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SVAZEK 24 (1979) APLIKACE MATEMATIKY &isLo 3

ON GENERALIZED METHODS OF THE TRANSFER
OF CONDITIONS

LUBOR MALINA

(Received May 5, 1977)

In [2] we have suggested a possible general approach to direct methods for solution
of systems with band matrices. In the present paper we shall further develop Al-
gorithm J1 (in the notation of [2]). Namely, we define Algorithm J 4 which in-
cludes not only Algorithm 1 but also methods leading to diagonalization of the
matrix of the system, such as for example the process of Gauss-Jordan elimination.
As we have promised in [2], we also slightly touch the question of numerical stability
for the present algorithms. Eventually we shall briefly discuss the concept of “‘well
conditioned” systems (cf. [1]) in Part 3. In the last part we show how one could
obtain concrete methods from the general Algorithm 4, namely the Gauss-Jordan
elimination and the even-odd reduction closely connected with the fast Fourrier
technique.

1. PRELIMINARIES
In this part we quote briefly some concepts and results from [2]. Consider the
problem of solving a system
(1.1) Gy =b
where G = (g;;) is a square band matrix of order N whose bandwidth is 2p + 1,
vectors b = [by,...,by]" and y = [y, ..., yy]7 are N-dimensional. We choose
a parameter j, je€{0,1,...,2p — 1} supposing J = (N — 2p)/(2p — j) to be an

integer. At the end of the second part we show the changes which occur in the case
that this hypothesis is not fulfilled. Let us denote

(1.2) XD = [yrsgs oo Vivgp)” for i=1(1)J + 1,

where I = (2p — j) (i — 1). If it is clear from the context which value of j has been
chosen we shall simply write x;. From (1.2) it follows that we divided the vector y
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of unknowns into subvectors x; in such a way that the last j elements of a vector x;
repeat as the first j elements of a vector x;,,. In an analogous way we divide the
vector b into 2p-dimensional vectors f;,

(1'3) fi= [b1+p+1""’ bl+p+2p—ja 03"'90]T7

and the matrix G so that the (I + p + 1)-st equation up to the (I + p + 2p — j)-th
equation of the system (1.1) can be written in a matrix form

Ax; + Bx;,, = f;

where both the matrices A; and B; are square matrices of order 2p. The first and the
last p equations of the system (1.1) will be called the left and the right boundary
condition, re.pectively. We write them in a matrix form

Apx; =fo and Ay ix550="fy,

where both the matrices A, and A, , have p rows and 2p columns (they are p x 2p
matrices). Thus the system (1.1) can be written in an equivalent form

(1.4) Ax;, + Bx;y, =f;,
(1.5) Aox; =fo and Ay x5, =f,.

Notation. A matrix M with i rows and j columns will be said to be an i x j
matrix. The symbol O; ; denotes the i x j null matrix while I; denotes the identity
matrix of order j. Rank M denotes the rank of the matrix M.

The set M = {1, ..., J + 1} is divided into four disjoint parts M, M,, M5, N,
where

M, = {ie M| both A, and B, are regular, or i = 1,i = J + 1},
M, = {ie M| A, is singular, B, is regular} ,
My = {ieM l A, is regular, B, is singular} ,
My = {ieM | both A; and B; are singular} .

The equation (1.4) can be rewritten into an equivalent form:
forie M, U M,,

(1'6) A xi+ [Bi,l]xi+l = [fm]
Ou..2p Bi., fi2
where rank A; = 2p — n; and rank A, , is equal to the number of its rows;
forie M, U M,

(1'7) Al x; + [om1,2p] Xy = [lfi]
2A; 2B of;

where rank B; = 2p — m; and rank ,B; is equal to the number of its rows.
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We need also the following lemma.

Lemma. Let C| be an a, x n matrix, rank C; = h,, let C, be an a, x n matrix,
rank C, = h, and let rank C; = h; where

C,=[cl,c.
Then there are matrices S; and S, such that
(]) slcl = SZCZ’
(2) rank $,C,; < hy + h, — h; and there is a pair of S and S, such that rank
S,C, = hy + h, — h;.

