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SVAZEK 24 (1979) APLIKACE MATEMATIKY cisLo 2

DUAL FINITE ELEMENT ANALYSIS
FOR AN INEQUALITY OF THE 2nd ORDER

JAROSLAV HASLINGER

(Received July 20, 1977)

In practice we often meet problems when the cogradient of the unknown solution
is more important than the solution itself. Using the so called dual variational for-
mulation, one can approximate directly the components of the cogradient. The
dual finite element analysis for the case of elliptic equations is given in [3]. Involving
Lagrange multipliers in the dual formulation, we obtain the so called dual hybrid
formulation, which is studied in [11].

In the present paper, the dual finite element analysis for an elliptic inequality
of the 2nd order with an interior obstacle is given. Using piecewise linear equilibrium
elements, the rate of convergence of Ritz approximations is established, provided
the exact solution is smooth enough. The primal analysis of this problem is given
in [2]. The dual analysis for unilateral boundary value problems is given in [12], [13].

1. SETTING OF THE PROBLEM

Let Q < R, be a bounded domain with a Lipschitz boundary I'. By H*(Q) (k = 0
integer) we denote the classical Sobolev spaces with the following notation:

(1) oo = ([ |3 Joela)

(1.2) [0]mo = <L lalzzmlmu 2 dx>m.

In the case k = 0 we set H(Q) = I*(Q) and we write simply |00 = [[¢]o- By
HY(Q) we denote the completion of 2(Q) under the norm (1.1). H*(Q) denotes the
Cartesian product of H*(Q) with the usual norm |v| o and seminorms ¥|m.0
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We shall consider the following obstacle problem:
(2) find u € U such that
#(w) = min 7()

with
U ={veH)Q):v=¢a.e inQ},

J(v) =J Igrad v|2 dx — ZJ‘ fvdx,
0 0

where f e I*(Q) and ¢ € Hy(Q) are given functions. % is a closed convex subset of
H{(Q). Let us recall the following existence and uniqueness result (cf. [8], [10]).

Theorem 1.1. There is a unique solution u of (2) and this solution is characterized
by the relation

(1.3) a(u,v—u)gj‘f(u——u)dx Yoeu,
where ¢

a(u, v) = j grad u . grad v dx .
0

If u is smooth enough, then using Green’s formula we deduce from (1.3):

—Au=f in Qoc=Q,

—Auzf in Q, <Q,
where

Qo = {xeQ:u(x) > o(x)},
0, ={xeQ:u(x)=¢(x)} .
As ¢ € Hy(Q), we can write % = ¢ + %,, where

Il

Uy = {weHHQ):w=0a.e in Q}.
Let

(1.4) u= ¢ +w, wed,.
Then we have
Lemma 1.1. It holds
(1.5) {(—Au — f, w*> = 0,
where {,» denotes the duality pairing between H™'(Q) = (Hy(Q)) and H(Q).

Proof. Inserting v = ¢ and v = ¢ + 2w* into (1.3) and using (1.4) we obtain (1.5).
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Next we derive a dual variational formulation to (9) To this end we introduce the
following Lagrangian &:

f(#,v,l):jﬂiﬂidx— 2vadx +2J/1 (—(?E—./V>dx )|
Q Q

Q Xi

where (AN, v,4)e W= L*(Q) x % x L*Q), /" = (N1, .., /), & = (A, ooy A).
It is easy to verify that

(1.6) F(u) = inf #(v) = inf sup L(N, v, 1),
vett o) 2
where (A7, v) € L¥(Q) x %, A e L*Q).
Theorem 1.2. There is a unique saddle-point (A%, v*, 4*) of & on W and
(1.7) (N*, v*, %) = (grad u, u, grad u),
where u is the solution of (?).

