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SVAZEK 24 (1979) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

ON GENERALIZED METHODS OF THE TRANSFER 
OF CONDITIONS 

LUBOR M A L I N A 

(Received May 5, 1977) 

In [2] we have suggested a possible general approach to direct methods for solution 
of systems with band matrices. In the present paper we shall further develop Al-
gorithm £T\ (in the notation of [2]). Namely, we define Algorithm ZTA which in­
cludes not only Algorithm 3~\ but also methods leading to diagonalization of the 
matrix of the system, such as for example the process of Gauss-Jordan elimination. 
As we have promised in [2], we also slightly touch the question of numerical stability 
for the present algorithms. Eventually we shall briefly discuss the concept of "well 
conditioned" systems (cf. [ l ] ) in Part 3. In the last part we show how one could 
obtain concrete methods from the general Algorithm &~4, namely the Gauss-Jordan 
elimination and the even-odd reduction closely connected with the fast Fourrier 
technique. 

1. PRELIMINARIES 

In this part we quote briefly some concepts and results from [2] . Consider the 
problem of solving a system 

(1.1) Gy = h 

where G - (g0) is a square band matrix of order N whose bandwidth is 2p + 1, 
vectors b = [b1,...,bN]T and y = [yu ..., y^7 are N-dimensional. We choose 
a parameter j , j e {0, 1, ..., 2p - 1} supposing J = (N - 2p)j(2p - j) to be an 
integer. At the end of the second part we show the changes which occur in the case 
that this hypothesis is not fulfilled. Let us denote 

(1.2) ^ ; ) = [y /+ i , . . . ,y i + 2p] T for . = 1(1) J + 1 , 

where I = (2p — j) (i — 1). If it is clear from the context which value of j has been 
chosen we shall simply write x f. From (1.2) it follows that we divided the vector y 
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of unknowns into subvectors xt in such a way that the last j elements of a vector xt 

repeat as the first j elements of a vector x i + 1 . In an analogous way we divide the 
vector b into 2p-dimensional vectors fP 

(1.3) ft = [bI+p+u...,b1+p+2p„j9Q9 . . . , 0 ] T , 

and the matrix G so that the (I + p + l)-st equation up to the (I + p + 2p — j)-th 
equation of the system (F l ) can be written in a matrix form 

- V i + BiX i+1 = ft 

where both the matrices At and Bt are square matrices of order 2p. The first and the 
last p equations of the system (1.1) will be called the left and the right boundary 
condition, respectively. We write them in a matrix form 

A)*i = fo and AJ+1xJ+1 = fJ+1 , 

where both the matrices A0 and AJ+1 have p rows and 2p columns (they are p x 2p 
matrices). Thus the system (1.1) can be written in an equivalent form 

(1-4) Atxi + Btxi+1 = f i ? 

(1.5) AQXI = f0 and -4 J + 1 x J + 1 - f, I J+ i 

N o t a t i o n . A matrix M with i rows and j columns will be said to be an i x j 
matrix. The symbol Oimj denotes the i x j null matrix while lj denotes the identity 
matrix of order j . Rank M denotes the rank of the matrix M. 

The set 2R = {1, .... J + 1} is divided into four disjoint parts 2Rl3 9Jl2, 9Jc3, JJt4 

where 

9Jlx = {i e SCR | both At and B£ are regular, or i = 1, i = J + 1} , 

9K2 = {i G 9JI | Af is singular, Bt is regular} , 

9tR3 = {i e 9JI | At is regular, Bi is singular) , 

9#4 = {i e 9JI | both At and Bi are singular) . 

The equation (1.4) can be rewritten into an equivalent form: 

for i G m2 u 9Jl4, 

(1.6) I"-4U l x i + r B i 5 l l x i + 1 = r f u l 

L°-I.2PJ LB^2j Lfwj 
where rank At = 2p — nt and rank A£>1 is equal to the number of its rows; 

for i e ^ u 9Jc3, 

(1.7) r i ^ l x , + rom/?2 i x i + 1 = r f . i 

where rank Bt = 2p — mt and rank 2B i is equal to the number of its rows. 
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We need also the following lemma. 

Lemma. Let Cx be an ax x n matrix, rank Ct = hu let C2 be an a2 x n matrix, 
rank C2 = h2 and let rank C3 = h3 where 

c3 = [cj,ciy. 

