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GENERALIZED PERIODIC OVERIMPLICIT MULTISTEP METHODS

(GPOM METHODS)

HaAssAN NASR AHMED ISMAIL

(Received August 27, 1977)

1. INTRODUCTION

In the course of development of numerical analysis, a number of numerical methods
for solving initial-value problems for ordinary differential equations have been
proposed. The first methods for this purposes were individual methods as, e.g.,
Adams methods, Runge-Kutta methods etc. Later, the synthesis of properties of
these individual methods gave the origin to the theory of general one step methods
and linear k-step methods.

This paper represents an attempt of further synthesis of properties of individual
methods in introducing a class of methods which contains all important methods
known. The advantage of our approach consists on the one hand in methodical
reasons — we are able to prove, e.g., the convergence of a number of individual methods
in one single proof — on the other hand, the presence of free parameters in a method
allows us to construct individual methods having convenient properties for solving
particular problems, as for example stiff systems of differential equations or evolution
problems.

The new method introduced in the paper will be called “Generalized Periodic
Overimplicit Multistep (GPOM) Method™ especially for the reason that the main
idea of this method consists in the fact that in one step of the method one computes
not only one unknown value of the approximate solution (as in classical methods)
but a group of unknown values of the approximate solution from a (generally non-
linear) system of equations. A similar idea is studied by Prager, Taufer and Vitasek
[1], but here, moreover. the distribution of the points at which the solution is sought
is allowed to be general. This fact enlarges on the one hand very substantially the
class of the methods under investigation, on the other hand, it simplifies the conver-
gence proof.
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2. DEFINITIONS AND BASIC PROPERTIES OF GPOM METHODS

For simplicity we shall formulate our method only for one differential equation
(1) v =flx,y). xela,b], yla)=n

where the function f(x, y) is defined, continuous and satisfying the Lipschitz condi-
tion with respect to y in [a, b] x (— o0, o0) so that the existence and uniqueness of
the solution of (1) is guaranteed in the whole [a, b].

The approximate solution will be studied at k points simultaneously supposing
that it is known at [ points. Let us suppose that 1 < | < k, the assumption which, as
we shall see, is not restrictive.

To describe the structure of that k and I points we let the mesh size to be a positive
number h and if m is a positive integer we define the basic point x, j = 0,1, ... by

Xjp=a+ jmh j=0,1, ..
(the distance between two consecutive basic points is mh).
Also we define the intermediate points x ., i = 1,...,k — 1 by
Xjevi = Xp + pih
where yu; are real numbers.
The values i = 0, i = k with yq = 0, &, = m show that these intermediate points
will correspond to the basic points.
It is easy to prove the periodicity property:
X,+x = X, + mh for any integer s .
Let us notice that
(i) for some i < j it may happen that u; = p;;
(i) there may exist i for which y; > m and y; < 0;
(iif) there may exist i not necessarily 0 or k for which y; = 0 or m.

Let us introduce now some notation which will simplify the definition of one step
of our method. Let x; and i(xj),j =0, 1, ... be I-dimensional vectors defined by:

(2) X = [Xjis Xjpags coos Xjrg—1]' for j=0,1,...

3) Fxp) = [F0xje)s oo Foeuri-1)]"
where §(x;.+;) denote the approximate solution at the points x ., ; for j = 0,1,...;
i=0,...,k — 1. The last vector will serve as the input data for one step of our
method.

Analogously, let us define the k-dimensional vector z; by

(4) %= [xjk+laxjk+l+1,~~~ax(j+1)k+l—*1]T
and the corresponding k-dimensional vector §(z;) of the approximate solution by
) () = [P s -oos PG w17
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This vector will serve as the output data for one step of our method. Further, let us
define the I-dimensional and k-dimensional vector-valued functions f(x;, ¥(x;)) and
f(z;, ¥(z;)), respectively, by
(6) LG 50x7)) = [ Goges o)) oo f(jrwim 1o F0gani=0))] 7
(7) f(zj» f(zj)) = [f(xjk+z, f’(xjkﬂ))’ ~-'~f(x(j+1)k+ll7 f(x(jﬂ)kw—l))]T .
These two vectors represent the values of the right hand term of the differential equa-
tion (1) at the points (2), (3) and (4), (5), respectively.

Now we have prepared all to be able to define one step of our method: “Let
a distribution of basic and intermediate points be given (i.e., the mesh size h, the
integers k, I satisfying I < k, the integer m and the constants p;). Further, let k x I
matrices B = {b;;}, D = {d;;} and a k x k matrix C = {¢;;} be given. Then the
system

®) ¥(z) = B3(x;) + hCf(z), 5(z))) + hDf (x5, 5(x))» J = 0,1, ...

will be called the k-stage generalized periodic overimplicit multistep method, or,
briefly, GPOM method”.

