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SVAZEK 24 (1979) A P L I K A C E M A T E M A T I K Y ČÍSLO 1 

SOLUTION OF ELLIPTIC PROBLEM WITH NOT FULLY 
SPECIFIED DIRICHLET BOUNDARY VALUE 

CONDITIONS AND ITS APPLICATION IN HYDRODYNAMICS 

MlLOSLAV FE1STAUER 

(Received April 19, 1977) 

1. INTRODUCTION 

In this paper we shall deal with the solution of a problem connected with the in­
vestigation of two-dimensional models describing stream fields of an ideal incom­
pressible fluid in multiply connected domains. It concerns mainly the irrotational 
stationary flows round a group of profiles which are inserted into the fluid. We can 
meet this problem e.g. in the study of stream fields in diffuser channels of turbines 
with rings for the compensation of undesirable development of the boundary layer. 
See [3]. 

We consider not only plane stream fields as the authors who use the "singularity" 
or complex functions methods (see e.g. [4, 6, 8]), but we study the situation including 
plane and axially-symmetric stream fields and moreover, the flows in a layer of 
variable thickness, which represent the fundamental two-dimensional linear problems 
of inner hydrodynamics. 

2. FORMULATION AND SOLUTION OF THE PROBLEM 

First, let us introduce the notation. Let Q e E 2 be an (r + l)-multiply connected 
bounded domain with a Lipschitz boundary dQ . E2(Ek) is the two-dimensional 
(k-dimensional) Euclidean space. The coordinates of points in E 2 will be denoted 
by x, y. Let the components C0, ..., Cr of dQ be geometric images of Jordan curves 
and let Ct a Int C0 for i = 1, ..., r. Further, let dQ be divided into three parts 
(dQ)n,(dQ)t andK : 

dQ = (dQ)n u (8Q)t u K , 

where the union is disjoint, K is a finite set and the sets Ct n (dQ)„ and Ct n (dQ)t 

have finite numbers of components, which are open arcs (i = 0, ..., r). We suppose 
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that Ct n (cQ)n + 0 for i = 0, ..., r. The closure of the set Q will be denoted by O. 
See Fig. 1, where C0 = L{ u L2 u Fx u F2, C0 n (dO)„ = L t u L2, C0 n (30) r = 
= Fi U F2, K = {A, B, C, D}. 

inflow 

outflow 

Ғig. 1. 

Let us consider the following boundary value problem: 

(i) 

(2) 

(3) 

d íuí \W — Kx> y) — 
ox \ ox 

- (h(x, y) д_ 

õy\ 

õ_ф 
дn 

дф 

дy 
= —ùo(x, y) in O , 

(дQ)t = <pt, 

ф | (ÕQ)n uK = ф. 

Here h, do are functions defined in the domain O, h is continuous and bounded and 
satisfies the inequalities 

(4) 0 < h0 = lî(x, y) = h! < + 00 in O , 

where h0, h± are constants, djdn denotes the derivative in the direction of the outer 
normal to dQ. <pt and \j/ are given functions defined in the set (dQ)t and (cQ)n, re­
spectively. Let W\(Q) be the well-known Sobolev space. Then, provided there exists 
a function \j/0 e W\(Q) such that \//0 | (dQ)n = \j/ and cpt e L2((dQ)t), w e L2(Q), the 
problem (1), (2), (3) has a unique weak solution \j/ e Wl

2(Q). See [5, 7]. 
If the function h has continuous and bounded first order partial derivatives in Q, 

then we can write the equation (l) in the form 

Åф + -VҺ.Vф 
h 

•co , 
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which is a special case of the uniformly elliptic equation 

/ \S2\i/ „ f / x d2\jj , ,e2\\i 
(5) <x, y) -Z + 2b(x, y) —^ + c(x, y) - f + 

Ox Ox Oy Oy 

+ 4*. y) 7^ + <*, J0 jr = - c°(x' J') • 

OX Oy 

Functions a, b, ..., e are continuous and bounded in .Q and 

a(x, y) e + 2b{x, y) fr + c(x, y) n2 £ C(£2 + n2) 

for all (x, y) e .(2 and all %,n e Et. C is a constant independent of x, y, «J, ?l. Let us 
now consider the problem (5), (2), (3). 

In hydrodynamics we can meet the problem of the determination of the Dirichlet 
condition (3) ([2, 3]). The function \j) is in every set Ct n (O.Q)„ given by the relation 

(6) $ | Ct n (dQ)n = $ . + a., i = 0, ..., r , 

where the functions xj/0,..., \J/r and the constant q0 are given, but qA,...,qr are 
unknown real constants, which must be determined so that a solution \j/ of the 
problem (5), (2), (3) satisfies some other demands. There exist various criteria for the 
determination of the constants qt. One of the most common will be used here. 

It is necessary to impose some additional smoothness conditions on a solution 
of our problem. Therefore we shall introduce the following assumptions. 

