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In the present part of our paper we complete the discussion presented in Part I in
two directions.

Firstly, in Section 5 a number of existence theorems for a solution to Problem III
(principle of minimum potential energy) is established. Here the particular interest
is devoted to certain special cases of the functional ¢ which are suggested by the
examples considered in Section 3.

Secondly, Sections 6 and 7 concern a relatively detailed discussion of the dual
formulation of Problem ITI. In Section 6 we first generalize the classical approach
to the dual problem and then put our discussion into the framework of the abstract
duality theory. Finally, in Section 7 we introduce two problems which are conjugate
to each other in the sense of [ 5]. By virtue of their equivalence to Problem I (boundary
value problem) one obtains a transparent indication of the relationship between the
solvability of Problem IIT and its dual one.

5. EXISTENCE THEOREMS

The aim of the present section is to prove the existence of a solution to Problem I
by making use of its variational formulation (Problem III; cf. Theorem 4.1). For
technical convenience, in what follows Problem III will be written in the equivalent
form:

Principle of minimum potential energy. Find u € ¥~ such that

F(v) = F(u) Yve? .
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We are now going to present a number of conditions under which the functional F
is increasing on ¥". These conditions are mainly motivated by the examples discussed
in Section 3.

For a more theoretical discussion of the existence of a solution to the variational
inequality (4.2) (semi-coercive case) we only mention the papers [11], [6], [14].
Let us in particular refer to [3], [4] where a profound investigation of the Signorini
problem may be found. g

1° Let us begin with the following simple case:

(5.1) Vs € {00} + ¥,
where vy € ¥ is fixed, ¥, is a closed subspace of ¥~ such that
Vo 2 = {0}.

We then have
Theorem 5.1. Let condition (5.]) be satisfied. Then Problem I1I possesses exactly
one solution.

Proof. First of all, by the Hahn-Banach Theorem there exist constants ¢; < 0
(i = 1,2) such that

o(h) = c,HhHV + ¢y, VheV.
Let ve ¥ 4, 1.6. 0 = vy + W, we ¥ ,. Observing Lemma 1.1 we get
F(v) 2 a(vo, w) + % a(w, w) + ¢(3(v)) = (/. 0) 2
klwl? + o]+ kol + ke 2 3 ki o]” + ks

\%

where k; = const > 0, k; = const £ 0 (i =2,..,5). If v¢ ¥4 then F(v) = + 0.

Thus, the functional F being convex and lower semi-continuous, there exists at
least one u € ¥~ at which F attains its minimum on ¥, If &# € #” is another function
that renders the functional F its minimum on ¥, we have u — i€ ¥’y N # = {0}
(cf. Section 4.2). 4

Remark 5.1. Let us make some observations concerning the assumption ¥°, N
N # = {0}. Suppose Qe C*'.

(i) Let M = I be any non-empty set, open in I'. Then
(cf. [8; Lemma I1.3]).

0ER ,0=0 on M=9p=0

(ii) Under appropriate conditions on the shape of T there exist subsets M < I
such that

(cf. [8]). u

The following two lemmas yield related results.

0eR, 0,=0 on M=p=0
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Lemma 5.1. Let Q € C*°. Then:
0€R, 0,=0 on I'=>p=0.

Proof. Let us first of all note that the mapping x > n(x) is continuous and sur-
jective from I' onto S? (the unit sphere in B*) 1). Now, by our assumption,

(5.2) a+bxx=pg(x)=o(x)n(x) Vxerl.

Suppose b # 0. Then there exist a point X e I' with n(X) b; = 0 and a non-void,
open subset M < I' such that ny(x) b; + 0 for all x e M. By virtue of (5.2), a;b; =
= 9,(X) n(X) b; = 0, and therefore g,(x) = 0 for all x e M. But this means g(x) = 0
for all x e M, a contradiction to b + 0. Hence b = 0. We now find a point Xe I’
such that (%) a; = 0. Then (5.2) implies a = 0. g

Lemma 5.2. Let Q be a cube. Then:

il
o

0ER, 0,=0 on I =p:
Proof. Without any loss of generality, let

Q={xeR:|x|<d i=123}.
Set
x =1{0,0,d}, x*={0,0,-d}, x* ={0,d,0}.

It is then readily verified that the equations

0(x®) =0 (k=1,2,3)
imply a =b=0. g

The argument of the proof of Lemma 5.2 obviously applies to a wide range of
other domains.

We are now going to illustrate some applications of Theorem 5.1. Let Qe C°'1,
and let us consider Example 1 of Section 3. Set

Vo =1{ve¥ :y(v) =0 ae on I'}.
_ Then
Vaa = {Uuo} + %%,

and Theorem 5.1 yields the existence and uniqueness of a solution to the displacement
boundary value problem.

Let now Qe C*1. It is then easily seen that the boundary value problems stated
in Example 5 can be treated analogously (cf. Lemma 5.1 and (ii) of Remark 5.1).