It is necessary to add some remarks to this definition. The equation (8) is under-
stood in such a way that it has to define the vector of the approximate solution f(zj)
provided the vector j(x,) is known. Thus, we must first show that the vector j(z;)
is really defined by this equation. Further, for practical computation, the formula
(8) will be used repeatedly for j = 0, 1, .... This process is obviously well-defined
since we suppose that / < k so that the group of values J(x), .... #(Xjz+,-;) can
be always selected from the just computed group. We must naturally suppose that [
initial values are given at the beginning of the computation.

The Lipschitz property of the right hand term of the given differential equation
implies the following theorem which justifies the definition just introduced.

Theorem 1. Let the right hand term of the given differential equation (1) satisfy
the Lipschitz condition with respect to y and let h be sufficiently small. Then
there exists one and only one solution of (8).

3. GPOM METHODS AS A GENERALIZATION OF CLASSICAL METHODS

In this section we show that the class of methods just introduced represents the
natural generalization of classical methods.

3.1 Dahlquist’s method

Let the approximate solution j(¢;) (where t; = a + jh) of (1) be computed from
the equation

k k
(9) gav j;(tn+v) = h goﬁvf(tn+w y(’n+v)) n = 0’ ls

v=0
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where «,, f, are constants, o, #+ 0, Iaol + I/)’OI > 0 and the initial values i(t“),
u=0,...,k — 1 are known.

The connection between Dahlquist’s method and GPOM method is described in
the following theorem.

Theorem 2. Let a k-stage GPOM method be given with | =k, m =1, y; =i
fori=1,...,k — 1 and with matrices B, C and D:

0, 1, 0, , 0, 0 ]
....................................... 0. . 00
0, 0, 0, , I, 0 1 Lot
B-_— s = — N *
0, 0, 0, s 0, 1 o0 ... 00
_ % %1 %2 _ %2 %r-1 0 .. 0h
R “k’ 0‘k, “k’ ' ak, e
70. (VI
D:l :
Oy 0.‘. 0
Bo - Bi-1d

Then this method is equivalent to Dahlquist’s method (9).
Proof. Since z; = x;,, then (8) will be
(10) F(xj1) = BF(x;) + hCf(x;0y, $(xj41) + hDf(x;, §(x))) -

Here the first k — 1 equations are trivial in virtue of the special form of B, C and D
while the last equation of (10) can be written in the form

1 k-1 ‘ hﬂ h k-1
o) = — — 2 o, 7(ty4,) + ;’Ef(tj+k5 J(tien) + — X B (L 7(t;4))

Oy v=0 k oy v=0

since from the periodicity we have X, = x; + vh = a + (j + v) h = t;,,. The
theorem is proved.

3.2 Predictor-Corrector Methods

The approximate value j*(;.;) is computed by the explicit formula:
k-1 k-1
(11) o J¥(tpa) + 2 o8 J(t4) = B Y BV S (1540 5(t543))
v=0 v=0
(assuming J(t;), ..., #(t;+x-1) are known) where

t;=a+jh; j=0,1,....
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The approximate solution is corrected by the implicit formula

k—1
(12) Z a, f(fﬁv) = hﬁkf(’j+ka ﬁ*(t,wk)) + h }: .vi(tj+w .f’(tj+v)) .
v=0 v=0
The connection between the predictor-corrector methods and GPOM method is
described in the following theorem.

Theorem 3. Let a 2k-stage GPOM method be given with 1 = k, m = 1,
ui=1i fori=0,.., k=1 =i+ 1—kfori=k,.. 2k —1 and with

matrices

* T
0,0,..,0,0, -2 0,0,..,0 —=
% Ay,
£
,0,...,0,0, = 1,0, ..,0 -2
A Ay
o o,
0,1,..,00 --—=, 0,1,..0 —-=
B = o o,
G, Ay
0,0,...,1,0, — —=,0,0, ..., 0, — ==
o Ay
“:—1 Xk —1
09 05 s Oa 15 — T 09 Oa > 17 - T
L o %

0O O
and C = [C1 O:I

0...00]7

where C, is the k x k matrix given by C, = 0...00
0.. 0k

o

Then this method is equivalent to the predictor-corrector method (11), (12).

254



Proof. The equation (8) can be written in the form

_.V(ijk +k)

» T,
(X2j5426-1) =B '-( ) +
_\~’(X2(j+1)k) );'(Xz'k+k 1)

: o

_j';(XZ(jirl)k+k—l)-

_'.f(-\’zjwk- P(x2jx+x)

) - Xoiks V(Xs;
+ hC f(xzjk+2k—1a~ J'(ijk+zk—1)) + hD f( 2k ( ZJk))

f(XZ(j+1)ks F(X2+ 1)) j«(xz'Hk v (Xaeiet)
: jerk—1s M Xojprse

f(xzu+nk+k—1s .v(xl(j+1)k+k—l))".v

In virtue of

X2 jk+k Xa(j+ 1)k Lty X2 jk L
: = : = N and N = :

 X2jk+2k-1 X2+ 1)k+k—1 Uik LX2jk+k—1 livk—1

the assertion of the theorem follows immediately.

