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ELLIPTIC FUNCTION AND NOMOGRAMS

AKIRA MATSUDA

(Received November 9, 1977)

1. INTRODUCTION

As is well known, a determinantal form of the addition-theorem for Weierstrass’
function represents a nomogram for u + v + w = 0. In this paper, the author uses
another form of the addition-theorem for ¢ function involving no derivative g’ [1].

By a dual transformation, concurrent charts are transformed into an alignment
chart where three scales coincide and a tangential contact chart consisting of a family
of circles, which represent the relation u + v + w = 0. In this case the addition-
theorem for g function stated above is used.

2. DUAL TRANSFORMATION METHOD FOR CONSTRUCTING
NOMOGRAM WITH A COMMON BASE

Consider the cubic equation in ¢
(2.1) 2+ u(x, ) 1+ o(x, p) £+ wlx, y) = 0,

where u(x, y), u(x, ) and w(x, y) are functions of real variables x and y, and of
class C' with respect to x, y. One of the functions u(x, y), v(x, y) and w(x, y) may
be a constant. Furthermore, we assume that the equation (2.1) is not separated into
a function of x, y only and that of ¢ only, that is, it does not take the form f,(x, y) =
= f,(1).

Regarding t as a parameter, (2.1) represents a family of curves or, in a special case,
a family of straight lines in xy-plane. We now consider a region of points P(x, y) at
which (2.1) has three distinct real roots ¢, and we denote the region by D.

For a given point P(x, y)in D, let three distinct real roots of (2.1) be ¢, (i = 1, 2, 3).
By the relations between roots and coefficients of a cubic equation, we have
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(2.2) o+t 4ty = —u(x, y),

1ty + Bty + 131 = v(x, y),

titaty = —w(x, y).
Assuming that x and y can be eliminated from the above expressions, we obtain an
expression

(2.3) F(t; + 1y + 13, 11, + Lty + taty, 1i15t3) = 0.

A given point P(x, y) in D determines three distinct values t; (i = 1, 2, 3), cor-
responding to which we consider three curves c; (i = 1,2, 3) represented by the
following equations

H4+uX, )G+ XY+ wX, Y)=0 (i=1,23),

where X, Y denote current coordinates. Then the curves c; (i = 1, 2, 3) pass through
the point P(x, y). Furthermore, the curves are different from each other; indeed,
the curves are identical if and only if (2.1) takes the form fy(x, y) = f,(t), but this
does not occur by the assumption. Hence (2.1) forms a concurrent chart satisfying
the functional relation (2.3) by itself.

Next, according to the envelope method developed by the author and K. Morita
[2], we transform the curves (2.1) in xy-plane into a figure in Xj-plane by the trans-
formation

(2.4) (ax + hy + g)x +(hx + by + ) J+gx +fy +c=0
where

ahg

hbf|+0,

g f ¢

which is an equation of a polar with respect to the general conic.

Assuming that (2.1) can be solved for y, we have y = y(x, ), and then substituting
this into (2.4) we get

(2.5) {ax + y(x, ) h + g} X + {hx + y(x, ) b + f}  +
+gx + y(x, 1) f+c=0.

Differentiating this expression partially with respect to x we have

st h s+ (h+p2)549+52 0,
ox Jx Ox

and we eliminate x from (2.5) and the above expression.
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Then we obtain, generally, an equation in the form
f()_C, 5)-) t) =0 s
which expresses a tangential contact chart consisting of one family of curves in

xy-plane. In the special case when (2.1) represents a family of straight lines, we obtain
a pair of equations in the form

x=x(t), y=3),

which expresses an alignment chart where three scales coincide in Xjy-plane. Both
the charts represent the relation (2.3).

