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SPECIFIED DIRICHLET BOUNDARY VALUE
CONDITIONS AND ITS APPLICATION IN HYDRODYNAMICS

MiLoSLAV FEISTAUER

(Received April 19, 1977)

1. INTRODUCTION

In this paper we shall deal with the solution of a problem connected with the in-
vestigation of two-dimensional models describing stream fields of an ideal incom-
pressible fluid in multiply connected domains. It concerns mainly the irrotational
stationary flows round a group of profiles which are inserted into the fluid. We can
meet this problem e.g. in the study of stream fields in diffuser channels of turbines
with rings for the compensation of undesirable developmeht of the boundary layer.
See [3].

We consider not only plane stream fields as the authors who use the “‘singularity”
or complex functions methods (see e.g. [4, 6, 8]), but we study the situation including
plane and axially-symmetric stream fields and moreover, the flows in a layer of
variable thickness, which represent the fundamental two-dimensional linear problems
of inner hydrodynamics.

2. FORMULATION AND SOLUTION OF THE PROBLEM

First, let us introduce the notation. Let Q < E, be an (r + 1)-multiply connected
bounded domain with a Lipschitz boundary ¢Q . E,(E,) is the two-dimensional
(k-dimensional) Euclidean space. The coordinates of points in E, will be denoted
by x, y. Let the components Cy, ..., C, of 02 be geometric images of Jordan curves
and let C; = Int C, for i = 1, ..., r. Further, let 0Q be divided into three parts
(09),, (0Q), and K:

0Q = (0Q), v (0Q), VK,

where the union is disjoint, K is a finite set and the sets C; n (9Q), and C; N (0Q),
have finite numbers of components, which are open arcs (i = 0, ..., r). We suppose
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that C; » (0Q), # 0 for i = 0, ..., r. The closure of the set Q will be denoted by Q.
See Fig. 1, where Co = L, UL, uTl'y UT,, Con(0Q), =L, UL, Cyn(3Q), =
=TI, Ul K = {4,B,C, D).

I

outflow

L,

Fig. 1.

Let us consider the following boundary value problem:

1) 4 (h(x, V) ;3-‘”-> + 2 (h(x, v %) — —a(x, ) in @,

& x dy
2) Y (2Q), = o,
on
(3) ¥|(09), K =17.

Here h, @ are functions defined in the domain Q, h is continuous and bounded and
satisfies the inequalities

(4) 0 < hy < h(x,y)<h < +o0in Q,

where hy, hy are constants. 0/dn denotes the derivative in the direction of the outer
normal to 0Q. ¢, and  are given functions defined in the set (6Q), and (6Q),, re-
spectively. Let W3(<Q) be the well-known Sobolev space. Then, provided there exists
a function ¥, € W3(Q) such that , | (0Q), = § and ¢, e L,((02),), & € L,(Q), the
problem (1), (2), (3) has a unique weak solution ¥ € W3(€). See [5, 7].

If the function h has continuous and bounded first order partial derivatives in Q,
then we can write the equation (1) in the form

Al//—l—,th.Vl//:-—a),
1
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which is a special case of the uniformly elliptic equation

oAy oHy

o2y
a(x, y)— + 2b(x, + c(x, y) — +
(%) (x. ) ox? (x.7) ox dy (x.7) oy*
+ d(x, y) Wy e(x, y) W = —o(x,y).
Ox oy

Functions a, b, ..., e are continuous and bounded in Q and
a(x, y) & + 2b(x, y) &n + e(x, y)n* = C(&* + n?)

for all (x, y)e Q and all &,y e E,. C is a constant independent of x, y, &, 1. Let us
now consider the problem (5), (2), (3).

In hydrodynamics we can meet the problem of the determination of the Dirichlet
condition (3) ([2, 3]). The function ¥ is in every set C; N (0Q), given by the relation

(6) lplcim(ag)n:!/;i'*'qi, i=0,...,r,

where the functions ¥, ..., ¥, and the constant g, are given, but ¢, ..., q, are
unknown real constants, which must be determined so that a solution ¥ of the
problem (5), (2), (3) satisfies some other demands. There exist various criteria for the
determination of the constants g;. One of the most common will be used here.

It is necessary to impose some additional smoothness conditions on a solution
of our problem. Therefore we shall introduce the following assumptions.

Assumption (Al). Let a;e C;n (0Q),, i = 1,...,r, be given points. Let the
outer normal to 0Q exist at every point u € (3Q), U {ay, ..., a,}. For every u € (0Q), U
u {ay, ..., a,} let there exist a closed circle K, = @ such that u € 0K,

For given @,(09Q),, (0Q), a,....,e,w, ¢, let P(Q,(0Q),, (0Q), a,....e, », ¢,)
denote the class of functions ¥ defined in (0Q),, for which the solution ¥ € Q) n
N C*(Q) of the problem (5), (2), (3) exists and has a finite derivative dys/0n at every
pointa,i=1,...,r.