3.3 Runge-Kutta methods
3.3.1 Explicit Runge-Kutta Formulae

In this method the approximation j(1,, ;) of the exact solution at 1, , , is computed

from
k

(13) f(ln+1) = )N’(tn) + h Z w,K,
v=1
supposing j(1,) is known, and K are given by
KI = f(tns j(tpl)) >

(14) . vt
Kv :f(ln+avh7y(tn)+ hZBvsKS)9 V=2,.‘.,k.
. s=1

The connection between the Runge-Kutta methods and GPOM method is described
in the following theorem.
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Theorem 4. Let a k-stage GPOM method be given with =1, m =1, p, =
=0,,.,V=1,....,k — 1 and with matrices

1] 70, 0, ...,0 0, 0
Bsz, 0, , 0, 0, 0 ﬁ“
B = L C= , D= ﬂ
k,2> Bk.:«)’ ey bk,k—ls 09 O wkl
1 Wy, Wi, .., Wig, W O !

Then this method is equivalent to the Runge-Kutta method (13), (14).

Proof. Our GPOM forv = 1,..., k — 1 can be written in the form:

F(xjery) = F(xp) + hsglﬁv+1.sf(xjk+s—1’ F(Xjkss-1)) s
and further we have
T ow) = Fxp) + hsiwsf(xjkﬂ—n Fxjss=1)) -
Putting K, = f(Xju+y—15 J(Xj+v—1)) for v =1, ..., k we see that

k

(15) I(xG+ o) = F(xp) + h Y wiKs

s=1

where
Ry = 1o 5(xi)) .
v—1
(16) KV =f(xjk+v—1> j](xjk) + h Z BNJZS) Vv = 2, ey k.
s=1
NOtiCing that xjk =a+ Jh = tf’ xjk+v—1 = xjk + luv—lh = tj + avhnv = 2, Ceey k

we see that the equations (15) and (16) are exactly the same as the equations (13), (14).

3.3.2 Implicit Runge-Kutta Formulae

In this method (see, e.g., [3]) the approximation §(f,+,) of the exact solutionat t,., ,
is computed from

k
(17) Htas1) = 5(ta) + leva
supposing that ﬁ(t,,) is known, and K, are given by

k
(18) . K, =f(t, + a,h, 3(t,) + hY. BKs)s v=1,... k.
s=1

256



Theorem 5. Let a (k + 1)-stage GPOM method be given withl = m = 1, u, = «a,
forv =1, ..., k and with

1 Bir -o. B O 0
B = L C=1|" ol p=

. ﬂkl "'Bkko

1 Wy ... w O 0

Then this method is equivalent to the implicit Runge-Kutta method (17), (18).

Proof. Analogously to the proof of Theorem 4 we can write (8) in the form:

k
(19) i(xj<k+l)+V) = y(xj(kﬂ)) + h Zlﬁuf(xj(k+l)+s’ y/(xj(k+1)+s)) , v=1,..,k;

k

(20) i(x(jn)(w 1)) = ;’(xj(k+ 1)) + h Z st(xj(k+l)+sa f(xj(kﬂyn)) .
s=1
Let us introduce for v = 1, ..., k the quantities

KV = f(xj(k+l)+v’ y(xj(k+ 1)+v)) .
From (19) it is clear that K, satisfy the system
k
K, =f(xj(k+1)+vs Vikry + hZﬁvSKS)’ v=1,..,k.

1

The assertion of the theorem now follows from the fact that

Xjhr1) = U Xjaa ey = 1; b for v=1,.. k.

3.4 Overimplicit Multistep Methods
(see Prager, Taufer and Vitasek [1])

The approximate solution is sought at equidistant points t,. In one step of the
method we compute — asin our method — the approximate values (a4 1), ---» F(tase)
simultaneously from the system

}7(tn+1) [f(tn—u-l) ’Vf(tnﬂ,j'(t,,“))
: =B +hCl: +

S| L) | f (s 5(ta12))
f(tn—l+ (A 1)

£ty 7(1)

supposing (fa—i+1), --., (t,) are known. Given an integer s, 1 £ s = k the next
step of the method starts with the values §(fy+5-141)s - --» ¥(t245) so that (21) is under-

(21)

+ hD
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stood to be used forn = js + [ — 1,j = 0, 1, .... Let us underline that no relation
is supposed between [/ and s so that among the numbers jf(t,,H_H Ds s j)(t,,ﬂ) there
may occur not only approximate values computed in the preceding step of the
method but also values computed in former steps. For this reason we will investigate
the cases s = [ and s < [ separately.

