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A NOTE ON STATES OF VON NEUMANN ALGEBRAS 

A. B. THAHEEM 

(Received April 22, 1977) 

1. INTRODUCTION 

In this note we essentially prove that on a von Neumann algebra (possibly of 
uncountable cardinality) there exists a family of states having mutually orthogonal 
supports (projections) converging to the identity operator. The projections thus 
obtained yield a direct sum decomposition of the von Neumann algebra into sub-
algebras which can be very useful in the quantum field theory. 

Here M denotes a von Neumann algebra acting on the Hilbert space H. Let $ 
be a positive linear functional on M such that | |0j| = 1; then (j) is called a state on M. 
If p is the greatest of all projections q such that (j)(q) = 0 then the projection 1 — p 
is called the support of (j) (see for example [1; p. 31]). 

I am grateful to Professor A. Van Daele for many useful discussions. 

2. THE MAIN RESULTS 

Theorem. Let M be a von Neumann algebra. Then there exists a family 
{(j)a:aeQ} of normal states whose supports ea are mutually orthogonal and 

;>>. = -• 

Proof. Let J be a collection of all families {\jja: a e 0} where \j/a are normal states 
whose supports are mutually orthogonal. J can be ordered by inclusion. Let J0 be 
a chain in J. Put 

A = U P-

Then every element in A is an element of some fi in J0 and therefore it is a normal 
state on M. Let ij/l and i/>2 be two distinct elements in A. Then there exist pt and fi2 

such that i/>! e p{ and ij/2 e fi2. Since J0 is a chain, hence either fix .= /?2 or /?2 £ f$x. 

In the first case ij/l91/>2 e P2 and hence \j/l and \j/2 have mutually orthogonal supports. 
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Similarly if /32 £ Pi- It follows that A is a family of normal states with mutually 
orthogonal supports. Therefore A e J and A is an upper bound for J0. Hence using 
Zorn's lemma we obtain a family {(j)a: a e Q) as a maximal element in J with mutually 
orthogonal supports ea. Put 

e = £>« 
aєß 

The sum is well-defined because ea are mutually orthogonal. If e 4= 1 then choose 
a vector £ =# 0 in the Hilbert space H such that (1 — e) £ = £ or in other words, 
£ e (1 — e) H. Put (j)(x) = <x£, £>, x e M. Then </> is a normal state on M. As 0(e) = 
= <ec, c> = 0, the support of (p is orthogonal to e and hence to all ea. Thus 
{<fia: a e Q} U {(j)} is again in J. This contradicts the maximality and so e = 1. 
This completes the proof of the theorem. 
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S o u h r n 

POZNÁMKA O STAVECH NA VON NEUMANNOVÝCH 
ALGEBRÁCH 

A. B. THAHEEM 

Nechť M je von Neumannova algebra na Hilbertově prostoru H. Kladný lineární 
funkcionál f) na M se nazývá stav na M, je-li ||</>| = 1. Je-li p největší z projekcí q 
takových, že (j)(q) = 0, pak projekce 1 — p se nazývá nosič </>. 

Věta. Nechť M je von Neumannova algebra. Pak existuje množina {<fia:aeQ} 
normálních stavů, jejichž nosiče jsou navzájem ortogonální a platí^ e = 1. 

aeQ 
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