Yy This follows (e.g.) from Theorem VI of Hopf, H.: Vektorfelder in n-dimensionalen Mannig-
laltigkeiten. Math. Ann., 96 (1927), 225—250. This theorem states that the degree of the mapping
x > n(x) with respect to the origin is equal to 1. Hence this mapping is not homotopic to zero
and therefore it is surjective (this argument was submitted by T. Friedrich to the authors).
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Maintaining the assumption Qe C'! we consider the following variant of the
Signorini problem (cf. Example 6):

(3.8) () £0 ae.onl, {n(0), y,(u)>w,i2qy =0,
{m0)s By wyegy 2 0 Yhe WyA(I), h<0 ae onT,
(3.9) y(u) = ko

where kg, € V, is fixed. In the present case, we define
vo €Y such that v,(vy) = ko,
Vo=1{ve¥ :y(v) =0 ae onT}
and ¢(h) = ¢,(h,) + ¢,(h,) for he V(h = h,n + h,), where

0 for heWy*(I), h<0 aeonl,

@u(h) =+ o0 for heWY*(I), h >0 on asubset
of positive measure ,

0 or k=ky,
+o0 for keV,N{ko}.
Thus
Vi =1{veVipv)£0, y(v) =k, ae.on T}

and therefore
YV aa S {00} + ¥ .

Observing that ¥y N # = {0} (cf. Lemma 5.1) we obtain the existence and uni-
queness of a solution to the above variant of the Signorini problem by applying
Theorem 5.1.

Based on a similar device one can prove the existence and uniqueness of a solution
to (2.1), (2.2) under the boundary conditions (3.10°), (3.11) (cf. Example 7) provided
that there exists a subset M < I satisfying condition (ii) in Remark 5.1, and (3.12),
(3.13) (cf. Example 8). Let us finally note that Theorem 5.1 also applies to certain
mixed boundary conditions (cf. Example 4, the case I'; + 0). 4

2° We now impose the following conditions upon the functional ¢. Let

¢ =@+ ¢y,
where
(5.3) @, is proper, convex and lower semi-continuous
{(i =1,2), D(p,)n D(p,) +0;
(5.4) {(p](O) =0, ¢,(thy<1"¢,(h) Vi>0, VheD(p,)
where o > 1
(5.5) 0ee?, 0+ 0=0,(y(0)>0. 5
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Theorem 5.2. Suppose that the functional ¢ admits the above decomposition

where the conditions (5.3)—(5.5) are satisfied. Then Problem III has at least one
solution.

Proof. The functional F is proper, convex and lower semi-continuous on ¥;
it therefore remains to show that F is increasing on ¥". Suppose the contrary holds,
i.e. there exist a sequence {v,} = ¥ (n = 1,2, ...) and a constant C, such that

lv.] > 40 as n—>ow, Fv,)<Co for n=1,2 ...

Setting w, = v,/|[v,| (for n sufficiently large) we thus have

Cr e
(5.6) La(w, w,) + - U Hz o(¥(v,)) = . (1 + an“>
(C, = const).

From the Hahn-Banach Theorem one concludes the existence of constants ¢;; < 0
(i,j = 1,2) such that

¢, (h) = c“”hHV + ¢, VheV,

@,(h) = 021Hh“V + ¢y, VheV.

Inserting these estimates into (5.6) we get

(5.6,) a(w,, w,) < %(1 + m>

(C, = const; n sufficiently large).

Further, without any loss of generality, we may assume that w, — w weakly in ¥~
and w, > w strongly in # as n — oo. Thus, by virtue of (5.6,),

a(w, w) < liminf a(w,, w,) £ 0,
i.c. we Z. On the other hand, Lemma 1.1(i) yields
a(

* Taking the lim inf on the left hand side of this inequality one obtains \w‘ Jei > 0.
Finally, (5.6) implies

2
W 2 aoc -

ns

0:(3(e) < Ci([Jua] + 1)

)

(pl(y(w)) < lim inf(p,(y(w,,)) <0,

Hence

@i(y(w,)) = “

and therefore

a contradiction to (5.5).



Theorem 5.2 may be used for proving the existence of a solution to (2.1), (2.2)
under boundary conditions of elastic support type. Indeed, set for any he V

o,(h) = ],-[ alh|2 dS, o¢,(h)= — I g:h;dS
2)r r

(cf. Example 3). The conditions (5.3)—(5.5) being satisfied, we obtain by the aid of
Theorem 5.2 the existence of a solution to (2.1), (2.2) under the boundary condition
(o) = j*(—au) + 9)

(note that in the present case the solution is unique). Further, Theorem 5.2 also
applies to certain mixed boundary conditions (cf. Example 4, the case I') = 0,

r3 * 0) | |
3° In the present subsection we consider the following special decomposition of ¢:
o(h) = @o(h) — <g*, hyy for heV
(g* € V* fixed) where

(5.7) @, is proper, convex and lower semi-continuous ;
(5.8) ?0(0) = 0, @(th) = tee(h) Vit >0, VYhe D(p,).
It is readily verified that a function u € ¥ is a solution to (4.2) if and only if
(59) a(u’ u) + (pO(y(u)) = (f: u) + <g*s Y(u)>V El
a(u, v) + @o(¥(v)) = (f, v) + <g*, y(v)>y VYoe¥ .