3.4.1 Case s >

Theorem 6. Let the overimplicit multistep method (21) with s 2 | be given and
let us construct the k-stage GPOM method using 1 starting points with m = s,
m=vforv=1,...,s—=1; p,=v+1forv=s,...,k —1 and with B, = PB,
C,=PCP ',D, = PD

.Is—l Os—-l,l os—-l,k—s
where P = Ok—s,x—!ok‘s,l Ik—s
Ol,s-l Il Ol,k's

Then this method is equivalent to the given overimplicit multistep method.

Proof. Let us mention first that from s = [ and s < k we have | < k so that the
GPOM method from the theorem is really well defined. The formula (8) written in
detail is

Hf(ledvl)

;’(xjus—x)
j}(xjk+s) y(xjk)

: - PB| :
y(xjk)rk—x) f(xjku—l)
f’(x(j+ l)k)

+

j(x(j+1)k+ - 1)_
_f(xjk+lay(xjk+l)) T

f(xjk+sf13 f(xjk+s»1))
f(xjk +55 y(xjk +s)) f(xjk: f(X,-k))

+ hPCP~'| + hPD |

f(xjk+k—1>~)~’(xjk+k—1)) f(xjk-(-l—i, f(xjk+1—1))

S oo F(X(j+ 1)

LA vps =10 PG4 1k 1-1))
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Premultiplying this equation by P~ ! and taking into account that

we have

(2)

+ hC

Using the identities

Xjk+v

Xjk+v =

I,

Pl = Ol,s—l

>j’(xjk+l)

y(xjkﬂ—l)
)7(3‘(,'+ l)k)

y(x(j+l)k+l—l)
j;(xjk-fs)

_};'(Xjuk—x)
"j..(xjk+h j;(xjk+l))

f(xjk+s-—1> j:(xjk+s~1))
TG+ i TG+ 1)

J;(xjku—u f(xjku— 1))

tjs+l+v )

05~1,k~s Os—l,l
Ol,k—s ll
Ok—s,s—l kas Ok—-:,l_

FxGs s -1 HXGe 1 1-1))
f(xjk-fss ;(xjk+s))

y(xjk)
: +
f(xjku—l)
F(x s 9(x )
+ hD | -

j(xjk+l—1’ }N](xjk+l- 1))

v=s,.., k-1

=xp+ph=a+jsh+ph=1t,,, v=0..,s -1

which follow directly from the definition of basic and intermediate points we can

rewrite (22) in the form

.V(tjvu)

y(tjs+s~ 1)
i(tjers)

f(tjs+s+ l—l)
y(tjs+s+l)

| (tss1-14%)

f(tjs)

: +
y-'(tjsu—l)
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“f(tjx+b 9(tjs+t))
f(tjs+s—1s jj(tjs+s—1))
F(tjsess H(tj5+5)) f(tys 3(155))

: + hD|
f(tjs+s+l—1a y(tjs+s+l~l)) f(tjs+l— 1> f(tjsﬂa:)
f(’js+s+l’ f(tjs+s+l))

+ hC

>

_f(ljs+l+k—— 1 J~’(tJ‘S+I+"-1))~

which is exactly the equation (21) with n = js + | — 1. The theorem is proved.

34.2 Cases < |

Theorem 7. Let the overimplicit multistep method (21) with s < | be given and
let us construct (k + 1 — s)-stage GPOM method using | starting points with
m=s,u,=vforv=1..., 0l -1, y=v+sforv=1..,k+1—-s—1and
with B, = PB,, C, = PC,P™*, D, = PD,

_ Ok—s,l Ik—s . Ol—s,s Il—s
where P = [I, I B, = B )

_ Ol—s Ol—s,k _ Ol—s,l
C"‘[ok_,_sc ] D°‘[ p |

Then this method is equivalent to the given overimplicit multistep method.

Proof. The equation (8) can be written in more detail as
7,§(xj(k+1—s)+l)

j’(xj(k+ l«s))

V(X ks .
}’( jk+1—s)+k+1—s 1) = PB, +

5. ) E
y{ Dt s)) y(xj(k+l—-s)+l—l)
ﬁ..;’(x(j+1)(k+l—s)+1—l)__

_f(xj(k+ I=s)+1> j;(xj(k+ I—s)+l))

+ hPC,P~! f(xj(k+l—s)+k+l—s—1’.v(-xj(k+l—s)+k+l—s—1))
S G neri=ss I(XGs e i-s))

_.f(x(j+1)(k+l—s)+l—li ﬁ(x(j+1)(k+1—s)+l~ 1))

~f(xj(kﬂ—s)’ y(xj(k-kl—s)))
+ hPD, :

_f(xj(k+l~s)+l— 1 y(xj(k+l—-s)+l—1))
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or, after multiplication by P~ as

