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SVAZEK 25 (1980) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

FIRST-ORDER NECESSARY CONDITION 
FOR THE EXISTENCE OF OPTIMAL POINT 

IN NONLINEAR PROGRAMMING PROBLEM 

J A N PALATA 

(Received March 3, 1978) 

In the theory of optimization we are often forced to make some simplifications in 
the face of great difficulties that arise in manipulating the given sets. For that reason 
we proceed by studying local properties of the sets with their (mostly conical) approxi­
mations (the question of the existence of local extremum in the nonlinear program­
ming problem is equivalent to the question of the local disjointness of certain two 
sets). In [2] an approximation was defined by means of the so called contact cone for 
the purpose of building up the general theory of nonlinear optimization. In this 
paper we want to show some properties of the contact cone and, by means of this 
cone, to state a necessary condition for local disjointness of the sets in question at 
a suspicious point (also called candidate). 

First we introduce some notation and recall the definition of the contact cone. 
Let En(n ^ 1) be an r/-dimensional Euclidean space, 0 x e En a fixed chosen point 

and v a nonzero vector. By smybol P(0x; v) we denote the halfline with description 

x = 0 x + tv , t e (0, oo) . 

If a function F(x), defined for the sake of simplicity in the whole space E„, has the 
derivatives 

OF 
— , a = 1, ..,, n , 
dxa 

et us set 

^Hӣ a = 1, . . . . и 
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Definition 1. Let P(0x; v) be an arbitrary polyhedral cone in En with the properties 

1) dim P(0x; v) = n, 

2)Ko*;v)c= intP(0x; v). 

Then we call the set 

k'(ox; v) = int P(0x; v) 

a polyhedral neighbourhood of the halfline P(0x; v) in En. 

Definition 2. Let U(0x; v) be an arbitrary polyhedral neighbourhood of the 
halfline P(0x; v) and H the open halfspace in En with the boundary RH, and with 
the properties 

1) ox e H, 

2) the set U(0x; v) n RH is non-empty and bounded. 

Then we call the set 

y(H; P) = U(0x; v) n RH 

a proper cut of the neighbourhood U(0x; v) Of the halfline p(0x; v). 

Definition 3. A proper cut y'(H'; P) of a polyhderal neighbourhood U(0x; v) is 
called finer than another proper cut y(H; P) of the same neighbourhood U(0x; v), 
if it holds 

y'(H'; P) a (H n U(0x; v)) . 

R e m a r k 1. if y'(H'; P) is finer than y(H; P), we shall write 

y'(H'; P) < y(H; P) . 

Definition 4. Given a set A a En and 0x e A, we call the halfline P(0x; v) with 
the property that to any its polyhedral neighbourhood U(0x; v) there is a proper 
cut y(H; P) such that 

y'(H'; P) n A 4= 0 

fOr all proper cuts y'(H'; P) < y(H; P), the o-halfline of the set A at the point 0x. 

Definition 5. Let A be a given set and 0x e A a fixed chosen point. Let us denote 

by XKo x ; v) tne set °f aM o-halflines of the set A at the point 0x. Then the set 
a 

S(0x; A) = {0x} u ^p ( 0 x; v) 
a 

is called the contact cone of the set A at the point 0x. 

Before we proceed to the study of some properties of contact cones, we prove two 
lemmas. 
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Let £ > 0, v #= o and 0 x e En be arbitrary. We denote by Kv(0x; s) the rotary 
double-cone with the vertex 0x, with the axis determined by the vector v and with 
the vertex-angle 2(p, where tg cp = ijs. 

Lemma 1. Let dM = {x e En | F(x) = 0} be a smooth manifold in En

l). Let 

0 x e dM. Then to any e > 0 there is a neighbourhood U(0
X) of the point 0 x such that 

(U(0x) n dM \ {0x}) c ext KvE(OJr)(ox; c) • 

Proof. We find the description of the double-cone KvE(0x)(ox; £) first- If 2<p is its 
vertex angle, then any point x from its surface satisfies 

(i) 

Setting 

(2) 

we have 

(3) 

and 

cos ę = 

£ Ea(0x)(x*-0x«) 

L ||VE(0x)|| II x - 0x|| 

Џ = | |x - 0 x | | COSQ? 

v = | |x — 0 x | | sin ę , 

V" = x 

V _ 1 

џ e 

І Ч**)(? 
( Z = l 

- 0x") 

L ||VE(0x)|| ||x -- 0 x| | . 

