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SVAZEK 24 (1979) APLIKACE MATEMATIKY CisLo s

ON SIGNORINI PROBLEM FOR VON KARMAN EQUATIONS
THE CASE OF ANGULAR DOMAIN

JAN FRANCU

(Received October 20, 1977)

INTRODUCTION

This paper is a continuation of the article [3]. It deals with the Signorini boundary
value problem for the system of von Karman equations.

The above mentioned problem (Section 1) is formulated in a more general form
which contains the bilateral, the first and the second Signorini problems (problems
R, S), Sy in [3]) and their combinations. The boundary conditions are generalized
by introducing I'y on which w, = 0 is required. Together with the variational formu-
lation (1.16)—(1.18) the corresponding classical formulation (1.19)—(1.29) is in-
troduced.

The main result is the generalization of the existence theorem from the infinitely
smooth domain to the case of the angular domain (the domain whose boundary is
piecewise three times continuously differentiable) which is also studied in [1]. The
used method of nonlinear pseudomonotone semicoercive operator inequality is the
same as in the paper [3].

The contribution of the paper consists in overcoming the substantial technical
difficulties connected with the non-smoothness of the boundary of the domain. The
difficulties occur especially when the estimate of the term B(w; (F, w) is deduced,
see Section 4. After the estimate (3.5) is obtained the proof of the existence theorem
does not differ from that of Theorem 4.1 in [3], so we only refer to the latter.

1. NOTATION AND FORMULATION OF THE PROBLEM

Throughout the paper let Q be a simply connected bounded domain in R? de-
scribing the shape of a plate. Let its boundary 0Q represented in the form 0Q =
= {o(t) = (w,(1), (1)) e R*, te{0,1)} be piecewise three times continuously
differentiable; this means:
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Let w € [C(<0, I))]* be a continuous injective function and let a finite set T =
={1;; 0 =1y <1, <...<1,=l} exist such that
(1.1) we[C¥(tj_y, tp))]* for j=1,2,..,n,
o(0) = w(l).
(1.2) The parameter ¢ is the length of arc hence |w'(f)] = 1; let the orientation be
such that (n,, n,) = (w3, —}) is the unit vector of the outward normal

to 0Q forte(0,1) — T.

(1.3) The angles ¢; between the tangents o'(t;+), —@'(tr;—) and ¢, between
'(0+), —w(I-) fulfil 0 < ¢; < 27 for 7;€ T.

We denote by f(t+), f(t—) the limits lim f(s), lim f(s).

s—t-

As usual, we shall denote the partial derivatives by w,, w,, w,,; the normal deriva-
tive by w,, the tangential derivative by w.; the operators 4%w, [w, f] are as in the paper
[3] AZW = Wyxxx + 2Wxxyy + Wyyyys [W9f] = Wxxfyy + Wyyfxx - 2nyfxy; and the
form

(1.4) b™(u; v, W) = U v, W, + UGLW, — U OW, — Uy W,

Let us define the boundary operator Hw by

(1.5) Hw = (1 = v) (Weenon, — wy(nk — nd) — wyn.n)

where v is Poisson’s constant (0 £ v < 1), and operators Mw, Tw by
Mw = vAw + (1 = v) (Ween? + 2wynen, + wynl),
Tw = —(dw), + (Hw),.

In order to specify the boundary conditions let Q2 be divided into four pairwise
disjoint subsets I'y, I',,I'5, I, so that YI'; =0Q and let I' =« I'syuTl,, I'"c
< I', u I'y. We suppose that each of the sets I';, I'', I'" is either empty or its interior
with respect to 0Q is a union of homeomorphic images of open intervals.

The function k, I, m, r, P specifying the boundary problem are supposed to fulfil
(with an arbitrary real number p > 1):

(1.6) keL(I,uls); k=0 on I',uls,
l eL(l';urly); 120 on I'suly,
meL (I, uTls); reL(l5ul,)),
PeLy(Q).