Then there are matrices Sx and S2 such that 

(1) s.c, = S2C2, 
(2) rank SxCt S ht + h2 ~~ h3 and there is a pair of Sx and S2 such that rank 

s i c i = hi + h2 - h3. 

Algorithm &~1. 

(a) Transfer from the left to the right: 

for i e Wl1 u 9Je3, 

(1.8) Dx = A0 , dt = f0 , 

D i + 1 = Z i D i H i , d ^ ^ Z ^ - ^ + D ^ ) 

where Hf = AT 1 B i and h i = _A r1 f̂  and Zt always stands for a regular matrix of such 

order that the multiplication is well defined. 

For ieWl2u Wl4, 

(1.9) >l+1 = ZJS3B(il"l and dí+1 =- Z,.rS2fu - S.dfl 

where the matrices Sx and S2 are such that S2At x = S ^ . 

(b) Tranfer from the right to the left: 

For i e $Jl1 u 9Jl3, the matrix Rt is an arbitrary matrix such that [D[, RT]T is a regular, 

square matrix of order 2p, 

(1.10) r, = R./Ji. - H T D i + q - T d . + ^ y 

For i = J + 1, 

(1.11) 

For i e 90l2, 

(1.12) Rf = WiRi+.BfMi and r, = W,(-r l + . + R^fl^f,). 
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For i e $ t 4 , 

(1.13) 

where 

"S«>2AЛ and rt = VS^2ft-S™ri+1l 

L Л J L ifi J 

S « ) a B , - - S < 2 > R l + 1 . 

Vectors xt for i = 1(1) J + 1 are defined as solutions of systems 

(1.14) Qtx = qt for i = 1(1) J + 1 

where 

Q. = ' ' - [ - : ] a n d *t;] 
It is proved (cf. Theorem 2.1 from [2]) that every solution {xjf*,1 of the system 

(1.4) —(1.5), i.e., of the system (l . l) consists of solutions of the systems (1.14) and 

vice versa. 

2. ALGORITHM ^ 4 

The idea leading to the Algorithm ^ 4 is the following one. As soon as we have 

computed the matrix Dt and the vector dt such that 

we consider the vector x f + 1 to be known and perform a transfer to the left. Thus the 

vectors rn for n < i depend on xi+1 and they are written in the form of a sum of 

a vector and a matrix multiplied by the vector xi+1. 

Let integers {ik}%=1 be given, 

(2.1) 0 = i 0 < i"i ... < I K - I < k = J + 1 • 

Denote 

h = {h-i + 1,.-.,U for fc = 1(1) X . 

Algorithm F4. 

For every k e {1,..., K} define 

(ak) the k-th transfer to the right: 

The matrix D f and the vector dt for i e lk n (ST^ u $c3) and for i e Ik n (9K2 u 9K4) 

are given by (1.8) and (1.9), respectively. 

(bfc) f/f£ A:-*/! transfer to the left: 

The vector rf is of the form 

(2-2) r.^U^^. + a, 
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where for ielkn (Wdl u ffl3) the matrix Rt is an arbitrary matrix such that the 
matrix Qt = [ D T , R T ] T is regular, 

(2.3) 

and 

(2.4) 

u i = R ^ h , . - H i Q i - +

1

1 q i + 1 > t ) 

U ; = -RAQiVi п,2p 

Ľ í + 1 

for i < lk > 

where n is equal to the number of rows of the matrix Di+1 and 

Q.-+1 D í + 1 

" І + I 

. ЯІ 

L U І + J 

The "initial condition" u t and Ut for i = ifc is 

(2.5) Ui = R ^ , 

U i = - R ; H ; . 

For i e Ik n $R2 and i < ifc the matrix Rt is given by (1.12) and 

(2.6) ut = W ; ( - u i + 1 + R i + 1 B r 1 f i ) , U ; = - W ( U i + 1 

under the notation from Part 1. 

For i elk n 9JJ4 and i < ifc the matrix Rt is given by (1.13) and 

(2.7) " i = [ S < 1 > 2 f i - S ( 2 > U i + 1 T U j = [S<2>U i+1-] 

L i^ J L °m,2p J 
under the notation from Part 1; m is equal to the dimension of the vector if;. 