Proof. Let (4%, v*, 4*) € W be a saddle-point of & on W. Then

(1.8) Sy L(N*, 0%, A%) = 0 <> N* = )*,

. 0, L(N*, v*, A*) = 0 < A™* = grad v*,
19 2 k% * *
(1.10) 8, L(N*, v¥, l*)(v — 1) 20 YWwe <

@fl*(a —-a d >ff(v—«v*)dx Yoe,
x;  0x;

where §,4.% denotes the partial differentiation of % with respect to 4" (and analo-
gously 6,%, 6,%). Taking into account (1.8), (1.9) we deduce from (1.10) that v* = u
is a solution of (). Hence we conclude that there is at most one saddle-point of %
on W. Conversely, to prove that (1.7) is a saddle-point of .Z on W, we must verify:

(1.11) LA, 0%, ) < L(N* 0%, 4%) Vie L(Q),
(1.12) L(N*, 0%, 2) < L(N, 0, %), (N,v)eL*(Q) x % .

It is easy to see that (1.11) is satisfied even with the sign of equality. Let us prove

(1.12). We have
5
2J~ ou <§li — ) dx +
0 0x; \0x;  Ox;

(1.13) L(W B %) </V - %“) -
u) dx

+ 2 Lf(u

for VA" e L*(Q), Yve % by virtue of (1.3). A direct calculation shows that (1.12)
and (1.13) are equivalent. Theorem is proved.

v

1y In what follows a repeated index implies always summation over the range 1, 2, ..., n.
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Using the well-known properties of saddle-points, we can write in (1 .6):

(1.14) H(u) = inf sup L(AN", v, ) = sup inf L(N, o, ),
(N,v) A

i (#,v)
(N, v)eL Q) x %, AeL(Q).
Let 2 = (14, ..., 4,) € L*(Q) be fixed and let us set
LN v) = L(N,0,2) = L(N) + 2,(v),
where

_71(,/‘/')=J\./V‘i./1fidx_ 2J‘ Z,uV',-dx,
Q Qo

0
Z,(v) :2(,T,~§dx— fovdx.
Jo i Q

Let (A7, 0) € L*(Q) x % be such that
y(W’ p) = inf 3(‘/‘/" v, I) = inf,?l(./t/’) + inf,g’z(v) ,
) w v

N e LZ(Q), ve¥. Then
O fL(N) =0 ¥ =1
and
L(N) = - f A dx .
On the other hand, °
inf Z,(v) = inf L5(p + w) =
velU wel o

. 0
= inf {2 1; % + g) dx — 2ff((p + w)dx! =
wedg o \Ux; Ox; 0

/Zfzig—@dx~2ff(pdx if ZE./VI_(Q)
= Q i Q

Ox;

\—oo it 2¢ 477(0),
where
- ) 6
JVf(Q)={AeL2(Q):f 22 gy ;ffwdx Ywe ,\ .
Q axi 0
Hence

sup inf 3(,/1/, v, ) = sup {— f Aididx + 2J Aiz(p—dx} —
]

A (Hp) e = 7(Q) 0x;

Q
—sz(pdx:_ inf y(l)—fowdx,
Q Q

217 (Q)
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where

V(1)=J‘i;lidx—2fl,-@idx.
0 0 0Ox;

Let us define the following variational problem:

(7¥) find A* e 47 (Q) such that
F(¥) = inf #(4)
A7 (Q)

(2*) will be called the dual problem to ().

Theorem 1.3. There is a unique solution A* of (9’*) and
(1.15) A* =gradu,
where u is the solution of (%).
Proof of the existence and uniqueness is standard. The derivation of (9*) Jjustifies
(1.15).
Remark. It is easy to see that
e N[ (Q)<>divi+f=<0 in Q
in the sense of distributions. Let A° € L*(Q) be such that
divd = —f in Q.
Then A"7(Q) = A° + A5 (Q), where
. 2 ow
-/VO(Q) =Jyel (Q) ti—dx =0 Vwe,},
o 0x;
or equivalently
1eN(Q)<=divy <0 in Q

in the sense of distributions.
Problem (2*) can be formulated equivalently as follows:
find 3* e & ;(Q) such that
b(a%, 4 — J*) = F(h — 3*) Vie #7(0Q).

where

b(, p) =fl,-;z,-dx, F(2) =fli0£dx.
Q o 0x;

Approximation of (7*)
In order to define the Ritz-Galerkin approximations, we introduce a system
{A (@)}, he(0,1) of “finite dimensional approximations” of 4°5(Q). Let us
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suppose that A o,(Q) = A5 (Q) for all h e (0, 1) and let us set
N Q) = 2° + # Q) = #7(Q) Vhe(0,1).
We define the following procedure:

(2%) find Ay € N (Q) such that
F(A) = min  F(4,)
AneA sh™(Q)

or equivalently
find &} € A ;(Q) such that
b(Ag, hy — 4y) = F(by — Ay) Viye ¥ (Q).