3. ALIGNMENT CHART FOR u; -+ 4y + u3 =0

We shall consider the equation

2 _ 2
(3.1) A3 Sl £ PR e E
4 4 4

where g, and g are real constants, which is a special case of (2.1). Solving (3.1) for y,
we obtain

(32 y=1tx £ /(4 - g;t — g3).
Here we assume that ¢ takes real values satisfying
(3.3) 43 — gt —g; > 0.

Regarding f as a parameter, the equation (3.1), which is equivalent to (3.2), represents
a family of straight lines in xy-plane.

From (2.2) we have

to+ b+t _x
1 2 3 4)
Xy 9
t1t2+t2t3+t3t1=?——~4~2,
2
y g3
tityty = = + 22,
1243 4 4

Eliminating x and y from the expressions we obtain
g3\ _ 9:\*
(3.4) 4ty + ty + t3) [ tyt505 — Nk tit, + toty + tat, + )

As we have discussed in §2, the expression (3.1) represents a concurrent chart
satisfying the relation (3.4).
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Next, we transform (3.1) into a figure in Xj-plane by the transformation expression
(3.5) XX —j5—y=0,

which is an equation of a polar with respect to the parabola x*> = 2y. Substituting
(3.2) into (3.5) we have

xX — § — tx F /(43 — gt — g3) = 0.
Differentiating the above expression partially with respect to x, we get X = t; and
substituting this into the above expression we obtain together with the last equation
Eliminating ¢ from the equations we have
J? =47 — g,% — g5

The pair of equations (3.6) represents an alignment chart satisfying the functional
relation (3.4) with the restriction (3.3).

Here we use a form of the addition-theorem for Weierstrass’ o function [1]:
when u, + u, + u; = 0 (mod 2w, 2w;), then

g3 _
1) 4ol + o) + () folu plus) ofus) - %} =

= {otwn) plea) + (u2) o) + o) o0 + 2}’

It is clear that the converse of this theorem is true.
Now, we put

(3.8) t = p(u),

which is equivalent to u = [” dx/\/(4x> — g,x — g3), and mark the value of u
instead of t on the scale (3.6). Setting t; = p(u;) (i = 1,2, 3), we obtain (3.7) from
(3.4). Hence in the addition-theorem stated above the relation (3.4) can be replaced
without loss of generality by the condition that one of the following relations holds:

(3.9) u, + u, + uy = 0 or period,
(3.10) u; + u, — uy = 0 or period .

In what follows, we continue under the initial condition that the value of u starts
from zero at X = oo. Since the scale (3.6) is symmetrical with respect to the X-axis,
two points whose abscissas are equal have the same value of u. Hence we can state

the following facts about values u; (i =1,2, 3) marked at three points which are
intersections of the scale and a straight line:
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When all the three points lie to the same side of the X-axis, then (3.9) holds; and
when one of them lies on the opposite side than the others, then (3.10) holds. This
can be easily seen by considering the limit case u; — 0 when the straight line passing
through the three points becomes perpendicular to the X-axis. Indeed, in Fig. 1, in
case (a) we have u; + u, + us = 2u; = period and in case (b) we have u; + u, —
— uy = 0. Therefore, if we mark the value of u on the curve so that u > 0 when
¥ > 0and u < 0 when y < 0, then the relation (3.9) always holds.

u1:0 U1:0
/\ "
Uz=u,
X
Uz=Uu;
(a) (b)
Fig. 1.

The nomogram thus obtained is the same as that found in Epstein’s work [3],
in which two examples are illustrated.

4. TANGENTIAL CONTACT CHART FOR uy + u; + u3 =20

In this section, we shall consider the following equation instead of (3.1):

2
(4.1) - X 2+ { xy _ Ql} t —

4a*(x* + 1) 2a%(x* +1) 4

2
—_ 4,_y__ + &’ — 0 s
4a*(x* +1) 4
where a (>0) is a constant. Multiplying both sides of the above equation by
4a*(x* + 1) and rearranging with respect to y, we have

(4.2) y: = 2xy + 2x% — a*(4> — gt — g3) (x> + 1) = 0.
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Here we assume that ¢ takes real values satisfying (3.3); setting
a*(4r* — gt — g3)=r* (r>0),
then (4.2) becomes
= 2txy + 2x = rA(x* + 1) =0.
Solving this expression for y we obtain
(4.3) y=tx+r (2 +1).