From (1), (2) and (3) it follows 

£ Ea(0x) (xa - 0x* 
x=í  

||VE(0x)|| flx - 0x|| 

І f-íox) (*" - o** 

|VE( 0x) 

This yields 

|VE(0x)|| - (l + I") [ t Ea(0x) (x- - 0ť)Y = o, 

) 1f the function F(x) has continuous partial derivatives on some field Q a En and if there is 
VF(x) | o at any point of the set Q, then we call the set {xeEJT(x) — 0} smooth manifold in En. 
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which is the equation of the surface of the double-cone KvE(0x)(ox; £)- ^ w e substitute 
x = 0x + VF(0x) in this equation, we obtain 

| | V Ғ ( 0 x ) | | 4 - ( l + i ) | | V T ( o x ) | Г < 0 

and so we conclude that the inequality 

(4) ||x - 0 xj | 2 |VE ( 0 x) | 2 - ( l + i ) [ £ ra(oX)(^ - o**)]2 < 0 

characterizes the double-cone KyF(ox>(0x; e). Let now h #= o be any vector with the 
n 

property 0x + h e T(0x), where T(0x) = {x e F„ | £ ^«(ox) (x* ~ o O = 0} and 
a = l 

let us choose £ > 0. We construct the straight-line ph with the description 

x = 0 x + h + T VF (0x) , T e ( - oo, oo) . 

The implicit function theorem implies that for ||h|| sufficiently small this line intersects 
the manifold dM at a single point yt = 0x + h + t VF(0x). Expanding the function 
F(x) about 0x, we get 

F(0X + h + t V F ( 0 X ) ) - F(0X) = t ^ c ( o X ) (h* + ^ a ( o X ) ) + # , 
a= l 

where 

0 as IIh + t VF(0x)| - 0 . 
|ћ + t VE(0x) 

Hence we see that £ F a ( 0 x ) h a + 'i|VF(ox)||2 + R = 0 and referring to £ Fa(0x) fea = 
a = l a = l 

= 0, we have 

R 
t = -

0 as \\yt — 0x|| -• 0 , 

l|VF(oX 

Thus 

{ , _W 
||y, - 0x|| ||h + t(h)VF(0x)| 

i.e., sine of the angle of the vector yt — 0x with the tangent hyperplane T(0x) of the 
manifold dM at the point 0x tends to zero as ||yt — 0x|| -> 0. We also see that there 
exists a neighbourhood U(0x) of the point 0x such that the vectors yt — 0x for yt e 

e (U(0x) n dM), include angles with the tangent hyperplane T(0x), which are less 
than \n — (p. In other words, the points of the set U(0x) n dM \ {0x} belong to 
ext KvE(0x)(ox; 4 
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Lemma 2. Let P be a polyhedral cone with a vertex 0x and N = {x e En | ]>] a* . 

(xa — 0xa) = 0}, ||o|| = 1 a hyperplane in En with the properties 
a = í 

PnN = {0x} , 

P \ { 0 x } c tf+, 

where H+ = {x e FfJ | J] aa(xa — 0xa) > 0}. Tli^ti there exists a rotary cone Kj (0x; 
a = l 

s) vv/̂ /i the vertex 0x and with the axis determined by vector o, which fulfils 

1) P <= Ka
+(0x; e), 

2)X a
+ ( 0 x;e)x{ 0 x} c W + . 

Proof. Let us choose £ > 0 arbitrary. By (4), the cone X + (0x; E) = {x e En [ 

||x - 0x|| - 7 (1 + lis2) X a\xa - 0xa) ^ 0} has the property 2). Denote by 9R 
a = 1 

the set of all halflines belonging to P and starting at the point 0x. In the case 5(R = 0 
the statement clearly holds. Let 9LU 4= 0 and define 

Q = {xeEn\ | | x - 0x|| = 1} , 

AP = P n Q . 