As for the "initial conditions", if ik e 9ft 2

 u SCR4. a n d rank [D T , A T ] T = 2p for 
i = ifc, then there is a matrix Ai3 (submatrix of At) such that the matrix 

for i = ik RJ 
is regular. Denoting by B t 3 and ft3 the matrix and the vector which result from Bt 

and ft, respectively, in the same way as the matrix Ai3 from Ai9 i.e., by crossing out 

some rows of the matrix At to obtain the regular matrix [DT, - 4 T

3 ] T , we define 

(2.8) 

for i = ik. 

When 

u , =[tr'KjM d o '= itT'B" 

rank [D T , Aj]r < 2p for i = ift 
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we choose an arbitrary matrix C and a vector c such that 

*i = C x i + 1 + c 

for arbitrary x, and x i + 1 for which the following identity holds: 

Atxt + Btxi+i = ft for i = ik . 

We set in this case 

(2.9) ut = R ĉ and Ut = RtC for i = ik, 

where R̂  in both cases is a matrix such that the matrix [D], Rjy is regular. 

For ife = J + 1 we set 

" j+i = O+i and U j + 1 = O . 
Denoting 

(2.10) q . f e = r d n , Qf,k = r o l , Q ^ r D n for i e I f e , 

we define vectors x^ for i e Ik to be solutions of the systems 

(2.11) QiXt = qitk+ Qi,kxik+l. 

We compute xIfc_1 + 1 from the system (2.11) for i = ik__ + 1 and put it into the 
systems (2.11) for all i _i ik__. 

Hence for i = 1(1) ik__ we have the systems (from the (k — l)-st transfer) 

(2.12) Qtxt = qiik_1 + Qi,k-1xik_l + 1 

and by (2.11) 

Q>* = q»,k-i + Qi>fc-iQ71(qj,k + QI,kx*k+i) 

where j stands for ik__ + 1. Denoting 

(2.13) qik = q n - i + Q«,„-iQ71qAk 

and 

(2.14) Q i jk = Q« i k- 1Q7 1Q i i k for i __ ik__ , 

the system can be written also in the form of the systems (2.11). Thus after the k-th 
transfer from the left to the right and vice versa we have for the vectors xt and i :__ ik 

the systems 

(2.15) Q;x£ = qi>k + Q l fkx l f c+1 . 

Finally, we come to the systems 

(2.16) Qtxt = qiK . 
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Theorem 2.1. Every solution {xJfJ"/ Of the system (1.4)-(1.5) is composed of 

solutions of the systems (2.16) and vice versa. The system (1.4) —(1.5) has a unique 
solution iff the systems (2.16) have unique solutions. 

The proof of the theorem repeats almost literally the proof of the analogous 
theorem from [2] (Theorem 2.1); therefore we omit it. 

R e m a r k 1. Algorithm :T4 is of the Gauss-Jordan elimination form. However, 
there is an another possibility. After the "k-th transfer" we need not compute the 
vector xik_i + 1 and put it into all systems (2.12) for i __ ik_1 but can go through to 
the "(k + l)-st transfer" immediately. Thus we can obtain eventually a system 
equivalent to the system ( l . l ) but possibly with a smaller number of unknowns 
(such are the even-odd reduction like methods). This algorithm will be referred to 
as Algorithm £T5. 

Up to now, both in the present paper and in [2] we have supposed 
(N — 2p)j(2p — j) to be an integer. Let the parameter j be chosen such that 

N - 2p 
= J + 

2p - j 2p - j 

where J is an integer and n < 2p — j is an integer as well. Definition (1.2) of vectors 
xt is not changed for i = l ( l ) J. However, the vector xJ+1 is defined as the last 2p 
elements of the vector y. Thus the vector xJ + 1 repeats the last 2p — n elements of the 
vector Xj as its first 2p — n elements. Hence we must change the definition of the 
matrices Aj and B7 and of the vector fj in the following way: 

9N-P-П,N-2P-2У 9N-P-П,N-2P-1 

BJ = 

i ^n^p-n 

9N-p-l,N-2p-l i 

SJ2p-n,n i '2p-n 

9N-P-n,N-2P> • • •- 9N-P-n,N-n-l-> 0, . . . , 0 

gN-p-i,N-2p> •••- g N _ p - 1 N _ 1 

-I 2P — n 

and 
2P — n,n 

fj = [УN-P-П, • • •, УN-P- i ,0, . . . , 0 ] т 

is a 2p-dimensional vector. Nothing else is changed, not even the definition of the 

Algorithms &~1, .^"3, ^"4 and 3~5. All theorems proved till now hold also in this case. 