(23) [ F(x(+ s 1-9) 7]
(x4 1t 1-5)41-5-1)
F(XG+ pwsi-9+1-5) (X e+ 1-5))
: _ 5| : N
F0xenes -9 vi-1) Pt 1-5y41-1)

f(xj(k+1—s)+1)

_f(xj(k+1-s)+k+z~s— 1) a

—f_(x(jﬂ)(kﬂ—s)’ F(X+ ngr1-9)

f(x(j+1)(k+l—s)+l—s—1> j’:(x(j+1)(k+1As)+l~s—-1))
f(x(j+1)(k+1—s)+1—ss f(x(j+1)u.+z—s)+z—s

+ hCy | -

f(x(j+ Ik+1-s)+1—-1> ﬁ(x(j+ 1)(k+l—s)+l—1))

f(xj(k+l—s)+l5i(xj(k+l—s)+l))

_f(xj(k+l—s)+k+l—-s— 1> f(xj(k+z—s)+k+1—s— 1)) _

rf(xj(ﬂ 1-5)» f(xj(kﬂ—s)))
+ hDy |

_f(xj(k+l—s)+l—ls f(xj(k+t—s)+ 1—1))

By the definition of basic and intermediate points we get the following identities:

X+ 1)k+1-s) = @ + (.1 + 1) sh = Listsos

XG4 1)kt 1=s)+1-s—1 = Ljses + fi—s—1h = i + (l - S 1) h=tji-1,
X(j+1)(k+1-s)+1-s = Ljs4s T Pi-sh = tji + (l - S)h = ljs+1>

Xkt imsyi-1 = Lsas T M—gh = tious + (L= D) h = tjh 000y,
Xjk+i-sy+1 = @ + jsh + ph = t;; + (l + S)h = lises+1s

Xjott-syrktt-s—1 = Lig + Mer1os—1h = Tigpppioy
and
Xjk+1-5) = Ljss

Xjri-syts—1 = Ljs + Hs—1h = tjop 1,
Xjk+1-sy+s = Ljs T ush = Listss

Xjhti-syri-1 = Lis + p_th =t 4.
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Thus the first | — s equations in (23) are identities in virtue of the special form of the
matrices B, C, and D, and the last equations can be written in the form

,\N"(rjs+l) A}(tjs‘) f(tjx+l5 .f(tjs{-l))
(24) =B : + hC|
f(’js+k+1—1) ')7(tj5+1~1) f(tjs+t+k—1’ f(’js+1+k—1))
f(tjs’ j}(tjs))
+ hD| -

f‘(tjs—#l-l’ j;(tjs+l—*l))

which is exactly the equation (21) with n = js -+ [ — 1. The theorem is proved.

Let us note that Theorem 7 proves once more Theorem 2 since Dahlquist’s method
is obviously a special case of the overimplicit method.

4. CONVERGENCE AND RATE OF CONVERGENCE OF GPOM METHOD

Two features will play an essential role in the convergence proof: First, it must
be possible to make an error in one step of the method small in a convenient sense
and, secondly, the method must be stable in a suitable sense, since one deals with
multistep method. Before formulating the convergence theorems we must, first of
all, formulate the above mentioned concepts.

4.1 Order and Stability of GPOM Method

Let us first of all define the local truncation error. Let the GPOM method and
a function y € C! be given. The k-dimensional vector

"y(x + wh)
: y(x + poh
25) L) k) = | 0 F ) ThE B
(25) () ygx + (m + po) h) y(x + p-h)
Ly(x + (m + py-y) h) |
_yf(x + th)
) y;(x N yk_lh) N .Vf(x + ,Uoh)

yi(x + (m + po) h) y;(x T h)

Ly (x+(m+ pm_g)h |

will be called the local truncation error of the method.
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Remark 1. Putting

Wi = 4 for i=1,..,k—1;
=M+ WU_pti-y for i k"l'l-],...,k,

It

the local truncation error will assume the form

~y(x + wyh) V(x4 (Wi — m) h)ﬁ
06 Lot =| B[ _
| ¥(x + wyh) y(x + (w, — m)h

[v'(x + wh) V'(x + (We—ysq — m) h)
— hC| — hD| :

_y;(x + wh) Ly;(x + (w, — m) h)
which may be sometimes useful.