Algorithm J71.
(a) Transfer from the left to the right:

for ie M, U M,
(1.8) D, =A,, d,=f,,

D;,, =2ZDH;, d,, = Zi(_di + Dihi)

where H; = A;'B,and h; = A; 'f, and Z, always stands for a regular matrix of such
order that the multiplication is well defined.

For ie M, u M,,
(1‘9) D, =2 [SzBm] and diy = Z;|Sof;y — Sldi]
Bi,2 fi,2
where the matrices $; and S, are such that S,A; ; = §,D,.

(b) Tranfer from the right to the left:

For i e M; U My, the matrix R; is an arbitrary matrix such that [ D], RT]" is a regular,
square matrix of order 2p,

(1.10) r,= R,.<h,. - H,-[D,-H]“ [dm]).
R4 Fivy

Fori=J + 1,
(1.11) Fjo1 = RJ+1[DJ+1 —1[d1+1:|-
Ay fri1
For ieM,,
(1'12) R; = wiRH—lBi_lAi and r; = Wi(_"i+1 + Ri+iBi_]fl')'
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For i e My,

(1.13) Ri[s(” ZAE:‘ and r; = [S(” ofi — 5(2)’i+ 1]

lA 1fi

i
where
1 2
s¢ )ZBi = § )Ri+1 .

Vectors x; for i = 1(1) J + 1 are defined as solutions of systems

(1.14) Qix =gq; for i=11)J+1

where
Q,’ = Di and qi = di .
R; r;

It is proved (cf. Theorem 2.1 from [2]) that every solution {x;}/, of the system

i=1
(1.4)—(L.5), i.e., of the system (1.1) consists of solutions of the systems (1.14) and
vice versa.

2. ALGORITHM 74
The idea leading to the Algorithm 74 is the following one. As soon as we have
computed the matrix D; and the vector d; such that
Dix; =d,,

we consider the vector x;, ; to be known and perform a transfer to the left. Thus the
vectors r, for n < i depend on x;,; and they are written in the form of a sum of
a vector and a matrix multiplied by the vector x; ;.

Let integers {i,}x-, be given,
(2.1) 0=iy <ij..<iy_y<igxg=J+1.
Denote
Io={i.s +1,..,0) for k=1(1)K.
Algorithm J 4.
For every k e {1, ..., K} define

(ay) the k-th transfer to the right:

The matrix D; and the vector d; for iel, n (M, U 9M,) and for i eI, N (M, U M)
are given by (1.8) and (1.9), respectively.

(by) the k-th transfer to the left:

The vector r; is of the form

(2'2) ri=Ux, . +U
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where for iel, n (M, U 9323) the matrix R; is an arbitrary matrix such that the
matrix Q; = [D], R]" is regular,

(2~3) u; = Ri(hi - HiQi_+11qi+1,k)

and

(2~4) U, = _RiHiQi_+11 on,zp for i < i,
5]

where n is equal to the number of rows of the matrix D;, ; and

Qiv1 = [Di+ 1:| s Qivi e = [diﬂ] .
Riiq Uiy

The ““initial condition” u; and U; for i = i, is

(2'5) A u; = Rh;,
U, = —RH,;.

For iel, n M, and i < i, the matrix R, is given by (1.12) and
(2‘6) u; = wi(_ui+1 + RH—lBi_lfi) , U =-WU.,,
under the notation from Part 1.
Foriel, n M, and i < i, the matrix R, is given by (1.13) and
(2-7) u; = [SY,fi — SPu; ], U =[SPU,,
1fi o
under the notation from Part 1; m is equal to the dimension of the vector ,f;.