3. NUMERICAL STABILITY 

For the sake of brevity we suppose both the matrices A{ and 6 f to be regular for 

all i effl. It is only a technical matter to extend the results also to the case when this 

is not fulfilled using ideas analogous to that of [4] . Only the transfer from the left 

to the right will be discussed because the backward transfer is analogous. 
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Let the matrix Di+1 be computed by (1.8). Due to the round-off and other errors 
the equation 

D i + 1 -ZiDiHi = 0, 

where Dh Zu Hf are computed numerically, is not exactly fulfilled. 

Definition 3.1. The difference 

At = Di+1 - Z.D.H,, 

where Dx is given exactly, is called the error of the numerical realization (of the 
method of Algorithm 2T\, given by a choice of the matrices Zt). 

One of the methods how to assess quantitatively the influence of such an error on 
exact solution of the system ( l . l ) is to replace both the matrix G and the vector h 
by a "perturbed" matrix G + SG and a "perturbed" vector b + dh, respectively 
and to choose these perturbation so that the "numerical", inaccurate solution of the 
system ( l . l ) is the exact solution of the system with these perturbed data obtained 
by an exact method of the transfer of conditions. Thus we can assume 

(3.1) D i + 1 = D iH i + V i D + 1 + «5(
i
1) 

(3.2) d i + 1 = -di + D ^ + Vtdi+l + SiAdi+1 + <5<2> 

where Vt = / — Zf 1 . This equation can be rewritten as 

(3.3) D i + 1 = D.H, + (V, + <5U) D i + 1 + # > - Stil D i + 1 , 

(3.4) d i + 1 =-di+ Djh, + (V, + SiA) d i + 1 + *.->. 

Without loss of generality we can suppose the rank Df to be equal to the number 
of its rows. Thus the matrix DtD] is regular. Let us denote 

(3.5) *«.2 = 0 7 ( 0 , 0 7 ) " - ( ^ > - * M D l + 1 ) , 

(3.6) 5i,3 = D7(D iD7)-^<2>. 

Then 
D ^ ^ D ^ + ^ + ^ + ^ D , ^ , 

di+1 = -</,. + Df(/i, + 6it3) + (Vf + diA)di+1 . 

Theorem 3.1. Let thc system ( l . l ) have a solution, let both the matrices At and 
Bt be regular for i = l( l) J, ari6? let the errors of numerical realization be of the 
form (3.1) —(3.2). Then these errors can be regarded as perturbations of the initial 
data, i.e., of the matrix G and the vector b, and of the method of the transfer of 
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conditions, i.e., of the matrices Zt. Moreover, denoting by || • || the usual Euclidean 

norm of a matrix and by II • II0 the spectral norm, we have the following estimates: 

Ҝ2II0 = я„ /ll<S(1)li \ 
/ \\°i O , II c || \ <-ikt+ l | s ' ' ' l l o J a 

иU- s (Dii 

+ V n 

И.З 0 ś 
llí.2 

l-řă /(») И2)ll 
IІD.-ÌÌ 

where n = rank DtD], Amax and 2min stand for the maximal and minimal eigenvalues 
of the matrix DtD], respectively. 

Proof. It is sufficient to prove only the estimates. 

The equation (3.5) —(3.6) imply 

K2||g||DKDiD7)-i||(||^>|| + I I^D^I) , 
Иl.З ѓ 

But 

and 

K-WD.|.aU 

| | -> .->7 |o ^ V | ^ m a x | • 

This two inequalities together with 

IMTMVWIID.-Dlf 
complete the proof. 

Theorem 3.1 displays the important role of matrices D( and DT(D^DT)-1 for the 
numerical stability of the method of the transfer of conditions. We can expect that 
for "large" systems ( l . l ) such methods of the transfer of conditions will be "good" 
for which both the norms ||Df|| and || D^D^D])"" 1 ! less than one at least for "suf­
ficiently great" values of i. 

In the book [ l ] , the following concept of well conditioned systems is discussed. 

Definition 3.2. The system ( l . l ) with g12 = ... = glp = g^t^-p = ... = g#,N-i = 
= 0 is said to be well conditioned if the norm of the solution is bounded indepen­
dently of N. 