Inserting v = ¢ € Z in to the inequality in (5.9) we obtain a necessary condition of
solvability

(5.10) ?o(¥(0)) = (f. 0) + (g%, 9(0)>y YoeZ.

If ¢, = 0 (traction boundary value problem, cf. Example 2), (5.10) turns into the
well-known condition

(f.0) + <g*.9(@)y =0 Yoez

which in this case is also sufficient for the existence of a solution. g
We now prove

Theorem 5.3. Suppose that the functional ¢ admits the above decomposition and
satisfies the conditions (5.7), (5.8). Further, suppose that

(5.11) @o(1(0)) > (f: @) + <g*,(e)>y YoeZ, 0 +0.
Then Problem III has at least one solution.

Proof. We follow the reasoning of the proof of Theorem 5.2. Let us assume that
there exist a sequence {v,} < ¥ (n =1,2,...) and a constant C, such that

v, | > +0 as no>w, F,)<C, for n=12 ...
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As above, setting w, = v,,/ v, (for n sufficiently large) we may assume that w, — w
weakly in 7. Repeating the corresponding arguments of the proof of Theorem 5.2
one easily obtains we £ and {w' = \/cl.

On the other hand, observing (5.8) we find

Co
(PO(Y(WH)) é (f’ Wn) + <g*’ Y(‘Vll)>V +

foall

Thus, by taking the lim inf on both sides of this inequality,
@o(y(w)) = (£, w) + Lg% y(w)y -

This inequality contradicts (5.11). 4

Theorem 5.3 can be used for proving the existence of a solution to (2.1), (2.2)
under the boundary conditions (3.8), (3.9) (cf. Example 6), (3.10), (3.11) (cf. Example
7) or (3.12), (3.13) (cf. Example 8), provided condition (5.11) is satisfied (cf. also

[ [31 (4] w

4° In conclusion of the present section we are going to consider the following
situation (cf. also Section 3.3). Let ¢ : V — (— o0, + 0] be a functional possessing
the properties:

(5.12) @, satisfies (5.7), (5.8); @o(h) = 0 Vhe D(¢,).
Given g* € V* and pe R (1 > 0) we introduce the functional

@) = wo(h) — {g*, >y for heV
and discuss the limit cases u — oo and u — 0.

Firstly, let us define the functional

{_<g*, hyy for heV with (po(h) =0,

@(h) =1lim ¢, (h) =
( ) u( ) + o0 otherwise .

>+ oo
Obviously, ¢ is proper, convex and lower semi-continuous. g
We then have
Proposition 5.1. Suppose
(5.13) 0eR, 0+ 0= ¢,(y(0))>0.

Then it holds:
(i) For each p > p* (u* = const > 0%)) there exists a u, € ¥" such that

(5'14) a(uu’ v - uﬂ) + qD#('})(v)) - (p"()’(u,,)) 2 (f‘ v = uu)

Jor all ve v (f e A arbitrary, fixed).
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(i1) Let {u,} (m = 1,2, .5, > p*) be any sequence of reals such that p,, > +
as m — o, and let u,, = u, €9 be a function which satisfies (5.14) with it = .
Then the sequence u,, (m = 1,2,...) is bounded, and the limit i of any weakly
convergent subsequence satisfies the condition

i v — @) + o(o(0) — o6(@) = (1.0 — 1)
forall ve V.

Proof. (i) Hypothesis (5.13) implies the existence of a positive constant «, such
that

(5.15) 2o(1(0)) Z aoo| Voes.
Set

e = ag (ol /] + g*« [7]ecar) )

Observing (5.15) we obtain, for any u > p*,
(/@) + <g* 9(eDv = @0 w*e] < noo((0))

for all g e &, ¢ + 0. Thus, the sufficient condition of solvability (5.11) is satisfied,
and our assertion follows from Theorem 5.3 and Theorem 4.1.

(if) Let i > p* such that y,, = fgform = 1,2,.... By (5.9),

(5.16) 0 = a(tys thy) + o Po(¥(um)) — (s ) = g%, Yy =
2 Ja(ttys ) + £ @o(9(un) — (fs ) — g% 9(un)>v
for m = 1,2, .... Arguing as in the proof of Theorem 5.3 we get
u,l <const for m=1,2,....