A s s u m p t i o n ( A l ) . Let ate C{ n (dQ)n, i = 1, ..., r, be given points. Let the 
outer normal to dQ exist at every point u e (dQ)t u [au ..., ar). For every u e (dQ)t u 
u {ai, ..., ar) let there exist a closed circle Ku <= Q such that u e OKU. 

For given Q, (dQ)n, (eQ)t, a, ..., e, co, cpt let &(Q, (dQ)n, (dQ)t, a, ..., e, co, cpt) 
denote the class of functions \j) defined in (dQ)n, for which the solution \]/ e C(Q) n 
n C2(Q) of the problem (5), (2), (3) exists and has a finite derivative dij/jdn at every 
point ah i = 1, ..., r. 

A s s u m p t i o n (A2). Let 0>(Q, (dQ)n, (dQ)t, a,..., e, co, <pt) + 0. If $ : (dQ\ -> Ft 
and $ | Q n (O1^ is constant (i = 0, ..., r), then let 

$ e ^(.(2, (eQ)n, (8Q)t, a,..., e, 0, 0 ) . 

In the case (eQ)t = 0 (Dirichlet problem), we can find in [5] sufficient conditions 
imposed on the domain Q and on the functions a, ..., e and co, under which the 
assumption (A2) is satisfied. 

Our problem (we shall denote it by (P)) consists in the following: Let vl9 ..., vre Et 

and iff t : Ct n (dQ)n -> Ex (i = 0, ..., r) be given, q0 = 0. We want to find a function 
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\jj : Q -> El and constants q{, ..., qreEi satisfying (2), (3), (5), (6) and 

O) %(ad-«t. - - 1 r. 
On 

In the investigation of this problem we shall use the well-known maximum principle 

for solutions of elliptic equations. 

Theorem 1. Let (x0, y0) e Q be a maximum point of a solution cp e C(Q) n C2(Q) 

of the equation (5), where Oj = 0. 1) If (x0, y0) e Q, then cp is constant in Q. 2) If 

(xo> yo) e d& is such that the derivative (dcp/dn) (x0, y0) and a closed circle K c Q 

with (x0, y0) e dK exist, then cp is either constant in Q or (dcpjdn) (x0, y0) > 0. 

(See [1].) 

R e m a r k 1. As a simple consequence of Theorem 1 we get the uniqueness of the 

solution of the problem (5), (2), (3) in the space C(Q) n C2(.Q). 

Let (Al) and (A2) be valid. Given functions i/>t- : Ct n (dQ)n -> Eu i = 0, ..., r, 

denote by $ : (dQ)n -> Ex the function defined by the relations & | Ct n (dQ)n = ij/h 

i = 0, ..., r. We assume that 

(8) 9 e &(Q9 (dQ)„, (dQ)t, a,..., e, co, cpt). 

Let J/>0 be the solution of the equation (5) with the boundary value conditions 

(9a) ^0\(8Q)n = 9, 

(dQ)t = <p,, # 0 

дn 

let i//t (i = 1, ..., r) be the solution of the equation (5) with co = 0, satisfying the 

boundary value conditions of the form 

дфţ 
õn 

(9b) il/i\Cjn(dQ)n = Sij, j = 0, . . , r , 

(dQ)t = 0 . 

If qu . . . , qr e E1 are arbitrary numbers, then 

r 

(io) ifr = ^o + I qdi 
i = l 

is a unique solution of the problem (2), (3), (5), \j/ e C(Q) n C2(Q) and a finite de­
rivative (dil/jdn) (a() exists for i = 1, . . . , r, as follows from (A2) and (8). Now, it is 
evident that the problem (P) is equivalent to the determination of constants qx, . . . , qr 
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so that the function (10) fulfils the conditions (7). If we put (10) into (7), we get 
a system of linear algebraic equations 

r 
(11) X>/1q1 = Pi, i = h ..., r , 

1=i 
where 

(12) «„-^(-.), A - - . - - £ («,). 
O/i on 

Let us prove the assertion on the solvability of the problem (P). 

Theorem 2. If we suppose that the assumptions (Al), (A2) and (8) are fulfilled, 
then the matrix of the system (11) is regular and the problem (P) has a unique 
solution. This solution is given by the formula (10) with constants qx, ..., qr which 
are the solution of the system (11). 

P r o o f Relations (7) and (10) define a mapping / : Er ~> Er, f(qu ..., qr) = 
= (v1? ..., vr). It is evident that the problem (P) has a unique solution for every 
(vj, ..., vr) e Er if and only iff is a 1 — 1 mapping and f(Er) = Er. This property is 
obviously equivalent to the regularity of the matrix (aij)

r
ij=l of the system (11). 