As for the “initial conditions”, if i, € M, U M, and rank [D], AT]" = 2p for
i = i, then there is a matrix A; ; (submatrix of A;) such that the matrix

D; for i=i,
Ais

is regular. Denoting by B; 5 and f; 5 the matrix and the vector which result from B,
and f;, respectively, in the same way as the matrix A; ; from A, i.e., by crossing out
some rows of the matrix A; to obtain the regular matrix [D], AT ;]7, we define

(2.8) u; =D, ]*1 d,.] and U, = —[D; ]—lsm
Ai,3 fi,s Ai,3

for i = i,.
When

m,2p

rank [D], AT]" <2p for i=i,
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we choose an arbitrary matrix C and a vector ¢ such that
x;=0Cxy +
for arbitrary x; and x;, for which the foilowing identity holds:

Ax,+Bx;., =f for i=i,.
We set in this case

(2.9) u,=Rc and U;=R,C for i=i,,

where R; in both cases is a matrix such that the matrix [D], RT]" is regular.
For i, = J + 1 we set

u;,,=r;,,; and U;,, =0,
Denoting

(2.10) g, =]di|, Qx=[01], Qi=|Di| for iel,
u; U, R;

we define vectors x; for i € I to be solutions of the systems
(2.11) Qix; = qiy + QiuXyvy -

We compute x;,_,+; from the system (2.11) for i = i,_; + 1 and put it into the
systems (2.11) for all i < i_;.

Hence for i = 1(1) ix—, we have the systems (from the (k — 1)-st transfer)
(2-12) Qix; = Qg + Qs 1Xi_ 41
and by (2.11)
Qix = qis—y + Qui—1Q; (954 + QyaXips1)

where j stands for i,_; + 1. Denoting

(2.13) 9Qix = Qix-1 + Qi,k—le_lqj,k
and
(2.14) Qix= Qi,k—le_in,k for i<i,_y,

the system can be written also in the form of the systems (2.11). Thus after the k-th

transfer from the left to the right and vice versa we have for the vectors x; and i < i
the systems

(2.15)

d:X; = Qi+ QiuXiq -
Finally, we come to the systems

(2.16) Qix; = q; -
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Theorem 2.1. Every solution {x,}{ of the system (1.4)—(1.5) is composed of
solutions of the systems (2.16) and vice versa. The system (1.4)—(1.5) has a unique
solution iff the systems (2.16) have unique solutions.

The proof of the theorem repeats almost literally the proof of the analogous
theorem from [2] (Theorem 2.1); therefore we omit it.

Remark 1. Algorithm T4 is of the Gauss-Jordan elimination form. However,
there is an another possibility. After the “k-th transfer” we need not compute the
vector x;, . and put it into all systems (2.12) for i < i,_; but can go through to
the “(k + 1)-st transfer” immediately. Thus we can obtain eventually a system
equivalent to the system (1.1) but possibly with a smaller number of unknowns
(such are the even-odd reduction like methods). This algorithm will be referred to
as Algorithm 5.

Up to now, both in the present paper and in [2] we have supposed
(N — 2p)/(2p — j) to be an integer. Let the parameter j be chosen such that

u =J -+ n

2p—j 2p—j
where J is an integer and n < 2p — j is an integer as well. Definition (1.2) of vectors
x; is not changed for i = 1(1) J. However, the vector x,, , is defined as the last 2p
elements of the vector y. Thus the vector x, , , repeats the last 2p — n elements of the
vector x; as its first 2p — n elements. Hence we must change the definition of the
matrices A; and B, and of the vector f; in the following way:

A= ’—gN—p-n,N-—Zp-—Z’ ce IN-p-nN-2p—1 ,
On,Zp—n
LINepmaN-2p-1
| oZp—n,n l2p—n
BJ = rgN—p—n,N—Zp’ RS gN—p—-n,N—n—l’ 0, ey 0
IN-pziNz2p cco  9N-p-1N-1
_’2p—n 02p-»n n

and
fJ = [yN—p~vn’ sy yN~p—1’ 0’ LT 0]T

is a 2p-dimensional vector. Nothing else is changed, not even the definition of the
Algorithms I°1, 73, 74 and 5. All theorems proved till now hold also in this case.