Lemma 1.2. To every he(0,1) there exists precisely one solution Ay of (2y).
Moreover, it holds:
(1.16) 4% = 42|20 S {F(A* = &) + b(AF — A%, &, — 4*) +
+b(A%, &y — A%)} Vi, e A 7(0Q) .
Proof. #(4,) (A e & ;,(Q)) is a quadratic function generated by a symmetric,

positive-definite matrix, 4 ;,(Q) is a closed convex subset of 4 ;(Q). Hence the
existence and the uniqueness of 4; follows. For the proof of (1.16) see e.g. [2], [5].

2. CONSTRUCTION OF 474, (Q)

Let us suppose that Q is a bounded polygonal domain. For the sake of simplicity
we restrict ourselves to the plane case only. We introduce the following notation:

Q) = [c(9))*
with the norm ||v]|¢g) = max [v (x)], v = (v;, v;) and C*(Q) = [C*(Q)]* with the
seminorm e’

0x; Oxk

[VIC’(Q) max
=1,2
Q

<4

Let K be a non-degenerate triangle with vertices a,, a,, a; and let us set a, = a,.
Let P,(K) denote the set of linear polynomials on K and Py(K) = [P(K)]*. We say
that 2{”, 2% are basic linear functions of the side a;a;, ( if

AP are linear on a;a;4 »
) = 1. K = 0,
K@) =0, Kars) = 1.

') €XQ) (k = 0 integer) denotes the usual Banach space of continuous functions on Q, de-
rivatives of which up to the order k are continuous on Q and continuously extensible on Q.
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For v e H'(K) we define the outward flux by the relation

(2.1) Tv = n

aidi+y *

where v|,,,,, are traces of v on a;a;4, and n” is the outward unit normal to JK.
From the trace theorem (see [4]) it follows that T; e L(H'(K), I*(a;a;4,)) *).
For the scalar product in I*(a;a;,;) We use the notation

[u, v]; =J‘ uvds.
aiai+1

First we make some observations, the proofs of which are given in [3]

Lemma 2.1. Let y,5,e R, (i = 1,2,3) be given. Then there exists a unique
v € P,(K) such that

Tyv(a;) =i, Tv(aiy,) = 6;.
Theorem 2.1. Let v e H'(K). Then the equations

(3 [Tw, 7] = “i[igi)a }'l(ci)]i + Bi['l(zi)s 'lg:i)]i , k=1,2;
(i) nv(a;).n® =a;, Iv(a;,,).n" = B;
define a mapping IT € L(H'(K), Py(K)) n L(C(K), Py(K)).

Let

N oK) ={ve H'(K):divv =0 in K},
MK) ={veP(K):divv=0 in K}.
Theorem 2.2. Let IT be defined by means of the relations (j), (jj). Then
IT e (4 o(K), #(K)) ;
IIv =v VveP(K).
Theorem 2.3. Let v e C*(K). Then

6./2
v — IIvew, = 4<1 + **“\/‘> hzl"|c2(x> >
Sin o

where h = diam K and « is the minimal interior angle of K.

Theorem 2.4. Let ve H/(K), j = 1, 2. Then
|[v — ITv|o x < (ch/[sin a) lv]”( R

where h, o have the same meaning as in Theorem 2.3 and ¢ > 0 is an absolute
constant.

2) L(X, Y) denotes here the space of linear bounded mappings of X into Y.
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Now we extend the above mentioned results. We shall prove that the mapping IT
preserves the negativity (or positivity) of divergence. Let us define

No(K)={veH'(K):divv £0 in K},
M(K) ={vePy(K):divy £0 in K}.
Lemma 2.2.

vedd~(K)<>ve Py(K) and f v.nds <0.

oK
Proof. Let
v =(y; + 7%, + 73Xy, Oy + 62Xy + 83%;) .