Since P \ {0x} c H + , we have ]£ aa(N — 0xa) > 0 for all x e P \ {0x} and thus also 
c c = 1 

for x e Ap. Taking into account that the sets P and Q are closed, Q compact, we 
obtain 

n n 

fi = inf £ a\xa - 0xa) = min £ aa(xa - 0xa) > 0 . 
x e A p a = l xeAp a = 1 

In view of | £ aa(xa - 0xa)| :g ||o|| ||x — 0x|| = 1 for all x e AP, we find \i g 1. 
a = l 

We introduce 

V(2 ~ V2) 

Hence £0 > 0 and from the definition of £0 it follows further that 

j 1 = 2 ^ 1 > 1 

£l ^ ^ [min t a°(x* - 0 ^ ) ] 2 [ f a\x* - 0x*)]2 

xeAp a = l a = l 

for x e AP , 

which becomes 
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l + ì ^ HX ° X ľ for x є P ч { 0 x } . 
e [ £ ď(x« - 0x*)Y 

a=l 

Therefore, it is 

X - л x -
1 \ " 

1 + - r ) Z fla(*" ~ o**) -š 0 for x e P 
£ 0 / a = l 

and for that reason 

P c= a
+(0x; e) . 

R e m a r k 2. Obviously, a neighbourhood U(0x) with (U(0x) n 5M \ {0x}) c: 
c ext KvE(ox)(ox; e) fulfils U(0x) n M n int ^-VF(0X)(OX; e) = 0. where M = {x e En | 
F(x) g 0} . 

Theorem 1. The contact cone of a smooth manifold BM = {x e En | F(x) = 0} at 
its point 0x is identical with the tangent hyperplane of this manifold at the point 0x. 

Proof. Let £,l9 . . . , £w be the coordinates of the point x in the Cartesian coordinate 
system with the origin 0x and with axes ai9 i = 1, .. . , n, where at + 0x e T(0x) = 

= {x e En | t ^«(ox) (*a ~ o*a) = 0}, i = 1, . . . , n - 1, a„ = VF(0x) i.e., x = 0x + 
a = l 

n 

+ £ £aaa. By the implicit function theorem we can express C = / ( ^ 1 , . . . , ^ " 1 ) 
a = l 

n 

from the equation F(0x + £ £aaa) = 0 in a certain neighbourhood U(0x). Let 
a = l 

p c T(0x) be the halfline with description 

f1 - Al1, . . . , ^ ~ 1 = A| n _ 1 , r = 0 , A = 0 , 

where 

(I1, . . . , | « - 1 )* (o , . . . , o ) . 

Let U(0x; p) be an arbitrary polyhedral neighbourhood of the halfline p. As the 
intersection of the plane R rectangular to T(0x) and containing p with the manifold 
dM9 we obtain the curve k with description 

e = ixi\...An-x = / i c ? " 1 , { - = / ( ^ 1 , . . . , ^ " - 1 ) , 

j u e < / i l 9 / i 2 > , fii < fi2 

(we consider the points of the neighbourhood U(0x) only). Then K n U(0x; p) is 
a two-dimensional cone with vertex 0x in the plane R and the halfline p is contained 
in its relative interior. Since the straightline described by 

cf = tl\ . . . , e ~ 1 = tln~l , C = 0 , t e ( - o o , oo), 
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is tangent to the curve k at the point 0x, there exists such a proper cut of the neigh­
bourhood U(0x; p) that any finer cut intersects the curve k. This means that p is 
a cr-halfline of the set dM at the point 0 x . So we have established the inclusion T(0x) cz 
c S(0x; dM). It remains to show that p cannot be a O-halfline of the set dM at the 
point 0x, supposing p does not belong to the tangent hyperplane T(0x). When 
p c(z T(0x), we easily find a double-cone KVF(oX)(0x; e) with the property (p \ {0x}) cz 
cz int KVF(oX)(0x; s). In virtue of Lemma 1, there is U(0x) with (U(0x) n dM \ {0x}) cz 
cz ext KVF(oX)(0x; e). Now it suffices to choose such a polyhderal neighbourhood of 
the halfline p that it may be included inside KVF(oX)(0x; e) and we see that p cannot 
be a cr-halfline of the set dM at 0x, for no proper cut of this neighbourhood intersects 
the set dM locally. 

