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SVAZEK 24 APLIKACE MATEMATIKY ¢isLO 4

ON THE NOMOGRAPHIC CHART OF THREE COMPLEX
VARIABLES IN THE LINE COORDINATES

Y AKICHI SHIMOKAWA

(Received June 30, 1977)

The methods of nomographing the functional relations among three complex
variables which satisfy Massau’s complex chart determinant: det (M5) = 0, have
been discussed [1], [2]. In this article, the author tries to investigate the methods
of nomographing them in the line coordinates.

1. LINE COORDINATES

If we represent a point P by (x;, X,, x;) in the homogeneous coordinates, the
straight line through the point P is represented by

(1) UgXy + UpXy + uzx; =0

and (uy, u,, uy are called the homogeneous coordinates of the straight line or the
line coordinates. If we put

(2) X1:X23X3:x;y;[,

the homogeneous coordinates (xl, X3, x3) of the point P are transformed into the
Cartesian rectangular coordinates (x, y). Moreover, if we put

(3) Uy iupiuy=¢in:—m,

the line coordinates (u, u,, us) are transformed into the Cartesian rectangular
coordinates (, ). By these transformations the point P in the Cartesian rectangular
coordinates (x, ) is represented by the straight line

(4) x$+yn=m
in the Cartesian rectangular coordinates (¢, 77), where m is an arbitrary constant.
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2. RELATIONS BETWEEN THE COORDINATES (x,y) AND (& )

If we represent a point Pj(xj, y;) in the Cartesian rectangular coordinates (x, y)
by the point Pj(z;) in the Gaussian complex plane, where z; = x; + iy;,i =/ — I,
the point Pj(z;) is transformed into the straight line p; in the Cartesian rectangular
coordinates (&, ) where
(5) pjix; &+ yn=m.

We represent the intersecting point ij(g’jk, n;) of the straight lines p; and p,
in the Cartesian rectangular coordinates (£, 7) by the point P;(z;) in the Gaussian
complex plane where

(6) Py =Py, zp=72y, Zip=Cp+iny, j*k, iz\/"—l.

From the relations:

(7) Zjk = éjk + i’Ijk s -xjéjk + Yl = m, Xkéjk + Villjpy = m
we have

. omye—y)) _om(x; — Xxy)

Cjk = T, My = o

XV — Xi¥j XiVe — X'
Therefore,
(8) oomly =y + im(x; — x;) _ im(x; — x, — iy, + 1y;) im(z; — z;)
Zp= oY e N AP o S A
XY — Xkl XYk — XiVj XYk — X

¥k i=y-1.
We have the following relation:

(9) < ijOPlj = arg <I\) = arg <”’n.(21-2j) . X-’yk_ :’Skyj) =
Jk Xy = Xy im(z; = z)

— arg (5;5; . ’Fkl'.i;lf:&’!«) ~ arg (ﬁ,“ Zz) + arg (xk)’j—xj,vk)’
I T Zp Xibjp T X Ik T I XpYj — Xih
JFEk kFL1F].

Similarly, a point Q(w,) in the Gaussian complex plane is transformed into the
straight line ¢; and the intersecting point Q;, of the straight lines g; and g, is re-
presented by the point Q,(w;,) in the Gaussian complex plane, where

[

t

(10) wp =+ vy, Quo= Qs Wi =Wy, k*j.
Moreover, we have the relation

(1) 0,00, = arg <W> ~ arg (!‘Lilﬂz) t arg <"kvfi “J:vk>,

Wk W — W uw; — ujv,

JEk kELT+j.
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If we have the relation

(12) APP,P3 00 40,0,0;5,
namely,
(13) ;31 Z2 33:
fwi wy, wy | =0,
o1

we have the relation:

(14) arg <~;1:_Ez> _ arg (W_f_,—_wj> ,
Zy — Zj Wi — W;

k=123 j+k k+11+].

Therefore,
(15) 4 PuOP,; — 4 0,00, = arg (mu - w) ~ arg (uk,%__:.ffgze)
Xy — Xy Uv; — u;v,
As the values of
(:“k—"fi:?‘i).’k) and (ukvf;,w>
lej — xj.Vl ll,Uj - ujv,

are real, their arguments are zero or 7.

Therefore,
(16) < ijOPlj = < ijOQlj , £ ijOPlj = < ijOQlj + 7,
or

< ijoplj = < ijlej - T.