Let the matrix ((xtJ) be singular. Then we can suppose that there exist numbers 
Xx, ..., Xr e Ft such that e.g. Xv = 1 and 

£ ocijÁj = 0 for i = 1, ..., г , 
1 = i 

or, in view of (12) 

Let us put 

Íljd-P(ai) = 0 for i - » l , . . . , r . 
j = i on 

<P = I ^A ' 
1=1 

It is easy to see that (p is a solution of the equation (5) with co = 0, q> e C(Q) n C2(Q) 
and 

(13) <p | C0 n (3Q)n = 0 , cp\Cln (dQ)n = 1 , 

(14) ^(dQ)t = 0, ^ ( a f ) = 0 for i = l , . . . , r . 
3/1 O1^ 

q> is not constant and achieves its maximum in Q. Theorem 1, the assumption (Al) 
and the first equality in (14) imply that the maximum point of cp lies in the set (dQ)n u 
u K. Since (p is constant in every set Ct n (dQ)n, i = 0, ..., r (see (9b)), one of at 
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(i = 1, ..., r) is necessarily a maximum point of cp in view of (13). From Theorem 1 

it follows that the inequality 

?(«.)>o 
on 

holds for this point ah which is a contradiction to (14). 

R e m a r k 2. If Cio n (30)M = 0 for some i0 e {1, ..., r ] , then we do not consider 

the condition (7) for this i0. The function \j/ satisfies the Neumann condition in the 

whole set Cio and (11) reduces to a system of s equations for s unknowns, where 

s < r is the number of all curves Ct such that Ct n {dQ)n 4= 0- Theorem 2 remains 

valid. 

3. APPLICATION IN HYDRODYNAMICS 

Let us consider again the boundary value problem (1), (2), (3). We shall easily find 

out that for every solution \j/ of the equation (l) with a> = 0 in Q the functions 

(15) Vx = h — 9 vy = -h—-
cy ox 

are the solution of the system of equations 

(16) M+M,0, 
dx dy 

(17) ^ _ ^ = 0 
dx dy 

for the irrotational flow of an ideal incompressible fluid. (16) is the continuity equa­

tion, (17) is the condition of the irrotational flow, h = 1 or h = \Jy in Q for plane or 

axially-symmetric flows respectively. In the latter case the assumption (4) implies that 

the axis of symmetry x does not intersect the stream field. If h = h(x, y) is a con­

tinuous function satisfying (4), then the equation (l) describes two-dimensional or 

axially-symmetric flows in a layer of a variable thickness 1/h. 

If the function co is not identically equal to zero, then the functions defined by the 

relations (15) fulfil the equations (16) and 

(18) 
дvл, дvү 

ôx дy 
= co . 

c5 can be characterized as the vorticity of a stream field. It is necessary to emphasize 

that the system (16), (18) does not describe rotational stream fields in general, since 
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it is necessary to satisfy the Euler equations of motion (see [2]). \j/ is the so called 

stream function. 

The condition (2) corresponds to the tangential component Vt of velocity at the 

points of the set (dQ)t. The function \j) in (3) can be determined from the given normal 

component Vn of velocity in (dQ)n uniquely in every set Ct n (dQ)n (i — 1, ..., r) 

up to an additive constant qh which is not known in advance. As a simple example, 

the plane flow in a bounded domain round r fixed and impermeable profiles can be 

used. The stream function \jj is on the boundary of each profile equal to a constant, 

which is, however, unknown. One of the possible criteria for the determination of 

these constants is the knowledge of the so called trailing points ah where the velocity 

is supposed to be equal to zero, from which we get the set of conditions 

^ ( a , . ) = 0 , i = l , . . . , r . 
en 

In more general situations, e.g. for moving profiles, we get the conditions (7). 

R e m a r k 3. In paragraph 2, the method of solution of the problem (P) is included 

among other. It is possible to find the functions \j/0, ..., \j/r and then, in view of Theo­

rem 2, to get the solution sought in the form (10). We can add that in the report [3] 

a direct numerical method for the approximate solution of the problem (P) was 

suggested, which was also applied to the solution of an analogous nonlinear problem 

of subsonic compressible flow. 
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S o u h r n 

ŘEŠENÍ ELIPTICKÉHO PROBLÉMU S NESPECIFIKOVANÝMI 
DÍRICHLETOVSKÝMI OKRAJOVÝMI PODMÍNKAMI 

A JEHO APLIKACE V HYDRODYNAMICE 

MILOSLAV FEISTAUER 

V článku je řešen smíšený okrajový problém pro lineární parciální diferenciální 
rovnici eliptického typu ve vícenásobně souvislé oblasti. Dirichletov. ké podmínky 
jsou na komponentách hranice oblasti dané až na aditivní konstanty, předem nezná­
mé. Tyto konstanty je třeba určit spolu s řešením okrajové úlohy tak, aby byly splněny 
jisté doplňující podmínky. Byla dokázána existence a jednoznačnost řešení této 
úlohy za předpokladu splnění jisté hladkosti řešení okrajové úlohy se známými 
okrajovými podmínkami. Výsledky mají bezprostřední aplikace v hydrodynamice 
při řešení obtékání soustavy profilů. 

Authoťs address: RNDr. Miloslav Feistauer, CSc., Matematicko-fyzikální fakulta UK, Malo­
stranské nám. 25, 118 00 Praha 1. 
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