Let now {u,,,} (j = 1,2,...) be a subsequence of {u,} such that u,,, — & weakly
in ¥ as j — oo. The estimate p,, @o(y(u,,)) < const (m = 1,2, ...) is readily deduced
from (5.16). Thus

@o(y(@)) < lim inf @o(y(u,,,)) £ 0,
ie., @o(y(a)) = 0.
Next, from (5.16) we easily conclude that
(5.17,) (f, @) + <g*, y(a)y, = a(i, u).
On the other hand, the inequality

a(tty, 0) + o o(1(0)) Z (£, 0) + g%, 7(0)y

2) The constant z* will be specified in the course of the proof.
3) Here ¢ denotes the imbedding constant: Hv” = ¢ H UH forve ¥
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where ve ¥ (cf. (5.9)), yields
(5.17,) a(i, v) = (f,v) + Lg* 1)y
for any ve ¥ with y(v) € D(p).
Combining the inequalities (5.17,) and (5.17,) we get the result desired. g
Now, in addition to (5.12) let us suppose
D(‘Po) =V.
In this case we have
Proposition 5.2. Let condition (5.13) be satisfied, and let
(f.0) + <g*.y(e)>y =0 Yoe.
Then it holds:
(i) For each jt > 0 there exists a u, € ¥~ which satisfies (5.14) for all ve ¥".

(i) Let {p,} (n=1,2,...5 u, > 0) be any sequence of reals such that p, - 0
as n — 0, and let u, = u, €% be a function that fulfils (5.14) with p = p,. Then
the sequence {u, — Pu,} (n = 1,2,...)*) is bounded, and the limit @i of any weakly
convergent subsequence satisfies the conditions

(7, 0)=0 Voez,
a(di, v) = (f, v) + {g* y(v)>y, Yoe? .

Proof. (i) The sufficient condition of solvability (5.11) being satisfied under the
present hypotheses, the assertion follows from Theorem 5.3.

(i) We have
(f,u, — Pu,) + {g*, “,'(u,, — Pu,)yy = (f, u,) + <{g*, y(u,,))v =

= a(”n’ ”n) + Hy (ﬂo(’)’(“n)) =

= a(u,, - P“m u, — Pun) + Hy, ‘/’o(‘/("n)) g CHLI" - Pun ?

(cf. Section I, Lemma 1.1(ii)). Hence

%u,, - Pu,,” <const (n=1,2,..).

Let {u,} (k= 1,2,...) be a subsequence of {u,} such that (u, — Pu,)— i
weakly in ¥ as k — oo. Clearly, ((#, 0)) = 0 for all g € #. Finally, observing that

a(u,, v) + 1 eo(y(0)) = (. v) + (g%, ¥(0)>y

forall ve ¥ and any u > 0(cf. (5.9), (5.14)) we easily get the desired equation when
setting j = y,, in the latter inequality and then letting k — 00. g

4) P denotes the orthogonal projection onto # with respect to 7.
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Let us consider Example 7 with k = u, and Example 8 with —k, = k, = pu
(Qe C"') (cf. Section 3). In the first case we have

0€R, 0,=0 on I'=>p=0,
while in the second the condition (ii) in Remark (5.1) is assumed to hold.
Then the functionals

@o(h) = j |h,| dS and ¢o(h) = f
r

r

h,dS, heV,

respectively, satisfy all the above conditions. For both the functionals
0eR, 0 * 0=9e)>0.

Thus, Propositions 5.1 and 5.2 can be applied. g

6. DUAL FORMULATION

The aim of this section is to establish a dual problem to the minimum problem III.
First of all, this dual problem will be introduced on the pattern of classical linear
elasticity. Then we show that essentially the same problem can be obtained when
appropriately specializing the general abstract concept of duality (cf. [2], [9], [12],
[13]). Our discussion thus presents a generalization of that in [7].

1° The inversion of Hooke’s law (cf. Section 2) is given by

g;; = bijuo ae. in Q

where the coefficients b;;,; possess the following properties:
bijx; is measurable and bounded on Q ,
bijxi = bjyy = byy; foraa. xeQ,

bijki0j0k Z booyjo;;  for all symmetric

tensors o;; and a.a. xe€Q; by = const >0.

Given any f e # (fixed) we introduce the functional

G(1) = B(r) + o*(—n(x)) + I,(r), 7eT
where

B(o,7) = J‘ bioitadx, B(r) = 1B(r,7), o,71€S,
o

I(z) = {

(cf. also Section 1 for the definition of S, T, = and ¢*). Further, let
To={teT:1eD(I,) and —n(r)e D(p*)}.

0 if Tij,j +fi=0 ae. inQ,

+ 00 otherwise
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In the case T4 + 0 the elements in T,y will be called “statically admissible stress
fields”. Clearly, D(G) = T,,. The set D(I ) being convex and closed in T, the function-
al G is convex and lower semi-continuous on T. Adopting the classical terminology,
G(t) may be called the “complementary energy” of the body for the stress field
€T,y =

As the first result we have

Theorem 6.1. Let ue ¥, o € T. Then it holds:
(i) F(u) + G(o) = 0.
(ii) F(u) + G(o) = 0 if and only if {u, a} is a solution to Problem I.
Proof. Observing the generalized Green formula (cf. Lemma 1.3(ii)) one easily
finds
(6.1) F(u) + G(o) =
= Ya(u,u) + B(o) — J. ou;;dx +

o
+ () + *(=n(0)) + (n(0), p(u)y + I,(0) =
=1p(oc = 7,0 = 6) + oly() + ¢*(=n(0)) + <(n(0), y(u)>y + I (o)
where we have used the notation ¢;; = a;; sk,(u).
The inequality in (i) is now seen at once. The assertion (ii) is readily checked when
comparing (6.1) with (2.1)—(2.3). g

Theorem 6.1 suggests the introduction of the following problems.

