of Eu; in the form (0 < o < 1)

u(t + 1) =

(8) Dy = oEOu, + (l - a) u,(t + 1),
E(Hnuj = B0y, jEr, j=1,..1.

J

The state distribution for the step t + 1 will be

9) Y = = TE =11,

ZE(1+1)

j=1
According to n*!" SA will be transferred randomly into the state g(r + 1) etc.
So SA works as a learning extremal regulator.

Comment. It is suitable to evaluate the average of the measured values of the
controlled variable for each step

(10) well) = 3500,

The following recurrent formula offers the most convenient way for the calculation:

1
(11) Xaverll + 1) = —— (Ix,0e,(t) + x(r + 1)), 1 =0,1.....
t+1
Theorem 1. Let us assume that the formulas (8) are valid 0<oa<l1, EEOu =
= U;, Du(t) £ Dpyee t = 1,2, ... and DE@u, £ D, i v l. Then
1) EEOu; =U;, t=0,1,..., i=1.1,
2) (Ve > 0) lim P(|[E"u; — U] > &) < Do Dz iy,
10 2 I +a
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t
3) P (lim Loy, = U.-) -1,

-0 t + 1 <=0

t
lime (-1 YNE®u, —U; =0, i=1..1.
1= t + l =0

Proof of this theorem follows from the independence of E©u; and from the values
of u;, measured during the operation of SA, from the relationship formula Eu,-(t) =U;
and from Theorem 3 which is presented in Appendix 2.

Consequence. According to Theorem 1 we can say that the value n'&, due to
the fact that the relation (6) is valid for i*, is the maximum value of all the values 7},
j =1, ..., [, with the probability equal to 1.

The flow diagram of the operation of SA, the program in ALGOL and several
examples are presented in [6]. For better comprehension, one example is presented in
this paper. Let yoin = 0, Youx = 5, Ay =05, x,., = 10, « =099, n = 1 and let

2:5y%2 — 35y + 1-8
S0 =T

be valid for the first 1000 steps and then

257 — 215y + 468

 —y 452

for next 1500 steps. We can see that [ = 10, minimum of S,(») (S2(¥)) equal to 0-6
corresponds to ¥,(%,). The shapes of 1%, #{”, x,,.,(t) can be seen in Fig. 2.
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Fig. 2. The shape of n%), {9, Xapert)-
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An integer n is introduced in formula (4). This integer gives the power of the
measured value of the controlled variable x. It is obvious that the bigger is n, the
more curved shapes of u;’s are obtained, the more conspicuous extremes of u;’s
arise and, thus, the more easily SA can recognize the interval with the maximum
value of u;. The dependence of the optimal n on the curvature of the shape of S(y)
has been found experimentally [7]

The above mentioned model can be very easily generalized to the N-dimensional
case, N > 1. By successive counting of the N-dimensional intervals %; we can
transform this problem to the one-dimensional case and use the above described
algorithm. For details see [6].

3. CONCLUSIONS

The stochastic automaton does not examine the entire shape of the characteristic
of the controlled systemi and does not store it in its memory; it only finds out —
according to randomly measured values of the controlled variable — the interval
with the minimum mean value of the controlled variable x.

There is a disadvantage of the described model: a rather long time is needed for SA
to find the interval with the minimum x. On the other hand a great advantage is that
SA does not require a “teacher” and works as an “on-line” regulator so that it gains
some experience during its operation and directly controls the given system according
to the acquired experience on the shape of the static characteristic of the controlled
system.

The extremal regulator stores only the estimates of Eu;, i = 1, ..., I inside its inner
memory so that its memory has only / cells.

From the formula (8) we can see that the extremal regulator “forgets” the values
of the controlled variable measured a long time ago. The reason is that the coeffi-
cient « in (8) maintains the same value during the whole operation. But the value
of @ must not be too small, otherwise undesirable transition would arise in SA.

Other models of SA as learning regulators are in [8], [9], [10], [11], [12], [13].
These models demonstrate that the use of the stochastic approach to learning can
discover new methods and insights in this area.

Appendix 1. Stochastic automaton

Definition. A stochastic automaton of the Moore type is a 6-tuple
(12) A=[2.2%{a(x)} e 1. ]

where 2 = {q,, ..., q,} is the set of states,
Z is the input alphabet,
% is the output alphabet,
a(x) = [a;j(x)],. is a stochastic matrix, called transition matrix,
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w2 — % is the so-called mark function (deterministic or random function),
w is the vector of initial probabilistic distribution of the states,

with the interpretation
(13) ay(x) = P(g(k + 1) = q, | q(k) = q;. x(k) = x)
(k) = p(a(k + 1)), k=1.2,....
Here g(k) is the state of the automaton in the step k, x(k) (y(k)) is the input (output)
symbol of the automaton in the step k, P(... ! ...) means the conditional probability.
SA (stochastic automaton) works as follows: according to the initial distribution =

the initial state (1) of the automaton will be, say, ¢,. Let the first input symbol be
x(1) = x,. According to the distribution vector

(14) n(2) = a(x)=n
SA transfers randomly to a state ¢(2), say q;, and yields the output symbol y(1) =
= p(g;), etc.