3. NUMERICAL STABILITY

For the sake of brevity we suppose both the matrices A; and B; to be regular for
all i e M. It is only a technical matter to extend the results also to the case when this
is not fulfilled using ideas analogous to that of [4]. Only the transfer from the left
to the right will be discussed because the backward transfer is analogous.
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Let the matrix D;, ; be computed by (1.8). Due to the round-off and other errors
the equation

Di,, - ZDH; =0,

where Dy, Z;, H; are computed numerically, is not exactly fulfilled.

Definition 3.1. The difference
4; = Di+1 - ZDH,,

where D is given exactly, is called the error of the numerical realization (of the
method of Algorithm J°1, given by a choice of the matrices Z;).

One of the methods how to assess quantitatively the influence of such an error on
exact solution of the system (1.1) is to replace both the matrix G and the vector b
by a “perturbed” matrix G + 6G and a “perturbed” vector b + &b, respectively
and to choose these perturbation so that the “numerical”, inaccurate solution of the
system (1.1) is the exact solution of the system with these perturbed data obtained
by an exact method of the transfer of conditions. Thus we can assume

(3.1) D,,,=DH,;+ VD, + 8"

(32) diyy = —d;+ Dby + Vidiyy + 6;,diy + 8
where V; = I — Z;'. This equation can be rewritten as

(3.3) D,y =DH;+ (Vi+8;,;)Disy + 8V — 6, Dy,
(34 di,y = —d;+ Dh; + (Vi + 6,,)d;y + 67

Without loss of generality we can suppose the rank D; to be equal to the number
of its rows. Thus the matrix D;D7 is regular. Let us denote

(3‘5) 0,0 = DT(D-'DD“I (521) - 5-‘,1Di+1) P
. (36) 6,5 = D](D;D])~* 6.
Then
D;., =DyH,; + 5i,2) + (Vi + 5:’,1) Dy,

d,, = —d, + Di(hi + 5:‘,3) + (Vi +6;1)diyy .

Theorem 3.1. Let the system (1.1) have a solution, let both the matrices A; and
B; be regular for i = 1(1) J, and let the errors of numerical realization be of the
form (3.1)—-(3.2). Then these errors can be regarded as perturbations of the initial
data, i.e., of the matrix G and the vector b, and of the method of the transfer of
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conditions, i.e., of the matrices Z;. Moreover, denoting by || the usual Euclidean
norm of a matrix and by ||, the spectral norm, we have the following estimates:

19:.2]0 = \/ <Iﬂl° + 115,-,1[[0) <

[D4]lo -

max

mln

I/lmax ”5(1)” l
[ (lDH \/n)’
[6: 3]0 é\/ ::‘ “r:)]/LO < \/() :l“ ””5:)“ ’

where n = rank D;DT, A and A, stand for the maximal and minimal eigenvalues
of the matrix DD, respectively.

Proof. It is sufficient to prove only the estimates.
The equation (3.5)—(3.6) imply

[9:..] = [DFDDY) ™! (|87] + [8:,1D:4]))
[6:a] = |PI(DLT) | [57] -

G N

”DIDTHO é \/Iimaxl .
This two inequalities together with

|D:DI]o = V() |D:DT|

But

and

complete the proof.

Theorem 3.1 displays the important role of matrices D; and DT(D;DT)™! for the
numerical stability of the method of the transfer of conditions. We can expect that
or “large” systems (1.1) such methods of the transfer of conditions will be “good”
for which both the norms |D;| and |D](D,;D]) | less than one at least for “suf-
ficiently great’ values of i.

In the book [1], the following concept of well conditioned systems is discussed.

Definition 3.2. The system (1.1) with gy, = ... = g1, = Gy n-p = .. = Gy N1 =
= 0 is said to be well conditioned if the norm of the solution is bounded indepen-
dently of N.