Problem 11* (principle of virtual stresses).

Find o €T,y such that
Blo,t — o) + o*(—n(1)) — ¢*(—n(0)) = 0 VieT,.

Problem III* (principle of minimum of complementary energy).
Find o € T,y such that
G(t) = G(o) VteT,y. u
Our discussion in Subsection 2° will show that Problem III* represents a dual
formulation of Problem III.

The following two theorems yield a first information about the solvability of
Problem I1* and IIT*.

Theorem 6.2. It holds:

(i) Let {u, 6} be a solution to Problem I. Then o is a solution to Problem II*.

(ii) o is a solution to Problem II* if and only if o is a solution to Problem I11*.
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Proof. We have ¢ €T, and
o*(—n(r)) — *(—n(0)) = —<(n(z) — n(0), p(u)), VreT,
(cf. (2.3”)). On the other hand, the generalized Green formula takes the form
Blo, v — a) = {n(t) — n(o),p(u)>, VreT,.

Adding the last two relations we obtain the assertion.

Thz proof of (ii) parallels that of Thzo rem 4.1(iii) and may therefore be omitted. 5
Theorem 6.3. Let T,y & 0. Then Problem III* possesses exactly one solution.
Proof. Let 7 € T,4. Observing Lemma 1.3 (i), (iit) we get

60) 2 £l - o]0

Yoo([e)s + /) = el

bofer — e

where ¢; = const 2 0 (i = 1,2,3). "

\%

yr = €2 2

%

cervn ||ty = Y hol /P — 2 2

I

Thus, by a standard argument, there exists at least one solution to Problem III*.

Let 0,, 0, € T,4 be two solutions to Problem IIT*. Then

2

0= B(‘H — 03,0y — ‘72) = bo”“l — Oss >

and therefore 0, = 0,. g

Remark 6.1. Observing Theorems 4.1 and 6.2 it is easy to see that T,y # 0

provided Problem III possesses a solution. g

Theorem 6.4. Let u € ¥,y be a solution to Problem 11, and let o € T4 be a solution
to Problem II1*. Then it holds:

(i) {u, 6} is a solution to Problem I.

(it) F(u) = Te;n F(v) = — min G(t) = —G(o).

weT
(iii) (a-posteriori-estimates):
F(v) + G(1) Z § ao|le(v) — e(u)]s .
F(v) + G(t) 2 1 byt — o3
forall ve¥ and all 7€T.

Proof. Set 6;; = a;j, &,(u). Then {u, 6} is a solution to Problem I (cf. Theorem
4.1), and it holds F(u) = —G(&) (cf. Theorem 6.1). Thus, G is a solution to Problem
III* (cf. Theorem 6.2), hence & = o (cf. Theorem 6.3). The assertions (i) and (ii)
are now seen at once.
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The estimates in (iii) can be obtained by the same argument as that which led us
to (6.1):

F(v) + G(1) = F(v) + G(o) =
2> La(v,v) + 1 B(o, 0) — (o, s(v))s =

=1 a(v —u,v—u)= %GOHS(U) - 3(“)“52‘ >
and

F(v) + G(x) = F(u) + G(z) =
> Ja(u,u) + 1 B(r, 1) — (1, e(u))s =

=%ﬁ(7-0’,’[—0’)g%b0

2
v = dfs
where v e ¥ and 1 € T are arbitrary.

2° We are now going to derive the dual problem to Problem III from the general
theory of duality.

To this end, define
Ky =¢(v)=¥v;; +v;,), ve?,
w0, 1) = f a;oiTadx, oft) =1at, 1), o,7€S,
o

9(v) = o(3(v)) = (f,v), ver .
Obviously, K, € #(#7, S). Then the functional F takes the form

F(v) = o(K,v) + g(v), ve¥ .
Following the pattern of the general theory of duality (cf. e.g. [2], [13]) we now
introduce the functional
(v, 7) = o(Kv + 1) + g(v), ve¥, €S,
and instead of Problem III we consider the more general problem

(2) inf &(v, 0) = inf [o(K;v) + g(v)] -

veV

The functional @ is proper, convex and lower semi-continuous on ¥~ x S. Further,
for any o € § °) it holds

2*0,0) = sup [(o,7)s — «K,v + 1) — g(v)] = a*(0) + g*(—K}o0).
{v,1} e¥ XS
Here K € £(S ¥7*) denotes the adjoint of K, while o* and g* are the conjugate
functionals to o and g, respectively (cf. [2; Chap. III, 1]).