Supposing y(x) is sufficiently smooth we can expand any component of L in the
Taylor expansion. After rearranging the terms according to the powers of h we get

(27) Li{y(x); h) = (1 = 3 by) ¥(x) +

=1
1

i
I K
+ [w,- — Z bij(wk_,“- — m) Z Z a',-j] y'(x)h + ...
i=1 = i=

+ {:' [w} —jilbij(wk—li-j - m)] - (___l)' [Z i

+ 3 dif(Weeia g — m)""]} YO x) R +

j=

The reader will observe later in the convergence proof that the components of this
vector which correspond to the / values used as the initial values for the next step
of the method have a bigger influence on the total error than the com-
ponents of the error which correspond to the remaining k — I values computed in
one step of the method. It seems natural to define the order of the method as follows.
We say that the method has order p(p = 1) with respect to I if the following kp + [

equations are satisfied:
1

(28) Ybij=1 for i=1,...,k;

=1
1
(29) Bl-1+i — Z biju;_y =
j=1
-1 k .
B V[ZC”A#;‘:IIH + Z Cij(m + I‘l—k—1+j)v—! + Zdij.u;:}
J=1 j=k=1+1 =
for I=1,,k-—l, v:l"'_’p_l;
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1
(30) (Himk-g4i+m)" = Y by =
j=1

k=1 k 1

—.1 g — —_—

=v[ Y i+ Y cy(m A ooy ) T+ Y diygTy
Jj=1 Jj=k—1+1 Jj=1

for i=k—-1+1,..,k; v=1,...,p.

This definition can be, obviously, expressed in another way: the method has order p
with respect to !if —for any sufficiently smooth function y(x) — the first k — I com-
ponents of the local truncation error defined by (25) are of order h” and the remaining [
components are of order h?*1.

We say that the GPOM method is consistent with respect to [ if its order with
respect to [ is at least one, i.e., if it holds

1

(31) Ybj=1 for i=1,..,k,
=1
! 1 k 1
(32) (Himkmges +m) = Y bty = ¢+ ). dy;
ji=1 j=1 ji=1
for i=k—-1+1,...,k.
Introducing the I-dimensional vector g = (y, ..., ,u,_l)T we can write the con-
sistency with respect to [ in a more concise matrix form:
(33) BV = i®
(34) mi¥ — (E — I) p = R(Ci® + Di?")

where i), i® are [, k-dimensional vectors with all components equal to unities
respectively; and E = RB where R = (0, ,_,, I).

Before discussing sufficient conditions for convergence we must explain what is
meant by stability: The GPOM method is stable if there exists a constant I" such that

e <r
for any positive integer n.

Remark 2. Since there exists a regular matrix T such that T™'ET = J is in the
Jordan canonical form and since E" = TJ"T ™! the definition of the stability can be
expressed in a way that all eigenvalues 4; of E must satisfy the inequalities |/1i| <1
and the elementary divisors corresponding to those A; for which ]/1,-] = 1 must be
linear.

4.2 Sufficient Conditions for the Convergence of the GPOM Method

In this section we shall prove that the stability and the consistency are sufficient
conditions for the convergence of our method. Before formulating the corresponding
theorem we introduce the convergence concept and two important lemmas which
are easy to prove.
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Convergence of GPOM Method
The GPOM method will be said to be convergent if it ho!ds

lim §(xj) = y(x) for i=0,..,k—1.

h—0

X=X
Here y(x) is the exact solution of a differential equation of the form (1) with the right-
hand term satisfying the Lipschitz condition determined by the initial condition (1)
and j(x) is any solution of the corresponding equation (8) determined by the initial
conditions §(x,), u = 0, ..., — 1 satisfying

lim j(x,) =5 for p=0,..,1-1.
h=0
Lemma 1. Let V be any square matrix for which “ V” < 1 holds where [l : H is the

matrix norm induced by any vector norm. Then the matrices I + V and I —
-1+ V)"1 are regular and it holds

N e U SN B

(See [4].)
Lemma 2. Let ¢(v), y(v), x(v) be defined for v =0,...,n and let x(v) 2 0 for
v—1
v =0,..., n. Further, let $(v) < Y(v) + Y x(1) ¢(u) for v =0, ..., n. Then
pu=0

d(v) < ¥(v) +:§—:x(u) t//(u)s:I;I:I(l + x(s)) for v=20,..,n.
(See [5].)

Theorem 8. The GPOM method which is stable and consistent with respect to 1
is convergent.

Proof. The right-hand term of the given differential equation satisfies the Lipschitz
condition. Consequently, its solution y(x) has a continuous derivative and the k-
dimensional local truncation error vector expression has sense. Then subtracting it
from (8) and putting e, = j(x,) — ¥(x,), we get

(35) €ik+1 —ejk €jk+1
: =B| : + hC®, | +
€+ Dk+1-1 | €ik+1-1 €+ 1)k+1-1
e
+ hD®P) | : — L(y(xz); h)
€ik+1-1 |
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where

¢£S) — gr ]
[0 Ir+s—1

SCxr 70x0)) = £ (30 (%))

g, = for e 0,
e

and

=0 for e =0.

Note that the fact that f satisfies the Lipschitz condition implies [|®{”| < L. Putting
e, = [e;... €511 we can rewite (35) in the form

€ik+1 €jk+1
: — hCPY, | ¢ = Be;, + hD®)e; — L(y(x,); h).