Using Green’s formula we obtain:

J‘divvdx=J. v.nds.
K K

f v.nds =0
oK

jdivvdx:(yz + 6;)mesK 0.
K

If

then

Hence y, + ;3 < 0 which implies v € .4~ (K).

3
Lemma 2.3. ve ./ (K)<>ve P(K) and Y, (¢ + Bi) I £ 0, where a; = Tyv(a;),
i=1
Bi = T,-v(aiH) and l; denotes the length of a;a;44-

Proof.

3 3 ) . 3
f v.nds=Y Twds =Y j (@ + BIS)ds = 1Y (@ + B) L.
oK i i aiai+y =

=1 Jaiaisy i=1

The assertion now follows from Lemma 2.2.

Theorem 2.5. Let IT be definied by the relations (i)- (3j)- Then
meL(#;(K), £ (K)-

Proof. Adding the equations (j) for k = 1, 2 we obtain

J Twds = [Ty, " + 29T, = a[24, 1]; + B 110 = 3o + Bo)ls
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using that A% + A% = 1 on a;a;,, and [A{”, 1], = I,/2. If v e ¢ (K) then

3
Ogjv.nd.s=z'[ Twv ds
oK i=1 Jga

idi+1

Mo

Il

1Y (i + Bi) 1

i=1

The assertion follows from the definition of IT and Lemma 2.3 (continuity of IT has
been proved in [3]).

Let 7,, he(0,1) be a triangulation of Q satisfying the usual requirements con-
cerning the mutual position of two triangles and max diam K = h VK € 7 ,. We say
that a family {77}, h € (0, 1) of triangulations of Q is regular, if there exists a con-
stant a, > 0 independent of h such that all interior angles of the triangles of 7, € {7}
are not less than a,. Denote by Iy the mapping defined on K € 7, by means of the
conditions (j), (jj)- Let K, K’ € 7, be two adjacent triangles with a common side
a;a; ;- The function Tyv defined by (2.1) with respect to the triangle K will be denoted
by T; kv (analogously for T; x, v). We say that the condition (Z) is satisfied on the
side a;a;, 4, if

T;xv + T x,v=0 on aa;,.
Now we define
N o Q) = {v, v|x € #(K) VK € T, () is satisfied on each
common side of any pair K, K’ of adjacent
triangles of ,} .
For v € H'(Q) we define the mapping r, by the relation
r,,le =IIyv VKeJ,.

Theorem 2.6. Let {7}, he(0,1) be a regular family of triangulations of Q.
Then

(2.2) rne L(A5(Q)n H'(Q), A 5(Q));
(2.3) v = rvllo.o = ch?|V]ergy Vv e CHO);
(2.4) v — rv]oo = chflvlj,Q j=1,2, and VveH/(Q),

where ¢ > 0 is an absolute constant.

Proof. The proof of (2.2) follows immediately from Theorem 2.5 and the definition
of r, (see also [3]). (2.3), (2.4) follow immediately from Theorems 2.3, 2.4 respectively.

Remark. It holds:
N ow(Q) = #5(Q) Yhe(0,1).
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Proof. Let v e A 5,(Q), ¢ € %, be arbitrary. Then

divy, ) = —jv.gradq)dx: -y ‘[v.grad<pdx=
K

o KeT p

=Yy fdivvgodx-—Z Tyve ds .
K

KeJp KeJn J ok

The last term vanishes because of the condition (%). Hence

divv, > = ) divvwdx=fdivv<pdx§0 Vo e .

KeTn J 0
Finally, let us set A ;,(Q) = 4° + A ,(0Q).
For our next purpose we estimate |[div A — div r,i|o .
Theorem 2.7. Let A e H'(K) be such that div i e H'(K). Then
(2.5) [div 4 — div ITeilo x < ch|div 4]y ¢,
where ¢ > 0 depends on the minimal interior angle o of K only.

Proof. Let P, denote the set of all constants on K. Green’s formula and the
definition of Iy yield

(2.6) (o, div 4 — div [Tgd)o x = f o(h = Hxi)nds = 0

éK

for every v e P,. It means that div ITx4 € P, is the orthogonal LZ(K) projection of
div A on P,. Using the well-known property of orthogonal projections and the
approximation property of P, in H'(K) (see [9]) we obtain the assertion.