Regarding t as a parameter, the equation (4.1), which is equivalent to (4.3), represents
a family of hyperbolas in xy-plane.

From (2.2) we have

x2

t,+t, +t, = —m——
1 2 3 4a2(x2 L ])

E

xy g9z
fly oyl b gty =
PRTEE T e (x2 1) 4
2
y g3
fylyty = — + 22,
12 4a*(x* +1) 4

Eliminating x and y from the expressions we again have the relation (3.4) and, likewise
(3.1), the equation (4.1) also represents a concurrent chart satisfying (3.4).

Next, we transform (4.1) into a figure in Xy-plane by the expression (3.5). Substi-
tuting (4.3) into (3.5) we have

F-0x—j=2rJx*+1).
Squaring both sides and rearranging with respect to x, we obtain
(4.4) (F = =) = 2Ax =) yx + §* = r* = 0.

Differentiating this expression partially with respect to x, we have

Then we substitute this into (4.4), after some calculations we cancel the factor r?
and obtain

(i—t)2+)72=r2
or

(4.5) (x = 1) + 7 = {a J(4 — g,t — g3)}*,
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Fig. 2. Chart of uy -+ u; + u3 = 0. The figure shows that u; = 0-6422, u, = 1-0882, uy =
= —17356=>uy + uy + uz = 0.
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Fig. 3. Chart of u; + u, + u3 = 0. The figure shows
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that u; = 0-7215, Uy = 12662, uy =
= —19849=> u; + u, + uy = 0.
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which expresses a family of circles with the center on the X-axis and represents
a tangential contact chart satisfying the functional relation (3.4) with the restriction
(3.3).

In this chart, as in the case of § 3, we replace ¢t by u according to the expression
(3.8), and mark the value of u on a semicircle so that u > 0 when y > O and u < 0
when j < 0; then the relation (3.9) holds.

As in the case of the aligment chart there are two cases according as whether the
equation

(4.6) 4x3 — g,x — g3 =0

has one real root or three real roots, and we shall show them in the following
examples.

Example 1. When g, = 12 and g; = — 13, (4.6) has only one real root —2-12777
and the period is 4:1300. The chart with a = 0-12 is shown in Fig. 2. Of course,
each of semi-circles has many values of u, but in this figure only one value is marked,
under the initial condition that u starts from zero at X = co.

Example 2. When g, = 12 and g, = —5, (4.6) has three distinct real roots
the largest of which is 1:46523, and the period is 2-:2560. The chart with a = 0-16.
is shown in Fig. 3. The group of circles B alone forms a complete nomogram, and it
is possible to construct such a nomogram by choosing a smaller value of a.
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Souhrn

ALGEBRAICKA ADICNI VETA
PRO WEIERSTRASSOVU ELIPTICKOU FUNKCI A NOMOGRAMY

AKIRA MATSUDA

Vysetfuje se dudlni transformace, prevddéjici prisecikovy nomogram zobrazujici
jedinou rovnici bud na spojnicovy nomogram nebo na nomogram s detykovymi
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kontakty. Pomoci této transformace je sestrojen spojnicovy nomogram, v némz tfi
stupnice splyvaji, a nomogram s dotykovymi kontakty sloZeny ze soustavy kruZnic,
které zobrazuji vztah u + v + w = 0. V tomto pfipadé je pouZita jistd forma adiéni
véty pro Weierstrassovu funkci ¢, kterd neobsahuje derivaci p'.

Author’s address: Prof. Akira Matsuda, Toyama Marine Merchant College, Shinminato City,
Ebie Neriya 1—2, Toyama Pref., 933—02, Japan.
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