Although this type of numerical stability is appropriate for invariant imbedding
like methods, for great values of N and methods of the transfer of conditions we
have to discuss also this stability. Consider a tridiagonal matrix G and denote

Jii-1 = Ci», Gii = a4 and Jijg+1 = Wy
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We choose j = 1, hence J = N — 2 and

x;=[yoyied" for i=1(1)J+1,

A =1¢; 0|, B;=[a, w; |, fi=|bi],
01 -10 0
a; w; b;
Hi=Ailei=‘ -1, hi:Ai“fiz N
¢, ¢ c;
-10 0
Thus the equations (1.8) imply
a; w;
(3-7) Diyy1=2; (Di,l - - Di,2> and Dy, = ZiDi,l —>
¢; c;
b;
(3.8) di+1 = Zi _di + Di,l _—
Ci

and D, ; =1, D, , =0, dy =b;,D; = [Di,u Di,2]~
It is shown (cf. [2]) that choosing

7. = R

b
a;—¢;Di,

for every i such that the denominator is nonzero, the equations (3.7)—(3.8) are the
equations of one step of Gaussian elimination. In particular,

D =1.

Thus
L+ Dy

Ii(eon | = [

and this is less than one for 'Di,zl > 1 and less than or equal to two for ’Di,zl < 1.
. In each case this norm is bounded by a constant independently of i. We show that
a necessary condition for the system (1.1) to be well conditioned is

(3:9) [Dis] <1.

Consider special vectors b, namely b = e; where all elements of the vector e;
equal zero except for the i-th element which is equal to one. Denote by y(” the solu-
tion of the system (1.1) for this right hand side. Then any solution of the system (1.1)
can be written in the form

N
y =2 by".
i=1
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Equations (3.7)—(3.8) for b = ey_, imply

_ _y D;
(3.10) YD =y Dia
Di,l
fori <N — 1and
1

di= —--
a; — ¢;m;
for i = N, where m; stands for D; ,/D; ;.

The first thing we should like to mention is that the necessary condition for the
system to be well conditioned does not depend on the matrices Z,, i.e., on the method
as the equation (3.10) implies. (The quantities m; do not depend on Z;). Thus we can
restrict ourselves to the Gaussian elimination. Also the equation (3.10) implies that
the condition (3.9) is really necessary because if it is not fulfilled then y{"~ " is not
bounded independently of i < N — 1.

It is not difficult to show that a sufficient condition to guarantee validity of (3.9) is
led + [wi = |a
and
Jeil < [wi

for sufficiently great i. In this case also |Zi| < 1.

If

lai] + [Dia [ei] < [wi

where ID“] > 1 then also ]D,-H,zl > 1, and the system (1.1) is not well conditioned.
Such systems exist as is shown in [3] Hence we can conjecture that for some types

of the matrix G there is hardly any possibility to construct direct methods which can
compensate “ill conditioned” features of the system.

4. SOME EXAMPLES

In this last we show that the process of Gauss-Jordan elimination is a method of
Algorithm 4. For the sake of brevity we consider a tridiagonal matrix G which is
symmetric and positive definite. Let us denote

gii=a; for i=11)N
and
Giiv1 = Giv1,i=¢; for i= ()N - 1.
We choose the parameter j to be j = 1 and i, = k for k = ()N — 1, ie., K =
=N — 1and
X;=[yuyis )" for i=11)N—-1.
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Then

iy € b,

H,=|-21 221 and p, = [,
¢ ¢ I
-1 0 0

the matrices Z; are chosen such that

D, =¢
where D; = [D; 4, D; »], i.e.,
C:
Zi=—“"' > Zi= Zi,
D [z]
and
C? di

Diyy1=ai4, — s diyy = bip1 — ¢ —

Di,l i1
and under our assumptions it is easy to prove that D; ; & 0. Then the matrices R; are
R, =[0,1].
Because I, = {k}, (2.5) implies
u,=0 and U, =[1,0].
Hence according to (2.10)