One can easily extend (2.5) to the whole domain Q.

Theorem 2.8. Let {J,} be a regular family of triangulations of Q. Then for
every A e H'(Q) with div A e H'(Q) we have

(2.7) [div 4 — div ryd]o,o < ch|div A q,

where ¢ > 0 is an absolute constant.

3. APPLICATIONS OF A4"(Q) TO THE DUAL VARIATIONAL FORMULATION

In this section we establish the rate of convergence of the Ritz-Galerkin ap-
proximations 4y € A4 (Q) to the exact solution 4* & 477 (Q) of (#*). Let us recall
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that
=20 4 gr,
=20+,
where y* € 475 (Q), xr € A/ ox(Q) and div 4° = —f. In what follows we shall suppose
that a family {7,}, h € (0, 1) of triangulations of Q used for the construction of
N oi(©Q), is regular.
Theorem 3.1. Let y* € A 5(Q) N H'(Q), j = 1, 2. Then
(3.1) [4* = Afo.0 = O(h'?), h—0+.

Proof. Let us set 4, = A° + ry* € A (Q). Then according to (1.16) we can
write

(3.2) 4% — 2¥|2.0 < F(A* — &) + b(AF — 2%, 4y — 2%) +
+ b(A*, Ay — A¥) <

< Fr - ) + e if = 2o + et~ 2o +

+ b(A%, ry* — 7%) Ve > 0.
Using the estimate (2.4) we deduce
(33) |7 (% — rar®)] = O(W) ,
(3.4) |b(l*, ¥ — x*)[ =0l), h—->0+.
Taking ¢ > 0 sufficiently small, (3.2)—(3.4) implies (3.1).

Taking into account (3.1) we see that the optimal rate of convergence has not been
obtained. Next we shall try to improve (3.1). We shall suppose that the following
conditions are satisfied:

(3.5) (u—@)(—du—f)=0 ae in Q,
p
(3'6) Q0=UQOt’ Qoeroszq) for r#s,
t=1
where Qq, t = 1, ..., p are domains with sufficiently smooth parts of boundaries
Io0 Q.

Let us give another equivalent form of the right hand side of (1.16). Using the
definition of & and the fact that A* = grad u, we obtain

(3.7) A% — 2|20 < b(* — & 7* — 1) + f grad (¢ — u) (1* — 12) dx =
Q

=b(A* — Ay, g* — ) + u — @, div(x* — 1)) Ve N ou(Q),
where ¢, denotes the duality pairing between Hg(Q) and H™'(Q).
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Theorem 3.2. Let x* e H/(Q), u — ¢ € H(Q,,) and *on*"'(u — @) = 0 on
F()t A Q’ le x* EHm(Q)’ j’ k = 1, 2’ m = 0, 1’ 1= 1, eeuy Do Let (35), (36) be
satisfied. Then

(8) 13 = g < k2 (5 [ = 0l g0 |01V 2" ln.en) + 001,
t=1

where
Q.m={xeQ:dist(x,I'o;) < nh,n>0}.

Proof. We need to estimate the term

u—o@, div(g* — )y = Y | (u—o@)div(e* — x)dx

Kedn J K

with g, = r,g*. Let K € 7, be fixed. If u = ¢ a. e. in K, then
(39) [ pyavi - wyax—o.
K

If K  Qq, for some t =1,...,p then divy* =0 a.e. in K so that divy, =
= div IIxx* = 0 in K by virtue of Theorem 2.2. So (3.9) holds again. Let G be
a system of all K € 7, such that K n Qo, & 0 but K & Q,,. Let us set Qg =
= Q% N Qo Then

J (u — @) div (g* — x4) dx
Q

<y J [u — (pl ldiv ¥ — div xhl dx £
KeG |

< f lu — o [div z* — div g,] dx .

=1 Q0(+h
If u — ¢ € HY(Qo,), 0" *Jon*"(u — @) = 0 on I';, 0 Q and I'y, 0 Q is sufficiently
smooth, then (cf. [1]):
(3.10) lu = @llo.0uen = ch |t — @]igq -
Using (2.5) we obtain

(3.11) [div z* — div gy[[d.00,en = Y, ||div g* — div 145,k < ch®"

KnQoc*th+g

div g*|7, 9o, -
The term b(A* — Ay, x* — J,) has been estimated in Theorem 3.1. (3.8) now follows
from (3.2), (3.10), (3.11).