In the presence of corners w(7;) in the interior of I's U I'y the function specifying
the boundary problem must be completed by constants h;. Denote by T° the set of
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those corners 7; and by 7" the set of corners 1; in the interior of I'". (Hence T’ &
cT°<T)

Boundary conditions of Airy stress function & are given by functions Po, 91
defined on 0Q which are supposed to fulfil

(1.7) Do € WX o((1-4, 7))
for j=1,2,..,n,
?, e W Ho((1)-4, 1))
(1.8) D, € Wh*(0Q),
(1.9 Doy = ”'nl’aﬁ P, + n, P, € W%(0Q),
t

b, = n,,g— D, + n,d, € W/22(0Q).
t

Let us introduce the following linear form:

(1.10) f(o) = me, dS +j ro dS + Y hip(w(t))) +J Py dxdy,

rurs I3uly tjel®

bilinear forms

(1.11) (4, V)wgae = J- (Upalx + 2U 0, + uyw, ) dx dy,
0

(112) A, v) = (i, D)y + vf [u, 5] dx dy +J
Q
and the expression

(1.13) B(u; v, w) =J~ b™(u; v, w)dx dy .

Q2

ku,v, dS +J luv dS ,

Iur; Iyul,

Let us denote by V the closure of the set

(1.14) ¥ ={ueC¥Q);u=0onI;ul,, u,=0o0nTI,uUl,}
in the norm of W2%(Q) and by K the closure of the set

(1.15) {ue¥;u=20o0n1TI", u,20on I'}

in the norm of W2%(Q).

Now we can introduce the notion of a variational solution of the problem:

Definition 1. The couple Iw, <I>| € K x W»?(Q) is said to be a variational solution
of the problem if

(1.16) A(w,v — w) 2 B(w; ®,v — w) + f(v — w) holds for each ve K,
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(1.17) (P, ¥)worz = —B(w; w, ) holds for each e Wg*(Q),
(1.18) @ satisfies ¢ = Py, O, = @, on 0Q in the sense of traces .

Relation between classical and variational solutions

The sufficiently smooth variational solution defined above is the classical solution
of the system of equations

(1.19) Aw = [&,w]+P
on
A*P = —[w, w]

satisfying the boundary conditions
(1.20) b =d,, b, =&, on 0Q,
(1.21) w=w,=0 on Iy,
(1.22) w =0 on I,,
(1.23) w, =0 on I,
(1.24) Mw + kw, = m on Iyul;—1",
(1.25) Mw + kw,=Zm, w,20

on I,

(Mw + kw, — m)w, =0

(1.26) T™w +Iw + &, — O W, =r on I'yul,—T',

(1.27) Tw +Iw+ ow, — Ow, 271, w=0

on [I';
(Tw + Iw+ & w, — P W, —r)w =0
in the presence of corners in the interior of I'y U I',
(1.28)  Hw(w(t;+)) — H w(w(t;—)) = h; for 1,eT° - T .

(1.29)  Hw(w(r;+)) — Hw(w(t;=)) = h;, w20 T
(ol +)) — Hw(al—) — hyw=0

Mechanical interpretation of the boundary conditions

In the case I'" = I'" =  the bilateral problem is treated in the following ways:

In general, the plate is supported and clamped along I',, supported and elastically
clamped on I',, elastically supported and clamped on I',, and elastic supports and
elastic clamping are prescribed on I';. In particular, if k = 0 the elastic support
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converts to a transverse load and if I = 0 the elastic clamping converts to a loading
with a moment distribution. If in addition k = m = 0 on I', the plate is simply
supported, if I = r = 0 on I'y it is simply clamped (allowing free vertical displace-
ments) and if k = | = m = r = 0 on I'; then I'; is the free part of the boundary 9Q.

The introduced formulation of the problem enables us to deal with unilateral
problems as well. If I'" = I'y U I', the first Signorini problem is considered. The
special case [ = r = 0 of the condition (1.27) describes the situation of the edge of
a plate which lies on a rigid base so that it can be deflected only upwards (see [3],
Remark after Definition 2.2).

The second Signorini problem is described in the case I'" = I', U I'5.

2. REFORMULATION OF THE PROBLEM

In order to be able to use the abstract existence theorem for pseudomonotone
semicoercive operators (see e.g. [3], Section 5) we shall reformulate the problem
using Knightly’s idea (see [5]) in the same way as in [3], Section 6.

Let F e W?*(Q) be a function such that

(2.1) F=@®, and F,= &, on 0Q in the sense of traces.