Theorem 2. Let the boundary dM of the set M = {x e En | F(x) ^ 0} be a smooth 
manifold in En. Then the contact cone of the set M at the point 0x e dM is the 

n 

half space IT7 = {x e En \ £ Fa(0x) (xa H 0xa) ^ 0}. 
a = l 

Proof. By the preceding theorem T(0x) cz S(0x; M). Let y + 0x and suppose 
n 

py = {x e E„ I x = 0x + X(y - 0x),X > 0} cz H~, where / / " = {x e En \ £ Fa(0x) . 
a = l 

. (xa — 0x
a) < 0}. By Taylor's theorem we have F(0x + X(y — 0x)) < 0 for X > 0 

sufficiently small. Thus there is a neighbourhood U(0x) of the point 0x with (U(0x) n 
n p) cz M and therefore p is a cr-halfline of the set M at the point 0x. 

On the other hand, if follows from the proof of Theorem 1 that for p a H +, where 
n 

H+ = {x e En | Y, Fa(0x) (x* — 0x*) > 0}, there exists a polyhedral neighbourhood 
a = l 

U(0x; p) of the halfline p and a neighbourhood U(0x) of the point 0x with U(0x; p) n 
n U(0x) n M = 0, which shows that p cannot be a cr-halfline of the set M at the 
point 0x. 

R e m a r k 3. Theorem 2 for the set int M, with M given as in the formulation of 
Theorem 2, and closedness of any contact cone (see [2]) yield the identity 5(0x; 
int M) = 5(0x; M). 

Let F(x), G,(x), (i = 1, ..., m) be hereafter continuously differentiable functions 
in En and let the boundaries dM and ON, of the sets 

M = {x G En | F(x) S 0} , 

Nt = {x G En | G,-(x) S 0} , i = l , . . . , m , 

respectively, be smooth manifolds in E,,. We put 

m 

N = n .v.. 
i = l 
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For the sake of convenience we shall assume that no constraint determining the set N 
in the neighbourhood of the point 0x e dM n dN, is redundant. Denote by I the set 
of such i e {1, ..., m] for which G,(0x) = 0, while for i e {1, ..., m} \I it is G,(0x) < 0. 

Theorem 3. The contact cone S(0x; N) Of the set N at the point 0x satisfies the 
relation 

S(0x; N) c n S(o*: A/,-) . 
ieI 

Proof. We consider the non-trivial case S(0x; N) =# {0x}. Let p be a d-halfline of 
the set N at the point 0x and U(0x; p) its arbitrary polyhedral neighbourhood. Then 
there is such a proper cut of this neighbourhood that all finer proper cuts have non­
empty intersections with the set N. Hence p is a O-halfline of each set Nh i e I. 

Remark 4. The identity S(0x; N) = f) S(0x; N,) does not hold generally. E, G., 
iel 

for ,/V] - {(x1, x2) e E2 | - x 2 + (x1)2 ^ 0}, N2 = {(x1, x2) e E2\ x2 + (x1)2 g 0} 
and 0x = (0, 0) we have S(0x; N) = {0x} and S(0x; 1V-) n S(0x; N2) = {(x1, x2) e 
EE2 I x2 = 0}. 

In Theorem 4 a sufficient condition is given for the identity mentioned above to be 
satisfied. Before formulating this theorem we shall need to introduce the following 
definition. 

Definition 6. Let K]5 ..., Kz be convex cones in En with a common vertex 0x. The 
system of cones Kj, ..., K, will be said to be separable, if there is a hyperplane in 
En containing the point 0x and separating one arbitrary cone from the intersection 
of the others (i.e., for some i0 e {1, ..., /} the cone Kio belongs to one of the closed 
half spaces determined by this hyperplane and the intersection of the others to the 
opposite one). 

Lemma 3. (See [1].) Let convex sets M1? ..., M / in En satisfy 

rel in tMj n . . . n rel int Mt =f= 0 . 

Then 

rel in t (M, n . . . n M z) = rel int M1 n ... n rel int Mz . 

Lemma 4. (See [l].) When O system of convex cones K1? ..., Kz with a common 
vertex is not separable in En, then 

rel int Ki n ... n rel int Kz =f= 0 . 

Theorem 4. 1f a collection of contact cones S(0x;Ni), iel, is not separable in 
En, then 

S(0x;N)= f)S(0x.N(). 
iel 
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Proof. We use induction. 

In this proof we shall assume without loss of generality that 1 = {V ..., k). 