If we superpose the vector OP;, on the vector OQ , the vector OP,; and the vector
OQ,; are collinear and the point P,; is the intersecting point of p, and p; while the
point Q,; is the intersecting point of ¢, and g;. If one of the values z,, z, and z;
is zero, for example, z; = 0, p, is the straight line through the point at infinity. The
point Py,(z,,) is the point at infinity on p, and the point Py(z5,) is the point at
infinity on p;. If we draw the straight lines p3 and pj through the origin which are
parallel to the straight lines p, and p;, respectively, we have the following relations:

(17) < P,,0P,; = the intersecting angle of p, and OP,; ,
< P5,0P,, = the intersecting angle of p, and OP,; ,

<4 P,,0P,, = the intersecting angle of p5 and pj .
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3. REPRESENTATION OF AN ANALYTIC FUNCTION IN THE LINE

COORDINATES
If w = f(z) is an analytic function of z = x + iy, we have the relation:
(18) w=f(z) = u(x,y) +iv(x,y), i=y—-1.

The point P(u, v) which is represented by w = f(z) in the Gaussian complex plane,
is shown by the intersection of the curvilinear nets

u=u(x,y) and v=v(x,y).

The point P(u, u) in the coordinates (u, v) is transformed into the straight line p
in the coordinates (&, n),

(19) pru(x, y) &+ o(x, y)n =m.

If y is constant, we have the following envelope of the straight lines p having the
parameter x and index y:

(20) F(x,&n) = u(x,y) & + v(x,y)n —m =0,

OF _ du(x, y)‘f 4 oo(x, y) "
ox 0x dx

=0.

Solving these expressions with respect to ¢ and y, we have

m v(x, y) ]
o 2x: )| m 205 9)
. | ox | 0x
2 - - B
( 1) S ‘ u(x, y) v(x, y) u(x, y) QU(EL) B v(x, y) (314()6, y)
ilau(x’ ») QI’(_X’_&)! 0x 0x
| 0x ox \
’\ u(x, y) m)
ouxy) o T IC))
| ox ] 3 d0x
u(x,y) v(x,y) u(x, )0u(x y) ox, ) 6u(x y)
Lou(x ,y) cjg(i,_)& : ox
| Ox ox |

) 202 oz, ) 22),
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If x is constant, we have the following envelope having the parameter y and index x:

m _O_v(_x,l)
oy

(22) PRI ™ P S
oux, X,
afx, ) D) ) 24 2)
ay dy
o ou(x, y)
e
av(x, Jdu(x,
u(x y) (———y—) — u(X, y) __( _}i)
dy dy
av(x, y ou(x,
M(X, y) L(;xfl) :*: U(X, y) l(:x;_'}i) .
ay oy

Therefore, if the values of x and y are given, the straight line p is the common
tangent of the envelopes (21) and (22) (See Fig. 1).

x

/

iv in

R\

fy

0 u 0 NoE

Fig. 1.

4. COMPLEX CHARTS OF THREE VARIABLES

If a given functional relation of three complex variables F(zy, z,, z3) = 0 is
represented by Massau’s complex chart determinant of the third order or complex
nomographic function:

(23) fi(z1) fa(z2) fo(23) ‘I
det (MS) = gl(lzl) 92(22) 93 23)1 =0,

equation (23) is called a key equation or a type equation for the three complex
variable charts. We put

(24) w; = filz;) = fi{x; +iyy) = ufxp ;) +ivdxy y))
wi = g,(z;) = g,(x; + iy;) = uj(x;, y;) + 0] (x5, v;) s
i=1,23i=-1.
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From (23), we have the relation

(25) | Wy Wy W3
w’{ wy wii=0,
Lo

|

and from (25), we have the relation

(26) AP P,P; 0 40,0,0;,

where vertices P; and Q; are represented by w; and w} in the Gaussian complex
plane and they are shown by the intersections of curves of the curvilinear nets u; =
= uj(x;, y;) v; = v{x;.y;) and uF = uf(x;, y;), v = vi(x;. y;), respectively. By
(21) and (22), the point P; (j = 1, 2, 3) is transformed into the straight line p; in the
line coordinates (¢, ), and p; is the common tangent of the respective curve in
a family of curves which have index y; and parameter x; and the respective curve
in a family of curves which have index x; and parameter y;. Similarly, the point Q;
(j = 1,2, 3)is transformed into the straight line q;, where g; is the common tangent
of the respective curve in a family of curves which have index y; and parameter x;
and the respective curve in a family of curves which have index x; and parameter y;.
The points P;, and Q;, are the intersecting points of p;. p, and 4, qy, respectively,
where Py, = Py, Q= O jo k= 1,2,3,j + k.

5. METHOD OF SOLUTION

If a given functional relation F(zy, z,, z3) = O is represented by the expression
(23), we have a pair of figures, namely, the first partial chart where the family of
curves has a common tangent p,; and the second partial chart where the family of
curves has a common tangent ¢; (j = 1, 2, 3). If the values z; and z, are known, we

in

The first partial chart. The second partial chart.

