
Aplikace matematiky

Ivan Brůha
Learning extremal regulator implementation by a stochastic automaton and
stochastic approximation theory

Aplikace matematiky, Vol. 25 (1980), No. 5, 315–323

Persistent URL: http://dml.cz/dmlcz/103867

Terms of use:
© Institute of Mathematics AS CR, 1980

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103867
http://dml.cz


SVAZEK 25 (1980) APLIKACE MATEMATIKY ČÍSLO 5 
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AND STOCHASTIC APPROXIMATION THEORY 
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(Received April 4, 1975) 

1. INTRODUCTION 

There exist many different approaches to the investigation of the characteristics 
of learning systems. These approaches use different branches of mathematics, e.g. 
gradient methods, mathematical programming, statistical decision, potential func­
tions etc. These various approaches being taken as starting points, different results 
have been obtained. Some of them are too complicated and inapplicable in practice 
while others, on the contrary, do not match the results of practical experiments. 

This paper presents one example of the modelling of learning systems by means 
of a stochastic automaton (abbreviation SA, cf. [ l ]) . A basis for studying automata 
as learning systems can be found in [2], [3], [4], where the behaviour of automata 
in a random environment is studied. For a brief definition of SA see Appendix 1. 

2. DESCRIPTION OF THE MODEL 

Extremal control is used in the case when the extreme value of the controlled 
variable x is required to be at the output of the controlled system and at the same time 
the static time-dependent characteristic of the controlled system is unknown. 

In this paper, the extremal regulator will be modelled by SA with variable struc­
ture, i.e. by SA whose transition matrix is time-dependent according to an algorithm 

y(t)k 

Fig. 1. The general block diagram of the model. 
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with unknown parameters. A block diagram is in Fig. 1, where S means the controlled 
system, A is SA as an extremal regulator. Let the action variable y lie in an interval 
*& = O'm.n' ymax> a r i d mQ controlled variable x in an interval (0, xmax>. 

We shall assume the existence of noise which can influence the value of the action 
variable v. Let us suppose that the maximum amplitude of the noise is +A^/2. 

First of all we shall find the minimum of the variable x. A general way of finding 
this minimum, while considering the noise of the regulator, would be rather difficult. 
We shall therefore simplify the problem by the assumption that the action variable y 
changes its value within intervals of the length Ay. The interval <& will be then divided 
into 

/ i \ i / m a x ymin 

Ay 

intervals 

(2) 91 = <y.nin + (/ ~ 1) Ay, ymin + I Ay> , 1 = 1 , . . . , / 

each of the length Ay. The center of the interval ty{is given by 

(3) j \ - = ymin + (i - i ) A y , / = ! , . . . , / . 

Let us attach a state qt to each interval $L, i = 1, . . . , / . If SA is in the state q{ then 
a value y e ®J-x with uniform distribution R(yh Ay) will be the output signal of SA. 

To change its structure, SA requires information about the values of variables 
x = S(y) for y e&i, i — ! , . . . , / . The following variables are therefore introduced: 

(4) ii: = — = for y e°3/:, i — 1, ..., / , n is an integer . 

The mean value of ut within the interval °y{is 

(5) V, = - / uiáy = ^ \ rJ ^ áy , / = !,...,/ 
Ay J *,[%)]" 

It is obvious that the mean value of a random variable u; is 

Eu. = U., i = 1, ..., / . 

Thus the problem of extremal control consists in finding such i* e {1, ..., 1} that 

(6) U^ = max Uj . 
1-i,...,/ 

However, the main difficulty of solving this problem is the unknown shape of the 
function S(y), y e %/1. The only information about this shape can be obtained during 
single steps of the algorithm actions. We shall therefore determine estimates of Ew-, 
i = 1, ..., I by means of the so-called linear reinforcement algorithm', the estimate 
of EuL for the time (step) t will be denoted E(0u-. 
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SA as the extremal regulator works as follows: let the state distribution of SA 
in step t (t = 0, 1, ...) be 

«<«> = [ . - < ' > , . . . , . # > ] . 

The automaton is transferred randomly into another state q(t) — qr according to 
this distribution. The output of the automaton is then y(t) e °yr in view of the uniform 
distribution R(yn Ay). 