The existence of such a function F follows from the assumptions (1.7)—(1.9) and
Theorem 4 in [2].

Further, let { : @ — <0, 1) be an arbitrary function such that
(2.2) {eC*Q) and (=1, {,=0 on 0Q.
Substituting ¢ = g + {F into (1.16) and (1.17) we obtain
(2.3) A(w, v — w) — B(w; g, v — w) — B(w; {F, v — w) 2 f(v — w),
(24) (9 WIwora + (CF, Y)wgra = —B(ws w, ¥) .

Let us introduce a real Hilbert space H = ¥ x W;'*(Q) with the norm generated
by the scalar product

(25) (U, 2)) = (w, o)w2z + (9 VIweas

provided U = |w, g|, Z = |0, y|; w,ve Vand g, ¥ € W53(Q). Let {f, v> denote the
pairing between H’ and H. Define a continuous functional Q € H’' by

(2:6) Q(2) = f(v)

and a bounded operator 7, : H — H' by

359



(27)  <T(U), Z) = A(w,v) + (g, ¥)wer» — B(w; g, v) — B(w; {F, v) +
+ B(w; w, ¥) + ((F, Y)wor.z-

Let us define the solution of the problem K; as follows:

Definition IL. The couple U = |w, g| e K x Wg**(Q) is said to be a solution of the
problem K if

(28) (T(U),Z—-U)=2<(Q,Z—U) holds for each ZeK x W*Q).

The problem from Definition I and the problem K; are equivalent, i.e. the solution
|w, (PI from Definition I exists if and only if the solution Iw, gl exists and @ =
=g + (F.

3. MAIN RESULT
Define
(3.1) Y, ={veV; A(v,v) = 0}.

Theorem. Suppose that Q is the domain described in Section 1 (1.1)—(1.3).
Further let the following assumptions be satisfied:

(3.2) I', and T, are either empty or a union of finitely many segments of straight
lines.

(3.3) The angles ¢; (see (1.3)) in the interior of I'y, U I'y between segments range
strictly between 0 and m and no two adjcent parts of I', and I', lie on the
same straight line.

(3.4) o=@, =0 on TIy.

Let the conditions (1.6)—(1.9) be satisfied.
Then the following assertions hold:

(i) If Yy = {0} then there exists a variational solution.

(ii) If Yy # {0} and simultaneously each z € K n Y, \ {0} satisfies the inequality
f(z) < 0 (see (1.10)) then there exists a variational solution.

Sketch of the proof. We find such a function { that the operator 7 ; defined by (2.7)
satisfies the assumptions of the abstract existence theorem (it is pseudomonotone
and semicoercive), see e.g. [3], Theorem 5.3. Then there exists a solution Iw, g| of
the problem K;. From the relation ¢ = g + (F we obtain a variational solution
Iw, d§| introduced in Definition I.

360



To prove the semicoerciveness of (for some C) we find for each y > 0 a function {
satisfying (2.2) for which

(3.5 |B(w; LF, w)| < y|w|#22 holds for each we V.

The estimate (3.5) is the crucial point in the proof of our theorem because the re-
mainder of the proof repeats literally the corresponding parts of the proof of Theorem
4.1in [3].

4. AUXILIARY FUNCTION ( AND ESTIMATE OF TERM B(w; {F, w)

We obtain the desired function { satisfying the estimate (3.5) immediately from the
following lemma by a proper choice of &, 6.

Lemma. There exist two positive constants ¢, d with the following property:
For each ¢, 6 > 0 there exists a function { satisfying (2.2) such that

(4.1) lB(w; (F, w)| < (@ + do'*) ”F“Wz,z [w||32.2 holds for each weV.
Before proving the lemma in detail we sketch the idea of the proof and clear up

some technical details.

Idea of the proof.

I The boundary strip 2, of a sufficiently small width 4 > 0 will be divided into
a finite number of “oblongs” Q;, YQ; = Q, (see Fig. 1).

w(fz)

w(0)=w(1)
&

+1
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II The auxiliary function { will be constructed on each oblong Q;, while { = 0
inside of @ — Q,. To obtain the function { on Q; we use special functions of distance
from the boundary and a special function z with parameters ¢, 5. The parameter §
determines the width of support of the function { and thus its measure (denote
supp { = Q; < Q) is

(4.2) #(Q5) < consté .