9 =|di| and Qe =100
0 10

while
Q= [Dk,l c,‘].
0 1
Thus
1 & 0
(4~1) Qk Qk,k = Dk,l
1 0
and
s e
(4‘2) Qi Gy = Dix
0

From (4.1) and (2.14) it follows that the matrix Qi is of the form

(4.3) Q.=[0 0] for i<k
Qix 0 A

and
Qi,k = - Cin,k—ile,l
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because

and
44 = (=l G
. G b
From (2.13) and (4.2) it follows that
_|di
9ir = d,

a4+ Qg —=
Dy.1

9ir-1 = [di ]
dgk—l)

The first element of the vector q; , does not change because (4.3) and (4.2) imply
Qi,k—le—lqk,k =[0

where we have denoted

Qi st
D,y
Thus we can define
(4.5) d¥ =d¥ P 4+ 0, e g i< k,
Dy 4

d(ii) = di .

Hence the systems (2.15) are of the form

Diyci|xi=|d; |+]0 O]x,, for i<k
0 1 a® Qi O

and
X; = ﬂ— — d(ik) L + —'Ci-Qi’k 0 Xty
Di,l Di,1 Di,1
di? Qi O

For k = K this can be written in the form
(4.6) Di,lyi = di —_ dEK)Ci

and (4.6) together with (4.5) and (4.4) is the process of Gauss-Jordan elimination.

The last method we should like to mention is the process of the so called even-odd
reduction (cf. [5]). We show that this process is a method of Algorithm 5.

Let the matrix G be block tridiagonal
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G=|AI,
1, Al,

I, Al
I

LI n

y =1y - yn-1]" and b=[bl,...bJ_,]",

where A is a square matrix of order n and both y; and b; are n-dimensional vectors,
N = 2/, tis an integer. We choose j = 1 and i, = k for k = [(I)N — 1, ie,

x; = [yl-yil",

H, = Al and h; =|b;|.
-1, 0,, (o]

n

A,.

The matrices Z; are

For every k we choose a special “boundary condition” for the k-th transfer to the
left, namely

Dk = [A, ’"] and dk = bk—1 - Yk—Z .
Thus
D,., = —DH, = [_A2 + 1 —A} >

diyy =by_; — yx_, + Ab,
and we choose

Rk+1 = [’m A:I .
Hence

Uy =byyy and Uy =10 OF.
o -1,

Then for x,,, we have the equation

(4.7) —A* + 1, —Alxy =|by = Yie2a + Ab | +[ O Olx,.
I, A b, O —1I

n

Choosing
R, = [I.,A] and r, = b, — y.y,

Quxy = I:A ’n] Xy = I:bk—l - kazil >
I, A by — Yi+1
ie.,

(4.8) [o I, — AZ] x, = [bM — Ye—2 — Ab, + Aykﬂ].

I, A by — Yii1

n

we have for x;
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Thus (4.7) and (4.8) together yield
(4.9) Y-z + (21, — Az) Yi + Yir2 = by — Ab + by,
(4.10) Yi + AYir1 + Yir2 = by

Thus the equations (4.9) form a system of N/2 equations for N/2 unknowns and
continuing in this way we obtain just the so called even-odd reduction process.
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Souhrn
ZOBECNENE METODY PRESUNU OKRAJOVYCH PODMINEK
LUBOR MALINA

Tato prace je zobecnénim autorovy prace [2]. Zobecrtiuji se tzv. metody pfesunu
okrajovych podminek tak, aby algoritmus zahrnoval i pfimé metody feSeni soustav
linearnich rovnic s pasovou matici soustavy, které vedou na diagonalizaci ptivodni
matice soustavy. Je zde také zkoumana otazka numerické stability metod popsanych
v [2]. Na zavér je ukazano, jak lze volbou parametru zobecnéného algoritmu dostat
nekteré znamé pfimé metody (Gauss-Jordanova redukce).
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