) In what follows, the space S will be identified with its dual.
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According to [2], [13] the dual problem to () is given by
(2*) susp [—®%(0, 7)] = sup [—a*(7) — g*(—KT7)].
Te €S
Let us now calculate o*(t) and g*(—K7t) (t€S) explicitly. Firstly,set 7,; =

= b1y Then

(v n)s — afn) =

_ 1
= .[ QijiMi Mkt dx — *‘[ AijicijMrr dx =
Q 2)a
1 _ _ 1
= - aijkt(’lij - ’1ij) ('lkt - ’7“) dx + —.B(T, ‘f)
2Je 2

for any n € S. Thus
o¥(z) = sup [(tn)s —a ()] = B (2) -
nes
Secondly, we have

g*(=Ki7) = sup [(~K{ v), — g(2)] = °)

= sup [— Lri,-v.-,,- dx — o(3(v))+ (£, ”)]

veYad

Suppose 7 ¢ D(I). Then there exists a function ¢ € [ 2(Q)]* such that
f(fiwi — T5¢;,;) dx > 0.
o
Set v = ¥ + to where v € ¥4 is fixed, while ¢t > 0 is arbitrary. Then ve ¥, and
g*(—KTr) = f (fiﬁi - Tijﬁi,j) dx + tj (fi(Pi - Tij(Pi,j) dx — ¢(Y(5)) ,
o o

ie. g*(—Kj1) = +oo.
If T e D(I,) we get by the aid of the Green formula

g*(—Ki7) = sup [<=n(2), y(0)>v — o(3(v))] =
= sup [{=n(2), Dy — @(h)] = ¢*(—n(2)) .

heD(¢)
We thus obtain
@*(0, 1) = a*(t) + g*(—Ki1) =

={ﬂ(r) + @*(=n(z)) + Ic) if 1eT,
+0o0 if teS\T

6) {v*, vy, denotes the dual pairing between v* € ¥* andve ¥,
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and therefore
@*0,7) = G(r), teT.

Finally, we mention a special result of the duality theory. Let v, € ¥ 4 (i.€.
¢(y(vy)) < +0) be fixed. Then

(2.8) D(vy, 7) = (K v + 1) + g(vp) < +0 VreS$.
Further, it is easily seen that

(6.3) the function > ®(vy, ) is continuous on S .

Proposition 6.1. Suppose that
(6.4) inf@(v,7) > —o0 Vre$§.

vey’

Then there exists exactly one element o €S with
—®*(0, 6) = max [ —9*(0, 7)] = inf &(v, 0).
€S vey
In other words, if condition (6.4) is fulfilled then there exists exactly one stress
field o € T,4 such that

(6.5) —G(o) = — min G(t) = inf F(v) -

€T vey

The proposition stated above is easily deduced from [2; Chap. LI, Prop. 2.3]
when observing the properties (6.2) and (6.3). The uniqueness of the solution ¢ is
guaranteed by Theorem 6.3. g

3° We turn once more to the class of functionals considered in Section 5.3:

o(h) = @o(h) — <g*, hyy, heV,

where

(6.6) g* e V* fixed ; @, fulfils (5.7), (5.8) .
Let us recall that under these assumptions the condition

(5.10) po(y(0)) = (/. 0) + <g*,7(0)>y Voe

is necessary for Problem III to have a solution. This condition is also necessary
for the solvability of Problem IIT1*. Indeed, let ¢ € T,4 be a solution to Problem TIT*.
Observing Theorem (6.1) (i) we get

(6.7) F(v) 2 —G(o) > —c0 Yve¥ .
Suppose there exists g, € #Z such that

@o(7(00)) < (f+ 00) + <g*, 1(00)Dy -
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Hence

F(’Qo) = t[‘Po(V(Qo)) - (f, o) — <9%, ?(Qo)>v] <0
for any ¢ > 0, a contradiction to (6.7). g

We are now going to prove that condition (5.]0) is even sufficient for Problem
IIT* to have a solution when imposing an additional condition on ¢,.

Theorem 6.5. Let
o(h) = @o(h) — {g*, h>y, heV,

where condition (6.6) is satisfied. In addition, let there exist ¢, = const > 0 such
that

(6.8) ooy + hy) = @o(hy) = co|hy]ly Vhy, hye V.

Let (5.10) be fulfilled. Then there exists exactly one solution to Problem I1I* and
(6.5) holds.

Proof. Let 1€ S. Given any ve ¥ we set v =w + ¢ where w = v — Pp, 9 =
= Pve & (cf. footnote 4). By (6.8) and Lemma 1.1 (ii)

?(v,7) = Ko + 1) + @o(y(w) + () —
= ¢o((0)) = (fiw) = g™ Wy = =&, (1 + [1])

where the positive constant ¢, does not depend on v. Hence, condition (6.4) is satisfied.
The assertion follows now from Proposition 6.1. g

Theorem 6.5 applies to the friction problems considered in Section 3. Indeed, in
the case of friction along any tangential direction we have

o(h) = @o(h) — <hg, h,y Wa'*(I), heV,
where

hy e Wy V3(D),  @o(h) = j klh|dS fot heV
r
(cf. Example 7). Thus, if the condition
J‘ kly,(@)] ds = (fa Q) + <h§’ Vn(@))ﬂ'zi/lu') Voe Z#
r

is satisfied then Problem III* possesses exactly one solution (in particular T,; = 0)
and (6.5) holds.