246



superpose the vector OQ,, on the vector OP,,, cf. Section 2, the vectors OQ,3;,
OP,; and the vectors OQ;, OP;, are collinear, respectively, and the points P,3,
P4, and Q,3, Q5 lie on the straight lines p; and g3, respectively.

Therefore, if we seek for the straight lines p; and g3 which satisfy the above con-
ditions and are the common tangents of curves having the same indices x; and )3,
the value =3 = x; + iy, is the required third quantity (See Fig. 2).

6. AFFINE TRANSFORMATION OF THE COMPLEX CHART

We multiply the given complex chart matrix M5 from the left by a matrix A, where

(27) %iall aqa a““
A=lay ay ap;| , det(A)+0,
!;0 0 1 ‘

and every element a;; is a complex number.
Then

(28) AMS = ‘I ayy app agy | Si(z1) faz2) filzs)
[ dyy dyy Ay 191(31) 92(z2) 93 i
o0 1 1 |

—_
[}

w

~

= ‘ ay fi(zy) + aa94(zy) + ays ayy faz) + ay5 92(25) + ay;

‘721f1(21) + ds; 91(31) + ass ‘721f2(32) + as; gz(zz) + daszy
I 1 1

an fi(z3) + @iz g3(z3) + ays | = M5
. |
ay f3(z3) + az; 93(53) T dys
! i
The matrices A and M are called the complex affine transformation matrix and
the transformed complex chart matrix, respectively.

When det (M5) = 0, we have det (M5) = 0 and vice versa. By an adequate affine
transformation, we have other new charts which are convenient to use.

7. SOME TYPE EQUATIONS

1. Type equation

fi(z0) + o(z) _ filz) + £(z)
(29) 91(z1) + 92(z2)  94(z1) + 93(z3)
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The corresponding chart matrix is

(30) | —afizi) afizs) afszs)
! -b 91(21) b 92(22) b 93(23)
A R
where a and b are the chart factors, and the skeleton of the corresponding complex
chart is similar as in Fig. 2. If we put f(z;) = z, g,(z;) = z; (j = 1,2,3) in the
expression (29), we have the relation:

5

(31) Zy + 23 zy+ z3

22422 224z
As a practical example, we put a =4, b = 1 and m = 240 in the rectangular
section paper of 1000 x 700 mm and obtained nomographically z, = 3.70 + 2-86i
or zy = —2-10 — 4-86i for the exact solution z; = 3-7016 + 2-8599i or z, =
= —2-1016 — 4-8599i, respectively, when the given values are z, = —3-2 + 2-2i
and z3 = 48 — 42i,i =/ — 1.

2. Type equation

1 + 1 _ 1 )
f1(21) fz(zz) fa(zs)

The corresponding chart matrix is

(32)

(33) "afl(zl) afz(zz) af3(23)l >
bf12(z1) bfzz(zz) 0 ‘!
1 1 1 |

and the skeleton of the chart is shown in Fig. 3.

Nt N Yy
in n
\ ¢ 9y
23 \
\‘\k *2 %, \’E B
T e 92
N N =3
— )
3 § x aj
iy e o
3
P, f
0 o \} vi6 ~ \ €
8 P'xa a3
~L
4
Fig. 3.
The first partial chart. The second partial chart.
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If we put fi(z;) = z; (j = 1, 2, 3) in the expression (32), we have the relation:

, S
(34) ===

Z; Z2 23
As a practical example, we put a =4, b =1 and m = 60 in the rectangular
section paper of 1000 x 700 mm and obtained nomographically z; = 0-83 + 0-91i

for the exact solution z; = 0-8255 + 0-9088i when the given values are z, = 14 +
+2liand z, = 1.8 + 1'5i, i = / — 1.
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Souhrn

O KONSTRUKCI NOMOGRAMU S TREMI KOMPLEXNI{MI
PROMENNYMI POMOCI PRIMKOVYCH SOURADNIC

Y AKICHI SHIMOKAWA

V ¢lanku se pojednava o nomografickém zobrazeni vztahu mezi tfemi komplexnimi
proménnymi, jestliZe tento vztah lze zapsat ve tvaru determinantu

Tf1(21), f2(22), f5(z3)

gl(zl), g2(22)3 93(23)‘ =0.
1 1 1 l

Soustavy kfivek, tvoficich nomogram, jsou obalky soustav pfimek, a proto se
v ¢lanku s vyhodou pouziva aparatu pfimkovych soufadnic. Nomogram ma charak-
ter dotykového nomogramu.
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