Assumption (A2). Let 2(Q, (0Q),, (02),. a, .... e, w, ¢,) * 0. If § : (0Q), > E,
and ¥ | C; n (0Q), is constant (i = 0, ..., ), then let

Ve 2(Q,(2Q),, (02),, a, ..., ¢, 0,0).

In the case (0Q), = 0 (Dirichlet problem), we can find in [5] sufficient conditions
imposed on the domain  and on the functions a, ..., e and w, under which the
assumption (A2) is satisfied.

Our problem (we shall denote it by (P)) consists in the following: Let vy, ..., v, € E;
and §/;: C; n (0Q), - E, (i = 0, ..., ) be given, g, = 0. We want to find a function
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¥ : Q@ - E, and constants q,, ..., q, € E, satisfying (2), (3), (5), (6) and
(7) (Zl-//(ai)r—-v,., i=1,..,r.
on

In the investigation of this problem we shall use the well-known maximum principle
for solutions of elliptic equations.

Theorem 1. Let (x,, yo) € @ be a maximum point of a solution ¢ € C() n C*(Q)
of the equation (5), where w = 0. 1) If (xo, yo) € @, then ¢ is constant in Q. 2) If
(x0» ¥0) € 09 is such that the derivative (3¢|on) (xo, yo) and a closed circle K =
with (xo, yo) € 0K exist, then ¢ is either constant in Q or (3¢[dn)(xo, yo) > 0.

(See [1].)

Remark 1. As a simple consequence of Theorem 1 we get the uniqueness of the
solution of the problem (5), (2), (3) in the space C(2) n C*(Q).

Let (A1) and (A2) be valid. Given functions /;: C; 0 (0Q), = E;, i =0, ..., r,
denote by 9 : (0Q), —» E, the function defined by the relations 3 l C,n(0Q), = ¥
i=0,...,r. We assume that

(3) 9e 2(2,(02), (0Q), a,....e, », ¢,) .

Let , be the solution of the equation (5) with the boundary value conditions

(%) Vo | (69), = 9,
% (aQ)t = @,
on

let ; (i =1, ..., r) be the solution of the equation (5) with w = 0, satisfying the
boundary value conditions of the form

(9b) lpi l Cj n (aQ)n = 5ij5 j = O, T,

,
il (20), = 0.
o109

If g4, ..., q, € E, are arbitrary numbers, then
(10) V=1 +_Z:1qil//i
is a unique solution of the problem (2), (3), (5), ¥ € C(R) n C*(2) and a finite de-

rivative (0y/on) (a;) exists for i = 1, ..., r, as follows from (A2) and (8). Now, it is
evident that the problem (P) is equivalent to the determination of constants g, ..., 4,
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so that the function (10) fulfils the conditions (7). If we put (10) into (7), we get
a system of linear algebraic equations

(11) Z“ijquﬁ;, i=1,..,r,
i=1
where
o 3
(12) ay = Viay, B=ov,— ).
on on

Let us prove the assertion on the solvability of the problem (P)

Theorem 2. If we suppose that the assumptions (A1), (A2) and (8) are fulfilled,
then the matrix of the system (11) is regular and the problem (P) has a unique
solution. This solution is given by the formula (10) with constants q,, ..., q, which
are the solution of the system (1 1).

Proof. Relations (7) and (10) define a mapping f:E, > E,, f(q,,....4q,) =
= (v,, ..., v,). It is evident that the problem (P) has a unique solution for every
(vy,....0,)€E, if and only if fis a 1 — | mapping and f(E,) = E,. This property is
obviously equivalent to the regularity of the matrix (a;;)7 ;= of the system (11).

Let the matrix (o;;) be singular. Then we can suppose that there exist numbers
Aty ooy A, € Eq such thate.g. 4, = 1 and

Zaijgjzo for i=1,...,r,
i=1
or, in view of (12)

zjow
=1

I(a)=0 for i=1,..,r.
on

J

Let us put
Q=3 ;.
i=1

It is easy to see that ¢ is a solution of the equation (5) with w = 0, ¢ € C(Q) n C*(Q)
and

(13) | Con(09Q),=0, ¢|C, n(Q), =1,

(14) 57‘-”(59),:0, aip(a,-)=0 for i=1,...,r.
on on

¢ is not constant and achieves its maximum in Q. Theorem 1, the assumption (Al)
and the first equality in (14) imply that the maximum point of ¢ lies in the set (02), U
U K. Since ¢ is constant in every set C; N (2Q),, i = 0, ..., r (see (9b)), one of q;
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(i = 1,...,r) is necessarily a maximum point of ¢ in view of (13). From Theorem 1
it follows that the inequality

L@y=o
on
holds for this point a;, which is a contradiction to (14).

Remark 2. If C;) n (0Q), = 0 for some iy e {1,....r}, then we do not consider
the condition (7) for this i,. The function ¥ satisfies the Neumann condition in the
whole set C;, and (11) reduces to a system of s equations for s unknowns, where
s < r is the number of all curves C; such that C; n (0Q), * 0. Theorem 2 remains
valid.