The parameter ¢ determines the estimate of derivatives of the function {, see (4.22).
IIT It is

(4.3) B(w; (F, w) = J {b¥(w; F,w) + J‘ F b™(w; {, w).

Qs

The first integral in (4.3) will be estimated by using (4.2) and the inequality of
imbedding in Sobolev spaces (see [6]):

(4.4) foHL"uza) < [u(@s)]'° ”fX”Ls(Qd) = C0n5t51/8\1fﬂw2-1(9)~

The second integral in (4.3) will be estimated in each oblong separately. In order
to estimate the terms with the “unpleasant” derivatives {, (4.22) we transform the
differential form b* into a differential form with derivatives in the other directions
and introduce local Cartesian (or oblique) co-ordinates (x*, y*). After that we are
ready to use Hardy’s inequality (4.11).

Let us introduce some technical details:

Auxiliary function h®. For a < b let h%: R! - (0, 1) be the function with the
following properties:

(4.5) h, e C*(RY),
hi(t) =0 for t
hy(t) =1 for t

2
Y| < .
|(a)l_b—a

IIA
8

v

The function z € C%(<0, )) is introduced in [4], (4.16)—(4.18). Let us recall its
properties:

(4.6) Zt)=1, Z(t)=0 for te0,h),
supp z < <0, 8),

(4.7) ‘ B gf for t>0.
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Regularized distance ¢. There exist a function ¢ and positive constants ¢y, ¢;, ¢
such that

(4.8) ceCHQ)n C(Q),
(4.9) ¢, dist((x, ), 0Q) < o(x, y) < ¢, dist((x, y), 0Q) for (x,y)eQ,
(4.10) o ¢ o sc.

For this assertion see [6], Chapitre 5, Lemma 3.1.

Hardy’s inequality. Let p > 1, a < b, fe C'(<a, b)), f(a) = 0. Then

(4.11) Jb SO Pax < <p—%—1>p lef’(x)l”dx.

x—a
For this assertion see [6], Chapitre 2, Lemma 5.1.

Transformation of the differential form b™. In addition to the partial derivatives
f> f, we shall use the direction derivatives. Let z; = (x;, y;) € R? be a unit vector and
let us denote

(4.12) Fulo ) = lim - (F(x + i,y + hy) = £(x, 7).
Obviously
(4.13) IS ESTARSTAR

Let z,, z, and z,, z, be two pairs of unit vectors z; = (Xi, ,Vi) and let J,, = x,y, —
= X2¥1> J3a = X3¥a — X4¥3, both Jyp, J34 # 0. Then by virtue of f, = 1/J, .
(fe1y2 — f2,y1) etc. we obtain

1
XY+ _
(414) b (u’ v, W) - (unuvzzwzs + Uzyz30z, W2y — Uz 2302,Wzy — “zzz.”n“’z,) .
12934

Local Cartesian (oblique) co-ordinates

(4.15) (X%, %) 1 Q; = (i 1) X (=4, 4)

have the following properties:

a(x*, y*) _ _
(4.16) _6(x, " 1 (resp. = const. > ()
FENTA AR AR

We shall denote the transformed sets and functions by Qx
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Proof of Lemma

I Let us consider the “special” points of 2 — the “corners” in I', U I'y and the
points at which I', or I, neighbour with I'y or I'5. The boundary strip £, is divided
with respect to these “special” points by inner normals n(t;) at the points o(t;), t; ¢ T
which are not “special”. It is done in such a way that each arc S; = o({t;_y, 1;)) —
the side of the oblong Q; — contains inside at most one “special” point, see Fig. 1.
Further, we shall suppose that the width of 2, is sufficiently small and the arcs S, are

sufficiently short.

I 1
H i
iy :D({;_,) i D(t;) Eni"
| g - z(8 } w‘
{ - 4
w(ti-q) Si w(t;) 0 1
Fig. 2.