The action variable y(t) on the input of the system determines the value of the 
controlled variable for the next step: 

(7) x(t + I) = S(y(t)) 

where S is the unknown static characteristic of the controlled system. 
According to (4) the value of ur for the step / + 1 is given by 

ult + 1) = ? 
[*(/+!)]» 

and the linear reinforcement algorithm gives estimates of Eu; in the form (0 < a < 1) 

(8) E(,+ , ,u r = aE(,,ur + (1 - a ) ur(t + 1), 

|«+i>Uj. = E ( , )U,., j + r, ; = 1, . . . , / . 
The state distribution for the step / + 1 will be 

F ( , + 1)u 
(9) *.' + 1) = ~f — , '= 1, • • • , ' . 

X E ( ' + J ) « , 
J = l 

According to 7t(r+1) SA will be transferred randomly into the state q(t -f- 1) etc. 
So SA works as a learning extremal regulator. 

Commen t . It is suitable to evaluate the average of the measured values of the 
controlled variable for each step 

(10) *.v„(0 = - ix(x), /= 1,2, .... 
t t = l 

The following recurrent formula offers the most convenient way for the calculation: 

(11) .vaver(z + 1) = - 1 - (/.ravcr(/) + x(t+l)), / = 0, 1 
/ + 1 

Theorem 1. Let us assume that the formulas (8) are valid, 0 < a < 1, EE(0,u, = 
= U„ Du,(/) ^ £>max, / = 1, 2, . . . and DE(0)u; ^ Z)max, i = 1, ..., /. Then 

1) EE(,)u, = U,, / = 0, 1 , . . . , i = 1 , . . . , / , 

2) (Ve > 0) lim P(|E("u,. - U,\ > e) < -?™B-LZl? , / = 1, . . . , / , 
r-»oo £2 1 + a 
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3) P (lim — - i E<*>«, = U;) = 1 , 
\ r - o o t + l t = - 0 / 

lim E f- i — V E(TV- - U,V - 0 , i = l,...,/. 
r-oo \t + 1 T = 0 / 

P r o o f of this theorem follows from the independence of E ( 0 )u; and from the values 

of uh measured during the operation of SA, from the relationship formula Eux(t) = Ux 

and from Theorem 3 which is presented in Appendix 2. 

C o n s e q u e n c e . According to Theorem 1 we can say that the value n\?\ due to 

the fact that the relation (6) is valid for i*, is the maximum value of all the values 7i(c0), 

j = 1, ..., /, with the probability equal to 1. 

The flow diagram of the operation of SA, the program in ALGOL and several 

examples are presented in [6]. For better comprehension, one example is presented in 

this paper. Let ymin = 0, ymax = 5, Ay = 0-5, xmax = 10, a = 0-99, n = 1 and let 

c , , 2-5v2 - 3-5y + 1-8 
S l W " — 7 T ^ 2 — 

be valid for the first 1000 steps and then 

2-5y2 - 21-5y + 46-8 
s2(y) = 

- y + 5-2 

for next 1500 steps. We can see that / = 10, minimum of St(y) (S2(y)) equal to 0-6 
corresponds to ^2(^9)- The shapes of K(

2\ K^\ x a v e r(t) can be seen in Fig. 2. 

лJt) 

10 50 100 500 1000 1050 

Fig. 2. The shape of n^K n^, x (/). 

f500 3000 
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An integer n is introduced in formula (4). This integer gives the power of the 
measured value of the controlled variable x. It is obvious that the bigger is /?, the 
more curved shapes of uf's are obtained, the more conspicuous extremes of w/s 
arise and, thus, the more easily SA can recognize the interval with the maximum 
value of ur The dependence of the optimal n on the curvature of the shape of S(y) 
has been found experimentally [7]. 

The above mentioned model can be very easily generalized to the N-dimensional 
case, N > 1. By successive counting of the N-dimensional intervals <$L we can 
transform this problem to the one-dimensional case and use the above described 
algorithm. For details see [6]. 

3. CONCLUSIONS 

The stochastic automaton does not examine the entire shape of the characteristic 
of the controlled system and does not store it in its memory; it only finds out — 
according to randomly measured values of the controlled variable — the interval 
with the minimum mean value of the controlled variable x. 

There is a disadvantage of the described model: a rather long time is needed for SA 
to find the interval with the minimum x. On the other hand a great advantage is that 
SA does not require a "teacher" and works as an "on-line" regulator so that it gains 
some experience during its operation and directly controls the given system according 
to the acquired experience on the shape of the static characteristic of the controlled 
system. 