€+ k+i-1 i+ 1)k+1-1

Thus we see that the error in the given step depends only on the components e,

s €jgyg—g Of the error in the preceding step. This could be expected since only the
components §(xj), ..., #(Xj+-,) of the vector §(z;_,) were used for the computa-
tion of the vector $(z;). On the basis of Lemma 1 and taking into account that
[®{”| < L we can assert that for h < hy < 1/(L|C|) the matrix (I — hC®, ) is
regular.

Consequently, premultiplying both sides of the last equation by the matrix
(I — hC®S$), )~ " which is denoted for simplicity by 4 we get

Cik+1
: = ABe; + hAD®\)e, — AL(y(x); h) .

€i+1)k+1-1

Since we are interested only in the behaviour of e; we premultiply, moreover,
both sides of this equation by the matrix

R = [01.k~1 Iz] .

ej+1 = RABe; + hRAD® Ve, — RAL(y(x,,); h)

We get

or, since E = RB,

1 = Ee; — R(I — A) Be; + hRAD®'Ve; — RAL(y(xy); h) .

jk©J
Let
(36) v; = —R(I — A4) Be; + hRADDe, — RAL(y(x;); h)
Then

ejv1 = Ee; +v; for j=01,...,
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which is equivalent to
j=1
(37) e; = FEe, + ) EI7' 7,

v=0

as can be easily shown by induction. Thus, to be able to estimate e; we must esti-
mate v,. The first step to achieve it will be an estimation of L.

Since the derivative of the exact solution of our differential equation is continuous.
we can define a function Q(x) such that

(38) Q) = max |y(x) = y'(x*)|
|x—x*| =4
x,x*e[a,b]

and it will be
lim Q(6) = 0.

00

Using this function we have

|y'(xsk + wih) — Y(xg)| £ Qwih), i=1,...k

and consequently, there exist constants @¢" such that

[@El)[ <1
and
y’(xsk + Wih) = y,(xsk) + Q(il) Q(th) .

Analogously, there exist constants @) such that

l@(iZ)[ § 1
and
Y'(xsk + pi—h) = yl(xsk) + 6(;‘2) Q(l‘i—lh)A

Further, the mean value theorem yields
Vxg + wih) = p(xg) + wihy'(xg + $Pw;h)  with |9£”| <1,
y(xsk + I‘i—1h) = y(xsk) + l‘i~1h}"(xsk + ggz)lli—lh) with |9(52)| s1.

Therefore, these last two equations and the definition of the function Q imply the
existence of numbers ¢ and ©(* such that

oP <1, lo| <1,
and
V(xg + wih) = y(xsk) + wih y'(xa) + wihO Q(Wih) s

V(%o + iz ih) = y(xa) + o ih ¥'(xg) + pio B0 Qu_yh) .
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Substituting the just obtained estimates into (26) we obtain
L{y(xa); ) = y(xg) + wih ¥'(x4) + w:hO Q(w;h) —

k
= h Y ey[y(xa) + O Qw;h)] —
=1

1
B .Z,b"!'[y(xsk) + b y(xa) + pi-1hOSY ;- )] —

I

1
h.zld"i[yl(xsk) + 05 Qu;-1h)] =
=

(1= 3 0) () + (91 = % s = L= £ o) hy'sa) +

+ w;hO» Q(w;h) —»th,,/t, 080 Qu;_h) —

—h Z ¢;;05" Q(w;h) — h Z d;;0 Qu;-(h) .
j:
Since our method is consistent with respect to [, the first two members in the right-

hand term are for i = k — I + 1, ..., k equal to zero. Thus, if we put

(39) M = max (jw] + Z [bistj | + Z Jeul + Z |44])

.....

and
y = max( max 'wl max l#, ,[)

..........

we get

(40) |Li(y(x4); h)| < kM Q(yh) for i=k —1+1,..,k; s=0,1,..

Let us now turn back to the estimation of v,. From Lemma 1 andforh < hy < l/)L[]C”)

we get
1 1 _ 1

Al =10 = e ) = e S = o fe] " T "

and
hijc| _  hL|C|

[T~ 4] = |1-(1-hCdP, )| 1—hL|C| ™ 1 - h L|C| = hob

where
1

s =Llc], ﬁzm-

Using the obvious identity
(I — hCDP, )™ =1+ hCDY, (I — hCBP, )™*
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or
A=1+ hC§D§k+,A
we can write

(41) RAL(y(x4); h) = RL(y(x4); h) + hRC®*,  \ AL(¥(x); h) .
Using the mean-value theorem we can write

(42)  Liy(xg); h) = (1 - i]bii) V(xg) + h[wy'(xg + 6 wih) —

1 k
= 2 bigi- ¥ (xg + 0P h) — Zlci}'yl(xsk + wih) —
Jj=1 j=
1
- Z]dijyl(xsk + - h)]
for i =1,...,k with [8{V] <1, |60 < 1

but the first term on the right hand side of this equation is equal to zero since the
method is consistent with respect to [ (cf. (5)). Consequently we get

(43) [L(y(xu); h)| £ hMY for i=1,....k
where M is given by (39) and Y = max Iy'(x)[.