II We shall consider four types of oblongs Q; according to the boundary conditions
prescribed on their arcs S;.
a Let S; = I', or I', and let S; be a segment of a straight line, see Fig. 2. We put

(4.17) {=1z(s) on

where s is the perpendicular distance from the straight line containing the segment S
and z is the function with parameters ¢,  satisfying (4.6), (4.7).

w(t'-J
1 Q) wlt;)

*
N X:‘ Xy

Fig. 3.

b Let S; = I'; v I'5, Fig. 3. In this case we put
(4.18) {=1z(6) on &

where ¢ is the regularized distance (4.8)—(4.10).

364



c Let I'; or I'y neighbour in §; with I' U T3, Let e.8. S™ = &(<t;—y, 7;)) = [
orI'y, $* = o({1}, t;») © I'y or I', be a segment of a straight line and the angle @},
see (1.3), ranges between 0 and 2r, Fig. 4. Let us denote by ¢(x, y) the function of the

D(¢;)

—— ke de o

w(t;)

Fig. 4. w(ti)

angle between the vectors w'(t;+) and (x, y) — w(t;) for (x, y) € ;. Then we can
put

(4.19) { = z(s) + (o) (z(c) — z(s)) on

where s is the perpendicular distance from the straight line containing S*, o is the
regularized distance and

IA

(4.20) either 0O<a<b<g; if 0<@;=n

or g;—n<a<b<n if n<e;<2r.
d LetS; = I', U I'y but let S; consist of two straight segments, S~ = o(<t;_{, 7,5),

S* = w(<t;, t;), Fig. 5. According to (3.3) the angle ¢; between the segments S*
~and §” is 0 < ¢; < 7. In this case we put

(4.21) {=z(s7) + z(s*) — z(s7) z(s*) on &
where s* is the perpendicular distance from the straight line containing S*, k = —, +.
The function ¢ constructed above satisfies (2.2). According to (4.6) and (4.9) the

condition (4.2) is satisfied. In addition, we require the derivatives of the function {
to satisfy the estimate (with a positive constant c,)

1

———— for (x,y)eQ
‘o dist ((x, ), 02) (x, 2) & 2

(4.22) |G(x, p)| S e
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for each unit vector z. This condition is satisfied, too, as can be easily seen in all these
cases from the construction of the function { and from the properties of the functions
z,0,s.

III All constants are supposed to be independent of &, 5. The members in the
first integral in (4.3) can be simply estimated by means of Holder’s inequality and (4.4)
as follows:

J wayFny
Qs

The remaining terms can be estimated similarly, so we obtain

(4.23) = [waylliz [FyllLacon [Wsll Lo, = const 5”4“}7”%1 ”WH waa -

< 26" Fllyas [

(4.24) | '[ (o™ (ws F, w)

Let us consider the second integral in (4.3). We restrict ourselves to smoother
functions we 7", cee (1.14). We shall establish the estimate in detail in one case,
in the other possible cases we only mention the different technical details.

al Let S; = I', and let S; be a segment of a straight line, Fig. 2. The function {
is given by (4.17). We transform the form b™ into derivatives in the directions of
the normal n and the tangent 7 to S;. In virtue of (4.14) we have b™ = b™. We intro-
duce local Cartesian co-ordinates such that S; in the new co-ordinates become
ST = {(x*, y*); y* = 0, x* € {t;,_4, 1,>}. The terms containing {, equal zero because
{; =0 on Q; The term containing w, can be estimated by means of (4.22) and
Hardy’s inequality (because w;(x*, 0) = w*(x*, 0) = 0, see (1.22) as follows:

T

< eco| F Lo [|Wen 12 [J.:‘X (J: %}; fdy*) dx*:l‘/2 <

(4.25) ‘J Fw,(,w.dx dy
| J
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12
wie|? dy*) dx*:l < econst |[Fllyaz: |w]ie.e -

< & const ||l o |Wee U (f 2

The remaining term Fw.(,w, can be transformed by integrating it by parts with
respect to 7:

4 t;

(FowrCws) (x*, y*) dy*] n

x*=t;-1

(4.26) — j FwX(wX dy* dx* = — [j
Q4

0

+ J w:"[F*C,Tw,T], dy* dx* .
Qis

The latter integral contains w,, so it can be estimated in the same way as in (4.25).
Let us denote

4
(4.27) D(i) = J FrwiwieA (1, %) dy* |
0

Thus we obtain

(428) < D(ti—l) - D(fi) + ('iSHF“Wz,z ”WH%VZ,Z .