Although this type of numerical stability is appropriate for invariant imbedding 
like methods, for great values of N and methods of the transfer of conditions we 
have to discuss also this stability. Consider a tridiagonal matrix G and denote 

0M-i = C|, giti = ax and gM+1 = wt. 
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We choosey = 1, hence J = N — 2 and 

x f = D ' i , > ' i + 1 ] T for i = 1(1) J + 1, 

,4, = ct. 0 
0 1 

, B; tfl и\-

- 1 0 ' '-M 
H.- = /AГ _. 

Thus the equations (1.8) imply 

___ _ J 

c. c ; 

L-i oj 

, h, = AŢlft 

(3.7) D i + I > 1 = Zi(Diií - ' - D i > 2 ) and D i + 1 , 2 = Z,.Dř>1
 W i , 

^i+l = Zi [ - d | + I\l ~ (3.8) 

and . u = 1, D J > 2 = 0, „. = ft., D ; = [£),>t, Z)i>2]. 

It is shown (cf. [2]) that choosing 

CІ 
Zi = 

(*i ~ CiDi,2 

for every i such that the denominator is nonzero, the equations (3.7) —(3.8) are the 
equations of one step of Gaussian elimination. In particular, 

Diл = 1 • 
Thus 

|DT(D.DT,- li_t___ 
1 + D i,2 

and this is less than one for | I \ 2 | > 1 and less than or equal to two for \Di2\ < 1. 
In each case this norm is bounded by a constant independently of i. We show that 
a necessary condition for the system (l . l) to be well conditioned is 

(3.9) Я..2 < 1 • 

Consider special vectors £>, namely b = et- where all elements of the vector e-
equal zero except for the i-th element which is equal to one. Denote by y(/) the solu­
tion of the system (1.1) for this right hand side. Then any solution of the system ( l . l ) 
can be written in the form 

y = £z> .y<" . 
i = l 
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Equations (3.7)-(3.8) for b = eN„t imply 

(3.10) /»-» =-/£-» El 

foг i < JV — 1 and 

d,~ 
di - CiYYli 

for i = N, where mt stands for Dit2jDitl. 

The first thing we should like to mention is that the necessary condition for the 

system to be well conditioned does not depend on the matrices Zh i.e., on the method 

as the equation (3.10) implies. (The quantities mt do not depend on Zt). Thus we can 

restrict ourselves to the Gaussian elimination. Also the equation (3.10) implies that 

the condition (3.9) is really necessary because if it is not fulfilled then y(

i

iV"1) is not 

bounded independently of i < N — 1. 

It is not difficult to show that a sufficient condition to guarantee validity of (3.9) is 

hi + H ^ hi 
and 

\ct\ < \wt\ 

for sufficiently great i. In this case also \Zt\ < 1. 

If 

hi + lDu| h| < h| 
where \Dit2\ > 1 then also IDi+i^l > 1- a n d the system (l . l) is not well conditioned. 

Such systems exist as is shown in [3]. Hence we can conjecture that for some types 

of the matrix G there is hardly any possibility to construct direct methods which can 

compensate "ill conditioned" features of the system. 

4. SOME EXAMPLES 

In this last we show that the process of Gauss-Jordan elimination is a method of 

Algorithm &~A. For the sake of brevity we consider a tridiagonal matrix G which is 

symmetric and positive definite. Let us denote 

gUi = a{ for i = 1(1) N 

and 

gu+i = di+ui = Ci for i = 1(1) N - 1 . 

We choose the parameter j to be j = 1 and ik = k for k = 1(1) N — 1, i.e., K = 

= N - 1 and 

* i = [ y . , y i + 1 ] T for i = l ( l ) N - 1. 

194 



Then 

H, 
ai+l Ci+1 

CІ CІ 

and h ; = "ћ±l" 
c i 

. - 1 0 0 

ich that 

D ,2 = C i 

Z- - - ^ -
!>«,! 

. -".--[z,] ' 

the matrices Z f are chosen such that 

where D f = [Ditl9 D i > 2 ] , i.e., 

and 

c? d{ 
Di+1,1 — ai+l — ~~ ? " » + 1 — bi+1 ~~ c j 

!>M I>f,i 

and under our assumptions it is easy to prove that D i ? 1 4= 0. Then the matrices R, are 

~i = [0, 1] • 

Because Ik = {k}, (2.5) implies 

uk = 0 and Uk = [1, 0] . 