In virtue of (40) and (43) the ex;i:;’;]ion (41) can be estimated as
(44) [RAL(y(xg4); h)| < hM Q(yh) + h*BSMY .
Substituting this estimate into (36) we get

[o,]| < ahlle,| + hM Q(yh) + h2BSMY
where
a = B3| B| + L| D).
Applying this estimate and the condition of stability we get

j—1
e;| < Iel + FJ ahlle,| + hM Q(yh) + h*BSMY] .
J =0

Using now Lemma 2 and the obvious identities

i ; (L + alh) — 1
14+alhy-t-v=4v "7 =
vgo( ) ((th)
and
it 1oy (M +alhy -1
v(l + alh)y 17> =+ =~ — -
vz=:0 ( ) (al'h)? alh
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we have
i
le,| < (1 + arhy Jeo] + (M) + w2psnry) IL"%J
o
Using the estimates
(1 + alhY < et
and
J_
(I +alhy —1 _
oalh

ol jh

we obtain finally
le;| < reream [Heo\l + M(Qvh) + hﬂ”)—;;(xjk - a)]

where m is the constant from the definition of basic points. This implies the con-
vergence immediately.

The error estimate can be discussed after presenting the following clear lemma
which can be proved by using Tayler expansion with the remainder in an integral
form similarly to that in [2] p. 132.

Lemma 3. Let the GPOM method of order p(p = 1) with respect to I be given
and let ye CP*'. Then

IL(y(x); h)|| = S, Y,h7,  [|RL(¥(x), h)|| < S,Y,h7*!

where

Y, = max ]y“”(x)| ; Y, = max Iy‘”+”(x)|
xe[a,b] xe[a,b]

and S, and S, are constants depending only on the parameters of the given method
and independent of h.
Now we can formulate a theorem giving the error estimate of the GPOM method.

Theorem 9. Let the solution y(x) of (1) have p + 1 continuous derivatives in
[a, b]. Further, let §(x) be the approximate solution computed by the GPOM
method of order p = 1 with respect to l. Then it holds

15(x;) = »(x)

< rezl(xJk-u)/m[:”j;(xo) _ y(xo)” + ;:_1 (Xjk — a) (SZYZ + (SBSI Yl) h"] .

IIA

Proof. The error e; satisfies again the equation (37). Using the assumptions of the
theorem and the lemma we can estimate v,:

[o,]| < ahle,|| + S,Y,h7*" + 6BS, Y he* !

Continuing in the same way as in the proof of Theorem 8 we get the final result.
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Remark 3. Theorem 9 shows that if the errors in the initial conditions are of
orders h” then the total error of the method under consideration is also of order h”.
Essperially, this interpretation of Theorem 9 is very important from the practical
point of view.

Remark 4. Defining the order of the method we formulate in fact the assumptions
on the behaviour of the local truncation error by putting stronger conditions only
on those components of it which are used as starting values for the next step of the
method. The assumptions concerning the remaining components might be weakened
due to the identity (41) since they are multiplied by h. A natural question arises
asking whether it is possible to continue this process. The answer is probably
affirmative since it is possible to write

(I — hCP)™' = I + hCD + h*(CD) + ... ¥ (CY ' +
+ W(C®Y (I — hCd)™" .

Consequently, it is sufficient to assume that
(45) RL = O(h**'), RC®L = O(h"), ..., R(CP) 'L = O(h*~""?),
R(CPY (I — hCP)™' L = O(h"~""")

to guarantee the global truncation error to be of order hP.

However, the development of algebraic relations for the parameters of the method
from (45) is extremely complex (very similar to that in Runge-Kutta formulae) and
so we have till now no definite results in this direction. We hope that we shall be able
to solve these problems in some further paper.
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Souhrn

ZOBECNENE PERIODICKE SILNE IMPLICITNi
MNOHOKROKOVE METODY

HAssaAN NASR AHMED IsMAIL

V ¢lanku se studuji metody pro feseni tloh s poc¢ateénimi podminkami pro obycej-
né diferencialni rovnice, jejichZ podstata spociva v tom, Ze v jednom kroku se pocitaji
priblizné hodnoty hledaného feseni v nékolika bodech definiéniho intervalu najednou
z jakési (obecné nelinearni) soustavy rovnic. Studovana téida metod je zformulovana
natolik obecné, Ze obsahuje vSechny b&in znamé tiidy metod (linearni k-krokové
metody, metody typu prediktor-korektor, explicitni i implicitni metody typu Runge-
-Kutta atd.). Jsou nalezeny postacujici podminky konvergence a podminky pro to,
aby dana metoda byla urcitého tadu.

Author’s address: Hassan Nasr Ahmed Imsail, Military Technical College, Cairo, EAR.
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