Up to now, very strong regularity assumption concerning the solution of (.07’) and
(9’*) have been imposed. In what follows the convergence of 4; to A* without the
rate of convergence will be proved under the only assumption that Au e [*(Q).

In the sequel, let us suppose that Q is a polygonal simply connected domainin R,. )

1y After a slight modification of the following proof, one can easily extend the results to the
case of multiply connected domains.
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Lemma 3.1. Let g€ A'5(Q), div y € I(Q) and let § = Q be a simply connected
domain. Then there exists a function y € L*(Q) with the following properties:

(3.12) =z in Q;
(3.13) . div 7 € IX0) ;
(3.14) divy <0 in {.

Proof. Since div y € I*(Q), we can define x . n e H™'/*(90) by means of Green's

formula:

fx.gradqbdx +fdiv1¢dx=f 1.npds V§e()),
0 0 2

where [, denotes the duality pairing between H'/%(6Q) and H™1%(3Q). Let w be
a solution of the boundary value problem

—Aw=g in 0-20Q
w=0 on 00
owlon = —y .n® on 0Q,
where g € I*(Q) is a given non-negative function, n® is the outward unit normal to
00 and n® = —n®, Let us set

2':/1 in Q N
~gradw in Q- Q.

From the definition of 7, (3.12) follows. Let ¢ € %(0) be fixed. Then

;‘grad(f)dx: ——fx.grad(f)dx—

% . grad ¢ dx —f
g-0 e

(divy ¢ = — f

Q

—J gradw.gradﬁdx=f div x@ dx ,f -0 ds +
g-¢ Q 2Q

where
_ _divyeI*¥Q)
T S Awe X0 - Q).

Hence (3.13), (3.14) follows.

Lemma 3.2. #5(Q) 0 [C®(Q)]* is dense in ;(div, Q) = {Ae #5(Q) and
div A € 1X(Q)} in the L*(Q)-norm.
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Proof. Let y e 47 (div, Q) be fixed, let 7 be its extension on 0 = @, given by
(3.12)—(3.14). Let us set

ih = (iuu )?2;‘) s
where 7;, € C*(Q), j = 1, 2 are the regularizations of 7; defined by

7ul) :j 30 ex — v hydy, h>0, xyed.
g
o(x, h) is the usual kernel of the regularization (see [4]). It is known that
I7; = Zinllosg > 0 for h—0+.
Let h > 0 be sufficiently small and x € Q. Then

L~ 0 . J . .~
div z,(x) = P Xin + P X2n = _j x(y) . grad, o(x — y, h)dy =
1 )X, o

IIA

=f divz(y) o(x — y, h)dy <0
g

by virtue of the fact that w = 0. Finally,

[div 2, — divg]loo— 0 for h—0+.

Theorem 3.3. Let the solution u of (2) be such that Au € I*(Q). Then
1 = Blog =0, ho 04

Proof. divA* = due I*(Q) and divi® = —fe Q) yield divy*e [*}Q). In
order to prove the convergence of 4 to A* (or gy to y) it is sufficient to prove that
there exists a space of smooth functions dense in g (div, Q) (see [8]). Such an
assertion follows from Lemma 3.2.

Acknowledgement. The autor is grateful to ing. I. Hlavdéek, CSc. for his scrutiny
of the manuscript and some valuable suggestions.
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Souhrn

DUALNI ANALYZA NEROVNIC II. RADU METODOU
KONECNYCH PRVKU

JAROSLAV HASLINGER

V préaci je studovana dualni variani formulace k okrajovym eliptickym problémim
s nerovnostmi (piekazkami) zadanymi uvnitf oblasti. K numerickému feSeni je
navrZzena metoda koneénych prvkid. Uzitim po &astech linearnich rovnovaznych
prvki, zavedenych v [3], se dokazuje fad konvergence Ritzovych aproximaci za pfed-
pokladu jisté hladkosti pfesného feseni. V dalsim se pfedpoklady na hladkost feseni
zeslabuyji.
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