An analogous observation is true with respect to the other friction problem (cf.
Example 8). 5
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7. FORMULATION IN TERMS OF CONJUGATE PROBLEMS

The aim of this last section of our paper is to complete the preceding discussion by
formulating equivalently Problem I in terms of conjugate problems in the sense of
[5]- In connection with our results obtained in Sections 4 and 6 this approach will
make clearer the relation between the solvability of the primal minimum problem
and its dual one (cf. also [12]).

1° First of all, let us define the space

T,={teS:,

;=0 ae inQ}
as a closed subspace of § and the mappings
Kv = {K,v,K,v}, ve?,

Lt = {Lyt,L,t}, t€T,,
where
Ko = 3(v; ; + v, Ky =y(v),

Lyt = 7 (injection from Ty in ), L,t = —n(1).

Clearly, Ke £(7°,S x V), Le (T, S x V*) (the product spaces being furnished
with the usual Hilbert space structure)7).

Lemma 7.1. There exists a positive constant ¢, such that

Kl

Fov = (Kot 4 B3 2 oo veer .

Proof. Suppose, contrary to our assertion, that there exists a sequence {v,,} c v
such that [[v,[| = 1 (n =1,2,...) and

(71) HKlvn

2 + “y(v,,) ‘2,§ ’% (n = 1,2,...).

Without any loss of generality, one may assume that v, — v weakly in ¥"as n — .
We then infer from (7.1) that K,v = 0 and y(v) = 0; thus v € # and therefore v = 0
(cf. Remark 5.1).

On the other hand, setting v, = w, + ¢, where w, = v, — Pv,, o, = Pv, (cf.
footnote 4) we get with the aid of Korn’s inequality (cf. Lemma 1.1 (ii)) that w, = 0
strongly in ¥" as n — oo. The space # being finite-dimensional it follows ¢, — 0
strongly in ¥, and thuas v, — 0 strongly in ¥~ as n — o0, a contradiction. g

The adjoint operators K* € £(§ x V*, ¥*), L* € £(§ x V, T§) are given by
K1, h*}, 0y = (K11, 0y + (KT, )y = (1, Kv)s + <h*, Koody

7) Recall that we identify §* with S, and V** with V. The dual pairing between t* & Tf’; and
7 & Ty, will be denoted by {t*, 7)1,
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for all {r, h*} € § x V* and any ve 7", and
(L*{o, h}, g, = {Lj0, tr, + {L5h, 15, = (0, Lit) + (L,, h)y

forall {¢,h} €S x Vand any e T,.
We then have

Lemma 7.2. It holds
(i) Im L = Ker K*,
(i) Im K = Ker L*.

Proof. (i) The inclusion Im L = Ker K* is an immediate consequence of the gen-
eralized Green formula (cf. Lemma 1.3 (ii)).

Let {7, h*} e Ker K*, i.e.
(v, Kyv)s + <h*, K0py =0 Yve¥ .
Setting v = ¢ € [2(Q)]* gives

f 1,0, dx =0 Vo e[2(2)] .
2
i.e. 1€ T,. Again using the generalized Green formula we find

f-c,.jvu dx + <—n(r), K,v), =0 Yvev .

Q

Thus h* = —n(1) = L,t, and therefore {r, h*} € Im L.

In order to prove (ii) we first of all note that Im K is closed in § x V(cf. Lemma.
7.1). Therefore

ImK = *(KerK*) = {{o,h} €S x V:(0,1)s + <{h*, h)y = 0
v{t, h*} e Ker K*}
(cf. e.g. [10; Theorem 3.2]). We then easily find by virtue of (i)
{o, h} eImK <= (0, 7)g + <h*, h), = 0 forall {z,h*}eKer K*
< (0, Li7T)g + <L,T,hy, =0 VieT,

< {o,h}eKerL*. g

Let f € # be fixed. Then there exists (at least one) 6/) € T such that ¢{{);, + f, = 0
a.e. in Q. Define g = n(s")).
We now introduce the mapping

M = {(grad o) (*) — o, dop(+) + g} .

M is a multivalued mapping from S x Vinto § x V* with the effective domain
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D(M) = S x D(dp) ®). Observing that
grad f = (grad o)™ !,
h e 0p*(h*) <> h* € dp(h)
(cf. Section 2.1) one gets
M~ = {(grad B) (+ + o), dp*(- — g} .
By Lemma 7.2, the mappings
K*MK and L*M~'L

are conjugate to each other in the sense of [5]. Now we can introduce the cor-

responding conjugate problems:

Problem 1V. Find u € ¥~ such that
Ih* e dp(K,u) : K{[(grad o) (K u) — 6] + K5(h* + g7) = 0.