J' Fb™(w; ¢, w)
'R

The terms — D(t;), D(t;-;) will be cancelled by the terms with opposite signs from
the estimates of the neighbouring oblongs Q;,, 2;—;.

a2 Let S; = I', and let S; be a segment of a straight line. In this case we shall
proceed similarly: we transform the form b* into derivatives in the directions of n, 7.
We can apply Hardy’s inequality to the term containing w, because w, = 0 on I',
(1.23). The remaining term Fw, (,w, is integrated by parts with respect to T and we
obtain
|
(4.29) %L Fb(w; ¢, )

< D(t,-) — D(ti-l) + C,-B“F” W2.2 ”W”syz,z .

Remark. In this case the terms D(t) in (4.29) have the signs opposite to those
in (4.28). This is the reason why we suppose in (3.3) that no two adjacent parts of I',
and I', lie on the same straight line.

b Let S; = I'y U I';. The function { is given by (4.18). In this case we need not
transform the form b™. We introduce such a system (or two systems) of local
Cartesian co-ordinates that we can estimate (integrating with respect to y*) each
point of ©; by a boundary point from S;, see Fig. 3. Let S; in the new co-ordinates
become S} = {(x*, «(x*)), x* eI}, where o is a proper function.
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Let us consider the case S; = I';. We can use Hardy’s inequality because F, =
= F, = 0 on I'; (3.4); e.g. let us estimate the term Fw,.yw,:

4 *
=< econst [f ( f —~—F——
1 \Jagny | V¥ — o(x¥)

4 1/4
< aconst[ j < f ]F;".“dy*)dx*:l [sallcs [y e < & const [ Flya [w]Zas
I

a(x*)

(4.30)

J' Fw,.(,w, dx dy' h
2

4 1/4
dy*) dx*] [Wasles [ ]e <

If S; contains a piece of I', then it can be estimated by Hardy’s inequality as in (4.25)
because w, = w, = 0 on I'; (1.21). Finally, we obtain

f F b(w; £, )
Qi

¢ Let I', or I', neighbour in S; with I'; U I';. The function { is given by (4.19).
Let us consider e.g. the case S* <« I', or I'y and S™ < I'; U I'; — for notation see
paragraph Ilc of the proof and Fig. 4. Let 7; < a* < b* < t; and let us denote

(4.32) Q" ={(x,y)eQ; 0<o(x,y) <a},
S ={(x,y)e Qs o(x,y) = a} .

We split the integral into three:

(4.33)

Linxy(w; Lw) = L+(1 REY)) Fb® +j

(31) < e e Flyns [l

o+

RI(t*) Fb™ + f Fb™

Q2;-Q*

where t* is a function on Q% given by the relation

(4.34) t*(x,y) =1t if (x,y) — o(t) isa normal vector to S* .

We transform the form b into derivatives in the directions of the normal n* and
the tangent ¥ to S* in the first and the second integral. They can be estimated as
in the case al or a2, only we use oblique co-ordinates instead of Cartesian ones in
the first integral. Integration by parts yields the terms D(t;) in the second integral
and D’ in the first one (the other equals zero):

(4.35) D= J Fwanyty 35
s sin a

The term D(t,-) will be cancelled by the same term with the opposite sign from the
neighbouring oblong Q;.,; D’ will be estimated later. The third integral can be

estimated in the same way as in the case b because S~ < I'; U I';.
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Let us consider the remaining term D’. We shall integrate with respect to the local
co-ordinates r, Y given by r = I(x, y) — w(rj)|, ¥ = r ¢(x, y). We can write

(4.36) Frw*w? dr — f

F*w*wk dr =J (F*wiwy), dy dr.
(s-)* s"*

(-2

The first integral on the left hand side equals zero because w, = w, = Qor F, = F, =
=0, (1.14) or (3.4). In virtue of d(r, ¥)/d(x, y) = 1 and (4.13) we can estimate the
integral on the right hand side (integrating with respect to the oblique co-ordinates
(x*, y*)) as in the case b. The second integral on the left hand side estimates the
term D'.