3. APPLICATION IN HYDRODYNAMICS

Let us consider again the boundary value problem (1), (2), (3). We shall easily find
out that for every solution ¥ of the equation (1) with @ = 0 in Q the functions

M/, '}
A A Q}k

y
ay ox

(15) v,

are the solution of the system of equations

), )
h N h —0

(16)

Ox dy
0v 0
(17) Py s 0
O0x Jdy

for the irrotational flow of an ideal incompressible fluid. (16) is the continuity equa-
tion, (17) is the condition of the irrotational flow. 1 = 1 or h = 1]y in Q for plane or
axially-symmetric flows respectively. In the latter case the assumption (4) implies that
the axis of symmetry x does not intersect the stream field. If h = h(x, y) is a con-
tinuous function satisfying (4), then the equation (1) describes two-dimensional or
axially-symmetric flows in a layer of a variable thickness 1/h.

If the function @ is not identically equal to zero, then the functions defined by the
relations (15) fulfil the equations (16) and

(13)

v, dv,
—2 - =4,
0x dy

@ can be characterized as the vorticity of a stream field. It is necessary to emphasize
that the system (16), (18) does not describe rotational stream fields in general, since
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it is necessary to satisfy the Euler equations of motion (see [2]).  is the so called
stream function.

The condition (2) corresponds to the tangential component ¥, of velocity at the
points of the set (8Q),. The function  in (3) can be determined from the given normal
component ¥, of velocity in (0Q), uniquely in every set C; n (02), (i = 1,...,r)
up to an additive constant ¢;, which is not known in advance. As a simple example,
the plane flow in a bounded domain round r fixed and impermeable profiles can be
used. The stream function ¥ is on the boundary of each profile equal to a constant,
which is, however, unknown. One of the possible criteria for the determination of
these constants is the knowledge of the so called trailing points «;, where the velocity
is supposed to be equal to zero, from which we get the set of conditions

0 .
i(ai) =0, i=1,..,r.
on
In more general situations, e.g. for moving profiles, we get the conditions (7).

Remark 3. In paragraph 2, the method of solution of the problem (P) is included
among other. It is possible to find the functions y,, ..., ¥, and then, in view of Theo-
rem 2, to get the solution sought in the form (10). We can add that in the report [3]
a direct numerical method for the approximate solution of the problem (P) was
suggested, which was also applied to the solution of an analogous nonlinear problem
of subsonic compressible flow.

References

[11 L. Bers, F. John, M. Schechter: Partial differential equations. Interscience publishers, New
York— London— Sydney, 1964.

[2]1 M. Feistauer: On two-dimensional and three-dimensional axially-symmetric rotational flows
of an ideal incompressible fluid. Apl. mat. 22 (1977) No 3, 199—214.

[3] M. Feistauer: Solution of axially-symmetric stream fields in multiply connected domains.
Technical research report, SKODA Plzeii, 1977 (in Czech).

[4] K. Jacob: Berechnung der inkompressiblen Potentialstromung fiir Einzel- und Gitterprofile
nach einer Variante des Martensens-Verfahrens. Bericht 63 RO2 der Aerodynamischen
Versuchsanstalt Gottingen, 1963.

[S] O. A. Jlaowincenckasa, H. H. ¥Ypaasyesa: JInHeiHble U KBA3UIMHEHBIC YPABHECHUS SIITUIITHYEC-
xoro tuna. Hayka, Mocksa, 1973.

[6] JI. I'. Jloiiyancxuii: Mexanuka xuaxocTu u raza. ®dusmatpus, Mocksa, 1973.

[7] J. Necas: Les méthodes directes en théorie des equations elliptiques. Academia, Prague,
1967.

[8] Z. Vidsek: Plane potential flow of an ideal incompressible fluid round groups of profiles
and cascades of profiles. PhD thesis, Faculty of Mathematics and Physics, Prague, 1973
(in Czech).

73



Souhrn

RESEN[ ELIPTICKEHO PROBLEMU S NESPECIFIKOVANYMI
DIRICHLETOVSKYMI OKRAJOVYMI PODMINKAMI
A JEHO APLIKACE V HYDRODYNAMICE

MiLoSLAV FEISTAUER

V ¢lanku je feSen smiSeny okrajovy problém pro linearni parcialni diferencidlni
rovnici eliptického typu ve vicenasobné souvislé oblasti. Dirichletov.ké podminky
Jjsou na komponentéach hranice oblasti dané az na aditivni konstanty, pfedem nezna-
mé. Tyto konstanty je tieba ur€it spolu s feSenim okrajové ulohy tak, aby byly splnény
jisté doplitujici podminky. Byla dokdzana existence a jednoznalnost feSeni této
ulohy za ptedpokladu splnéni jisté hladkosti feSeni okrajové tlohy se znamymi
okrajovymi podminkami. Vysledky maji bezprostfedni aplikace v hydrodynamice
pfi feSeni obtékani soustavy profila.

Author’s address: RNDr. Miloslav Feistauer, CSc., Matematicko-fyzikalni fakulta UK, Malo-
stranské nam. 25, 118 00 Praha 1.
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