1) Let k = 2. It is sufficient to show 5(0x; N<) n S(0x; N2) c S(0x; N).According 
to Lemmas 3 and 4 we have int (S(0x; N.) n S(0x; N2)) = int S(0x; N.) n int S(0x; 
N2) + 0. Let p be a G-halfline of the sets Nj and N2 at the point 0x.There is always 
a halfline p' with p c (int S(0x N.) n int S (0x; N2)), in any one of its polyhedral 
neighbourhoods U(0x p). From the proof of Theorem 2 we see that in a certain 
neighbourhood P(0x) of the point 0x the points of the halfline p' \ | 0 x ] belong to 
the set int Nx n int N2. Hence it is obvious that necessarily p a S(0x; N), which is 
caused by the existence of such a proper cut y of the polyhedral neighbourhood 
U(0x p) that any finer proper cut intersects the set P(0x) n p'. 

2) Let the statement holds for k > 2. Let the system S(0x; N,), ..., S(0x; Nfc+1) be 
not separable in En. Then the system S(0x; N.J, ..., S(0x; Nfc) is not separable in 

k 

En either. Now part 1) of this proof can be repeated in terms of M, = f) Nh M2 = 

Theorem 5, Eet M n N + 0. Then the following implication is valid: 0x e M n N, 
int S(0x; M) n S(0x; N) + 0 => U(0x) n int M n N 4= 0 fOr any neighbourhood 
U(0x) Of the point 0x. 

Proof. In virtue of Theorem 2, S(0x; M) is, for 0x e dM, a closed halfspace whose 
boundary we denote by R. Introducing a Cartesian coordinate system with origin 

0x and axes o 1 , . . . , o„„ 1 , VF(0x), where 0x + ateR,i = V..../7 — 1 and ah 

(i = 1, ..., n — 1) are orthogonal vectors, we can write any point x _ En uniquely 
n - l 

in the form x = 0x + £ ^'o- + £" VF(0x). According to the implicit function theo-

rem, in a certain neighbourhood of the point 0x it is possible to transcribe the equation 
n-l 

^(ox + £ £'o,- + ?VF( 0 x) ) = 0 equivalents in the form f" = f ( t 1 , ..., C""1), 

where 
(5) l_______!ll^o as Г , . . ., 

(ž1 , . . . ,^ 
ç-'ì 0 . 

In our new coordinate system the tangent hyperplane R of the manifold dM at the 
point 0x has the description C" > 0. If y is a fixed chosen point with y $ R, then the 
halfline p = {x e En | x = 0x + A(y — 0x), X > 0] does not intersect the manifold 
dM in a certain neighbourhood U(0x). This is caused by (5) and by the fact that 
the points (£l, . . . , <f) e p satisfy Cl\\(£\ •••, ^"~1) | | = konst + 0. Thus we have 
established the existence of a neighbourhood U(0x) such that either p n U(0x) c_ 
c= int M, or p n U(0x) c: ext M (see also the proof of Theorem 2). Therefore 
(p n U(0x)) c= int M, provided that p cz int S(0x; M) n S(0x; N). 
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Let U(0x; p) be an arbitrary polyhedral neighbourhood of the half-line p with the 
property U(0x; p) a int S(0x; M). Lemmas 1 and 2 imply the existence of a neigh­
bourhood O(0x) of the point 0x with (O(0x) n U(0x; p)) c= int M. As p is a G-halfline 
of N, there exist points z e N in U(0x; p) n U(0x) for any neighbourhood U(0x). 
This completes the proof, since it has been shown that there are points z e int M n N 
in any neighbourhood U(0x) of the point 0x. 

Remark 5. We emphasize that no special expression for the set N was needed 
in the proof of Theorem 5 and hence this theorem remains true for a general set N. 

Definition 7. The sets A and B are said to be locally disjoint at a point 0x e 
e A n B, if there is a neighbourhood U(0x) with 

U(0x) n A n B \ {0x} = 0 . 

The nonlinear programming problem: 

Find minimal point of a function F(x) over a set N under the same assumptions 
on the function F(x) as above, where N can be an arbitrary non-empty set, is reduced 
to finding the point 0x e N with U(0x) n N n int M = 0 for a certain neighbourhood 
U(0x) (we suppose without loss of generality that F(0x) = 0). For 0x to be a solution 
of this problem it is necessary that the sets int M and N are locally disjoint at the 
point 0x. 

C o n c l u d i n g r emark . Theorem 5 gives a necessary condition for the existence of 
solution of the nonlinear programming problem mentioned above. An analogous 
necessary condition formulated by means of so called tent of the set, has derived by 
Boltjanskij in [3]. 
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