Problem IV*., Find o€ T, such that
Jh e dp*(Lo — g) : Li[(grad B) (Lyo + o)) + LXh = 0.

Theorem 7.1. It holds:

(i) Problem I is solvable iff Problem IV is solvable.

(ii) Problem IV is solvable iff Problem IV* is solvable.

Proof. Setting ¢ = 7 + ¢', the boundary value problem (2.1)—(2.3) can be
written in the equivalent form:

Find uev , ve€T, such that
(+) Lyt = (grad o) (K,u) — o\,
L,t € dp(K,u) + g .
In virtue of Lemma 7.2 (i) the equivalence of formulation (+) to Problem IV is

immediate.
The second statement is identical with [5; Theorem 2.1]. 4

2° Let us now consider once more the minimum problems III and IIT*.
To this end, we rewrite the functionals F and G as follows. First of all, using the
generalized Green formula one gets
F(v) = a(Kv) + o(Kz0) = (f,0) =
O((KIU) - (JU)’ K, U)s + (P(sz) + (g, Kyv)y

I

8) D(9¢) = {h € V:op(h) == 0} (analogously for dg*).

29



for any v e ¥". Further, we obtain
G(o) = Blo) + ¢p*(—=(0)) =
= B(r + o) + ¢*(—n(t) — g)
where 0 € D(I,), ¢ = © + o', 1€ T,. Introducing the functional
Gi(1) = B(Lit + ¢V) + o*(L.t — g), 1eT,,
and taking into account that the mapping © — t + ¢/) is in fact bijective from T,

onto D(If), it is easily seen that Problem IIT* is cquivalent to the following one:

(++) {Find oeT, such that

G((t) = G(o) VreT,. 4

Finally, we have

Lemma 7.3. For all ve ¥ and all 1€ T, it holds:
(7.2) oF(v) = Ki[(grad o) (K,v) — 6] + K3[0p(K,v) + g¥],
(7.3) 0G, (1) = Li[(grad B) (L,t + ¢)] + Li[op*(L,t — g7)] .

Proof. The inclusion (7.3) afd an analogous inclusion in (7.2) are obvious (cf.
[9; §4.2.2]). Now let v* € 0F(v), ve ¥, i.c.

(7.4) F(W) — F(v) = ¥, w —v)y VYwe? .

K* being surjective (cf. Lemma 7.1) there exists a {t, h*} € § x V* such that v* =
= K*{r, h*}. Repeating the arguments of the proof of Theorem 4.1, one obtains
from (7.4)

(farad ) (Ky0), Ky (o = o) + 0(Kaw) — ofKa0) =
=z (v + oV K (w — 0))s + (h* — gD Ky(w — v)y, Vwe
and
Kt = Ki[(grad ) (K,v) — /],
Kih* e Ki[ep(K,v) + gP] .
Hence,
v* = Kit + K3h* e Ki[(grad o) (K 0) — o] + K3[0p(K,v) + ¢]. &

In virtue of the equivalence of Problem IIT* and (+ +) the relations (7.2) and
(7.3) lead to the following conclusions.

(i) The solvability of Problem IV or IV* is sufficient for both Problems III and
IIT* to have a solution.
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(i) Let Problem III be solvable, i.e. there exists an element u e ¥ such that
0 € 0F(u). Then, by virtue of (7.2), Problem IV is solvable®).

(iii) Let Problem III* be solvable. If @* is continuous at some point of Im L,
the inclusion in (7.3) becomes an equality (cf. [9; § 4.2.2]). In this case the solvability
of Problem III* yields the solvability of Problem IV*,

In general, the inclusion in (7.3) cannot be sharpened to an equality within the
framework of the above developed Hilbert space theory. If there exists a “statically
admissible stress field” o € T,y at which the functional of “complementary energy”
attains its minimum on T,y '°) and if the proper inclusion in (7.3) holds then there
need not exist a displacement field u € ¥~ which fulfils the constitutive law (2.2) and
the boundary conditions (2.3).

The authors are indebted to Dr. K. Groger for a number of helpful discussions when preparing
the present part of the paper.
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Souhrn

OBECNE OKRAJOVE ULOHY A DUALITA V LINEARNI TEORII
PRUZNOSTI, 1

RoLF HUNLICH, JOACHIM NAUMANN

Tato ¢dst cldnku dopliuje diskusi, kterd byla obsahem prvni &sti, ve dvou smérech.
Predng, v kapitole 5. se dokazuje fada existenénich vét pro Feseni problému II1
(princip minima potencidlni energie). Za druhé, kapitoly 6 a 7 jsou vénovany jednak
diskusi klasického i abstraktniho pfistupu k teorii duality, jednak vztahu mezi
resitelnosti problému III a jeho dudlniho problému.
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