d Let S; = I', U T, but let S; consist of two segments S~ and S*, Fig. 5. The
function { is given by (4.21). Let us denote Q* = supp z(s*). Let t* be the function
on Q* defined as in (4.34) and let Q~ and ¢~ have the analogous meaning, see Fig. 5.
Further let t,_; <a”™ <b” <71; <a' <b* <1, The integral splits into five
parts:

(4.37)

J AFbxy =j _(1 — h=(17)) Fo(w; z(s7), w) +f R2Z(t7) Fb™(w; z(s™), w) +

-

+ 'f (1= ) b 2(67). ) +J BEL() Fb(ws; 2(5™), w) —

o+

[ s,

The first and the fourth integral can be estimated in the same way as in the case al
and a2; integration by parts yields the terms D(¢;_,), D(t;) which will be cancelled
by the same terms with opposite signs from the neighbouring oblongs.

As for the second, the third and the fifth integral in (4.37), we shall integrate with
respect to the oblique co-ordinates with the co-ordinate axes in the directions of the
tangents t~ to S~ and ¥ to S*.

We shall consider three cases:

dl Let S; = I',. We transform the form b* into derivatives in the directions of the
normals and the tangents to the segments S~ and S* :n™, n*, 7, t*. In virtue of
(4.14) we obtain

(4.38) b™(w; £, w) =
= CoNSt (We-p-Les Wyt 4 Woage oWy — Wem e loeWye — Wee o {o-Wye)

Let us estimate the second integral in (4.37). The terms with z(s™),- equal zero, the
term with w,-z(s7),+ can be estimated as in (4.25) because w,- = 0 on S™. The
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remaining term Fw.-,-z(s™).»w,+ho-(17) is integrated by parts with respect to 7~.
The traces equal zero because w,. = 0 on S* and h}-(17) = 0 for t~ < a™. The third
integral can be estimated similarly.

In the fifth integral the terms with w,-z(s™).+, w,+2(s*).- can be estimated as
in (4.25). The remaining two terms are integrated by parts (e.g. Fw-,-z(s) z(s*) w,
in 7, the traces equal zero because w,+ = 0 on S* and z(s*) = 0 for s* = 9) and
estimated in the usual way.

d2 Let S; c I',. We transform the form b* into b* " and we can proceed similarly
as in the case d1 because z(s”),- =0 on 27, z(s*),» =0 on Q*, w,- =0on S~
and w,+» = Oon S*.

d3 Let one of the segments be a subset of I',, the other of I'y, e.g., S™ < I'; and
S* = I'y. In this case we can use z(s™),- = 0on Q7, z(s*),» =0 on %, w,- =0
on S” and w,+ = 0on S¥. Let the angle ¢; be ¢; + 4n. Then we can transform the
form b* into derivatives in the directions t7, ", 77, n*:

(4.39) b""(w; ¢, w) =

= CONSt (We—e-Loa Wy + Werpele-Wem — WempelorWem — Woao-{o-Wyo)

and we proceed like in the case d1.

If ¢; = 1= the transformation yields b* = b" " becauset™ = —n*andtt = n",
and we proceed like d1.

We complete the proof by putting ¢ = Y ¢;.

Remark.The boundary strip Q, can be divided so that there is no oblong of type a.
We consider it only as the simplest case.
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Souhrn

O SIGNORINIOVE PROBLEMU PRO VON KARMANOVY ROVNICE
PRIPAD OBLASTI S ,,ROHY*

JAN FRANCU

Clanek se zabyva existenci feSeni zobecn&ného Signoriniova problému. PouZita
metoda, kterd spoéiva v prevedeni pfisluSné okrajové tilohy na nerovnici s pseudo-
monoténnim semikoercitivnim operatorem je uvedena v [3]. Existen¢ni vysledek
pro oblasti s hladkou hranici z [ 3] je zobecnén na technicky dileZité oblasti s ,,rohy*.
Rozhodujicim krokem diitkazu je odhad nelinedrniho ¢lenu, ktery se objevuje v ope-
ratorové formulaci problému. Podstatné technické obtizZe, které jsou spojeny s ne-
hladkosti hranice jsou pfekonany specialni volbou pomocné funkce.

Author’s address: Jan Francii, Matematicko-fyzikalni fakulta UK, Malostranské ndm. 25,
118 00 Praha 1.
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