The extremal regulator stores only the estimates of Euh i = 1, ..., I inside its inner 
memory so that its memory has only I cells. 

From the formula (8) we can see that the extremal regulator "forgets" the values 
of the controlled variable measured a long time ago. The reason is that the coeffi­
cient a in (8) maintains the same value during the whole operation. But the value 
of a must not be too small, otherwise undesirable transition would arise in SA. 

Other models of SA as learning regulators are in [8], [9], [10], [11], [12], [13]. 
These models demonstrate that the use of the stochastic approach to learning can 
discover new methods and insights in this area. 

Appendix 1. Stochastic automaton 

Definition. A stochastic automaton of the Moore type is a 6-tuple 

(12) A = [<2, # , 9, {a(x)}Jce^, //, *] 

where 2L = [qA, ..., qn} is the set of states, 
'£ is the input alphabet, 
ty is the output alphabet, 
a(x) = [tf;/x)],,,, is a stochastic matrix, called transition matrix, 
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JLI : 2L -> ®l is the so-called mark function (deterministic or random function), 
7t is the vector of initial probabilistic distribution of the states, 

with the interpretation 

(13) au(x) = ?(q(k + 1) = qj \ q(k) = qx , x(k) = x) 

y(k) = ix(q(k+ \)), k= 1,2, . . . . 

Here q[k) is the state of the automaton in the step k, x(k) (y(k)) is the input (output) 
symbol of the automaton in the step k, P( . . . | . . .) means the conditional probability. 

SA (stochastic automaton) works as follows: according to the initial distribution xc 
the initial state q(\) of the automaton will be, say, qr Let the first input symbol be 
x(\) = x , . According to the distribution vector 

(14) n(2) = a(x t) n 

SA transfers randomly to a state q(2), say q}, and yields the output symbol y(l) = 
= fi(qj), etc. 

The. theory of stochastic automata allows us to describe the behaviour of an auto­
maton not only by the transition matrices a(x) but also by a series of vectors n(k) 
of the probabilistic distribution of states: 

(15) n(k) = [njk), ..., nn(k)] , k = V 2, . . . 

where n^k) is the probability that SA will be within the state q{ at step k, i = \, . . , n. 
This description is used chiefly when SA has a variable structure, i.e. its transition 

matrices depend on a current step k: 

{a(fe, x)}xeX , k= 1 , 2 , . . . . 

Appendix 2. Stochastic approximations 

Theorem 1 presented above is derived from the following two theorems: the 
former is the well-known Dvoretzky's Theorem on stochastic approximations, the 
latter is an original one. 

Theorem 2. (Dvoretzky, [5]). Let Z0,X1,X2, ...be random variables, let 

(16) Zn + 1 = T„ + i(^o, --iZn) + Xn+i , n = 0, 1, ... 

let 0 be a real number and, furthermore, let 

a) Tn + 1, n = 0, I, . . . be a measurable function satisfying 

(17) (Vr0, ..., r„) |T„+1(r0, ..., r„) - 9\ S cn+i\r„ - 0\ 

where {c„}^°=i is a series of positive numbers so that 

(is) fK = o 
n — 1 

b) EZQ < oo, 
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c) E(Xn + 1 | Z 0 Z„) = 0 with probability 1, n = 0, 1, .... 

d) £ E*2 < oo. 
n = 1 

Th^ti 

(19) P(lim Z„ = 0) = 1 , l im E(Z„ - 0)2 = 0 . 
n -* oo »n -* o o 

Theorem 3. Let Z 0 , Xx, X2, ... k independent random variables with EK„ = /i, 
DXn = D , n - = l , 2 , . . . , EZ0 = /t, DZ0 ^ D. Let 

(20) ZB + 1 = a Z „ + (l - a ) X „ + 1 , n = 0, V... 

where 0 < a < V Tlien 

1) EZ„ = ju , /? = 0, 1, ... , 

D 1 - a 
2) (Vfi > 0)lim P(|Z„ - Ą > г) й 

s2 1 + a 

3) P Aim _ L ^ £ Z ; = /A = I , lim E l - i - £ Z,. - pY = 0 . 
\ n -oo tl + 1 i = 0 / n-ao \W + 1 i=0 / 

Proof. 