The theory of stochastic automata allows us to describe the behaviour of an auto-
maton not only by the transition matrices a(x) but also by a series of vectors (k)
of the probabilistic distribution of states:

(15) n(k) = [my(k), ....m(k)]. k=1,2,..

where 7,(k) is the probability that SA will be within the state g; at step k,i = 1,.., n.
This description is used chiefly when SA has a variable structure, i.e. its transition

matrices depend on a current step k:

{a(k’ x)}xell’a k = l, 2,.-..

Appendix 2. Stochastic approximations

Theorem 1 presented above is derived from the following two theorems: the
former is the well-known Dvoretzky’s Theorem on stochastic approximations, the
latter is an original one.

Theorem 2. (Dvoretzky, [5]). Let Zo, X1, X5, ... be random variables, let
(16) Zyir = Thii(Zoy ..y Z,) + Xpiy, n=0,1,...
let 0 be a real number and, furthermore, let
a) T,yq, n =0,1,... be a measurable function satisfying
(17) (Vror oo 1) | Tii(Fon oo 1) = 0] £ €4y

where {c,} ", is a series of positive numbers so that

r,,-—0|

0

(18) ¢, =0
n=1
b) EZ < o0,
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¢) E(X,11]| Zo..... 2,) = 0 with probability 1,n = 0,1, ...,

d) ZEX,? < oo.

n=1
Then
(19) P(lim Z,=0)=1, lim E(Z,, -0 =0.

n— o n= oo

Theorem 3. Let Z, X,, X,, ... be independent random variabl
DX,=D,n=1,2,...,EZ, = u, DZ, £ D. Let

(20) Zyoy =0Z,+ (1l —a)X,0y, n=0,1,...
where 0 < oo < 1. Then

WEZ,=p, n=0.1,...,

i

2) (Ve > 0)lim P(IZ,, - /z[ > ¢)

n 1 n 2
3) P lim 1, limE Z,—un) =
) <n-¢oo n+ 1 IZ ) n— o (n + 1 izz() >

Proof.
1) Formula (20) yields

es with EX, = p,

(21) Z,=d"Zy+ (1 —a)a" "X, + ..+ (I —a) X, =

=a"Zy + (1 —oc)Zot"X,-, n=0,1,...

1

H

o

EZ, = u[o" +(1_ai - = I:Ot"+(l~a 11;

-

2) According to (21), using the independence of Z,, X, X5, ...
=0.1,..)

(22) Dz, = D[« + (1 — oc)z'i 0] = D[ (1 - oz)2 |

=D l-a +4,2ﬁi': )
I+ o
The Chebyshev inequality yields

D} —ot+2oc2"+l

Ve > 0) P(|Z, > ¢ —.
(Ve > 0) P(Z, —u| > e) < 5=~
Finally,
D1 -«
Ve > 0) limP(|Z, — u| >¢) £ —- .
(ve )niw (l ,ul ) 21 +a

1.

we can get (n =

. aZn]
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3) Let us assign

W,,Z"J‘ ZZ" n=20,1,....

n+1i=o
The recurrent formulas for W, are
Wo =2,
1 1
Woyor =1l — — \W,+ —Z,,y, n=0,1,....
n+2 n+2
By subtracting u from both sides of this equation and by assigning

W,=W,—un, Z,=2,—n, n=0,1,...

we get
_ 1 — | I—
Wi =1(1— W, + - Zyo1, n=01,....
n+ 2 n+ 2
Now let us prove that the assumptions of Dvoretzky’s Theorem are fulfilled.
a) Let
1
’Tn+1(r07""rn)= 1—" r,,, n=0, ],
n+2
Thus
1
Toalro, st =1 = ——=])|rl. =01,
n+1(’0 ’) ( 11+2> Fn n 0
But

The formula (18) is thus valid.
b) EWg = DZ, £ D < 0,
) EZysy | Won ... W) =0, n=0,1,

o] 1 _ 2 ) 1
d YE(-———Z)<DY ' — <w
) ngl (n + 1 > nzl (n+ 1)
because according to (22)

- 2n+1
E22-Dz, <D T2 T® o p a2

1+«
The assumptions of Dvorezky’s Theorem are fulfilled for 6 = 0 and thus we obtain
P(im W, = pu) =1, limEW, —p)? =0

n— o n— o

QED.
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Souhrn

UCICi SE EXTREMALNiI REGULATOR MODELOVANY POMOCI
PRAVDEPODOBNOSTNIHO AUTOMATU A TEORIE
STOCHASTICKYCH APROXIMACI

[VAN BRUHA

Vlastnosti uéicich se systémi lze studovat z mnoha pfistupt, vyuZivaje raznych
oblasti matematiky. Vysledky vSak obvykle byly pfilis komplikované ¢i nesouhlasily
s vysledky praktickych pokust.

Clanek uvadi modelovani ugicich se systémi pomoci stochastickych automatii.
Podrobné je vyvétlen jeden model uciciho se extremalniho regulatoru. Dukaz kon-
vergence je zalozen na Dvoretzkyho vété o stochastickych aproximacich. Ukazuje se,
Ze stochastické automaty s teorii stochastickych aproximaci jsou vskutku vhodnym
nastrojem pro studium ucicich se systémii.

Author’s address: RNDr. Ing. Ivan Britha, CSc., Elektrotechnicka fakulta CVUT, Suchbata-
rova 2, 166 27 Praha 6.
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