Hence according to (2.10) 

<\k,k = r ^ i a n d Qk,k == 

while 

Thus 

(4-0 

and 

(4.2) 

ГdЛ and Q м = Г0 0І 

[oD''í'J-Q* = 

Q_1Q/cл = 

QҐЧк,, 

J*_ 0" 
" t , i 

1 0 

X>*д 
0 

F r o m ( 4 A ) a n d (2.14) it follows t h a t the matr ix Qi,k is of the form 

(4.3) Qik = I"0 0 1 for i < k 

and 

[0 Ol for i 

Lßa °J 

ß.,* = - c . Q i , t ' i / ^ . i 
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because 

and 

(4.4) 

Q м 

Є.,* = (-i)* 

0 0 
1 0 

DІA Aм 

From (2.13) and (4.2) it follows that 

ЯІ, 

where we have denoted 

Чi,k-i 

УГlì\ 
The first element of the vector qik does not change because (4.3) and (4.2) imply 

Qi,к-iQк lЧк,к = o 

. Dкл _ 

d(k) = d(к~l) + Q . ^ .____*_ for i<k, 
Dт, 'k,i 

Thus we can define 

(4.5) 

d</> = dt. 

Hence the systems (2.15) are of the form 

[->!.! C|1*I = [d, "I + [ 0 0~|xfc+1 

Lo lj k _ LCMOJ 

for í < A: 

and 

x, = __i_ _ djч _£•_ 
Diл - u 

đ?> 

+ -Ci^ь_ o 
ß u 
Єu 0. 

* f c + l 

For k = K this can be written in the form 

(4.6) Ditlyt = dt~ dtPct 

and (4.6) together with (4.5) and (4.4) is the process of Gauss-Jordan elimination. 

The last method we should like to mention is the process of the so called even-odd 

reduction (cf. [5]). We show that this process is a method of Algorithm _7~5. 

Let the matrix G be block tridiagonal 
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A /„ 

K A ln 

/„ A 

Y-[YI..-,YJN-IY and b = [bj, . . . , b ^ t ] T , 

where A is a square matrix of order n and both yt and b; are n-dimensional vectors, 

N = 2\ t is an integer. We choose j = 1 and ik = k for fc = 1(1) N — 1, i.e., 

* г = [ y т - i , y т ] т , 

н, A /, 

/„ O л ~~'л,ri 

and h, = 

The matrices Z^ are 

Z, = - / „ 

For every fc we choose a special "boundary condition" for the fc-th transfer to the 

left, namely 

D* = [A, /„] and dfc = b fc_A - yfc_2 . 

Thus 

and we choose 

Hence 

D„+ i = - D t H t = [ - A 2 + f m - A ] , 

-Vn = -»_-_- Yk-2 + ^ b k 

R*+i = P»,A]. 

-*+_ = -V+1 and U t + 1 = f " 0 0~|. 

L° -'-J 
Then for xk+l we have the equation 

I -*fr-4- 1 ~-A2 + /„, 

ln 

(4.1) 

Choosing 

we have for xk 

i.e., 

(4.8) 

V, -i - У„-2 + льkl + [ o o ] 

ь„+1 J L° - ' J 

Rk=Џn, Л] and rk = bk-yk+1 

Q Л = ГA 'пl ** = ["-»_-1 - У„-2І , 

L/„ AJ LЬ* - y*+d 
ГO /„ - A2"| xk = [ V , - y„_2 - Abk + AУ/t+1"|. 

L'„ A J L Ь* -У-+i J 
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Thus (4.7) and (4.8) together yield 

(4.9) Yu-2 + (21 n - A2) Yk + Yu+2 = K-i ~ *K + **+i , 

(4.io) Yk + Mk+i + y^+2 = K+i • 

Thus the equations (4.9) form a system of N/2 equations for N/2 unknowns and 
continuing in this way we obtain just the so called even-odd reduction process. 
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S o u h r n 

ZOBECNĚNÉ METODY PŘESUNU OKRAJOVÝCH PODMÍNEK 

LUBOR MALINA 

Tato práce je zobecněním autorovy práce [2]. Zobecňují se tzv. metody přesunu 
okrajových podmínek tak, aby algoritmus zahrnoval i přímé metody řešení soustav 
lineárních rovnic s pásovou maticí soustavy, které vedou na diagonalizaci původní 
matice soustavy. Je zde také zkoumána otázka numerické stability metod popsaných 
v [2]. Na závěr je ukázáno, jak lze volbou parametru zobecněného algoritmu dostat 
některé známé přímé metody (Gauss-Jordánova redukce). 
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