1) Formula (20) yields 

(21) Z„ = a"Z0 + (1 - a ) a " - % + .. . + (1 - a)Xn = 

n 

= a"Z0 + (1 - a ) X y - / K ( - , n = 0, V . . . 
i = l 

EZ„ = /i[a" + (1 - a) £ a""'] = p fa" + (1 - a) - 1 - — 1 = p . 
i = i 1 — a J 

2) According to (21), using the independence of Z0, XUX2, . . . we can get (n = 
- 0 , 1 , . . . ) 

(22) DZ„ ^ D[a2" + (1 - a)2 £ a2("-f>] = D [a2" + (1 - a)2 1 - ^ " 1 = 
i = i L 1 — a2 J 

t - a + 2a2" + 1 

1 + a 

The Chebyshev inequality yields 

tw AA D/I-7 I A D 1 - a + 2 a 2 " + l 

(Vfi > 0) P( Z„ - p\ >e)<- - . 
£ 1 + a 

Finally, 

(Ve > 0) lim P(|Z„ - n\ > e) g \ ^ . 
n->oo e 1 + a 
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3) Let us assign 

wa^~1— £ Z ( , 11 = 0 ,1 , 
И + 1 i = 0 

The recurrent formulas for Wn are 

W0 = Z 0 , 

w„+í=(i- - M w„ + — — Z,H 
V n + 2j n + 2 

i , и = 0, 1, 

By subtracting j.i from both sides of this equation and by assigning 

W„= W„-n, Z„ = Z „ - / i , n = 0, 1,... 

we get 

U i = f i ~ 1 ^ + - - - Z « + 1 , n = 0,l,.... 
\ n + 2/ n + 2 

Now let us prove that the assumptions of Dvoretzky's Theorem are fulfilled, 

a) Let 

Tn+l(r0, . . . ,"„) = ( 1 -z)rn> n = 0 , 1, ... . 
V n + 2! 

Thus 

But 

|~. + i(r 0, . - . 0 | = ( l - - - p ; ) \r„\ , n = 0, 1, 

n=l \ /? + 1/ 

The formula (18) is thus valid. 

b) EW0

2 = D Z 0 <5 D < oo , 

c) E ( Z M + 1 | P V o , . . . , W M ) = 0 , II = 0 , 1 , . . . 

1 oo / i \ 2 oo 

d) Y E V - - Z , < o y — 
' -£. \n + \ 7 ~ .^i (n + 1) 

because according to (22) 

< 00 

I _ <v i ? r / 2 " + 1 

EZ2 = DZ„ ^ D - l±j^_ ^ Dj „ =- i, 2, ... . 

1 + a 

The assumptions of Dvorezky's Theorem are fulfilled for 0 = 0 and thus we obtain 

P(lim Wn = /i) = 1 , lim E(W„ - /i)2 = 0 
n-* oo n-> oo 

QED. 
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Ѕ o u h r n 

UČÍCÍ ЅE EXТREMÁLNÍ REGULÁТOR MODELOVАNÝ POMOCÍ 

PRАVD PODOBNOЅТNÍHO АUТOMАТU А ТEORIE 

ЅТOCHАЅТICKÝCH АPROXIMАCÍ 

ІVАN BRŮHА 

Vlаstnosti učících sе systеmů lzе studovаt z mnohа přístupů, využívаjе různých 
oblаstí mаtеmаtiky. Výsíеdky všаk obvyklе byly příliš komplikovаné či nеsouhlаsily 

s výslеdky prаktických pokusů. 
Článеk uvádí modеlování učících sе systеmů pomocí stochаstických аutomаtй. 

Podrobn jе vyv tlеn jеdеn modеl učícího sе еxtrеmálního rеgulátoru. Důkаz kon-

vеrgеncе jе zаložеn nа Dvorеtzkyho v t o stochаstických аproximаcích. Ukаzujе sе, 

žе stochаstické аutomаty s tеorií stochаstických аproximаcí jsou vskutku vhodným 

nástrojеm pro studium učících sе systеmů. 

Authoґs address: RNDr. lng. Ivan Brůha, CЅc, Elеktrotеchnická fаkultа ČVUТ, Ѕuchbátа-
rovа 2, 166 27 Prаhа 6. 
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