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SVAZEK 24 (1979) A P L I K A C E M A T E M A T I K Y ČÍSLO 1 

ON ASYMPTOTIC STABILITY OF PASSIVE LINEAR ELECTRICAL 
NETWORKS 

ZDENĚK RYJÁČEK 

(Received April 6, 1977) 

1. INTRODUCTION 

Given an oriented graph G with branches (edges) vi9 ...,vr and nodes (vertices) 
ul9 ..., us, let us denote v = (vi9 ..., vr)

T, u = (ul9 ..., us)
T. Let c be a real vector of 

type (r, 1). Then the expression K = cTv will be called a 1-complex. If K = cTv 
si also a 1-complex, a, a real numbers, let us define aK + aK = (ac + ac) T v. We 
put K = cTv = 0 if and only if c = o. We call the complexes Ku ...,Km linearly 

r 

independent, if ]T O^Ki = 0 implies that O*£ = 0, i = 1, . . . , r. Similarly, the expression 
i=l 

L = cTu, where c is a real vector of type (s, l), will be called a 0-complex. The notions 
of aL + aL, L = 0 and linear independence are defined analogously. 

For each branch v of G we define dv = u2 — ul9 where u2(u2) is the terminal 
(initial) node of the branch v. For an arbitrary 1-complex K = cTv we define dK = 

r 

= YJ ci dvi- If dK = 0 ? t r i e n t n e Vcomplex K will be called a cyc/c. 
j = i 

Lemma 1. Let K = cTv be a cycle. Then there exist loops Kt = d]v, i = 1, . . . , m 

such that 

m 

i = l 

2. if wc denote dt = (cla, . . . , J,>)T, c = (c1? . . . , cr)
T, then d{j + 0 => ĉ  4= 0 fOr 

i = 1, . . . , m, j = 1, . . . , r . 
P roo f may be found in [2], Theorem 1.2. From Lemma 1 one obtains easily 

Lemma 2. Let B be a real diagonal positive semidefinite matrix of type (r, r). 
Then the condition dTBd > 0 holds for every loop dTv if and only if cTBc > 0 
holds for every nonzero cycle cTv. 
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The incidence matrix A = (aik) (of type (r, s)) of a graph G is defined by the 
conditions 

aik = 1, if uk is the terminal node of the branch vh 

aik = — 1, if uk is the initial node of the branch vh 

aik = 0, if uk is not incident with the branch v,-. 

Lemma 3. Let K = cTv; then K is a cycle if and only if ATc = o. 

P roo f is evident. 

Let us denote by X the matrix of type (r, n) the columns of which form a complete 
system of linearly independent solutions of the equation ATx = o. Then the following 
statement is true: 

Lemma 4. a) The elements of the vector XTv form a complete set of linearly 
independent cycles of the graph G. 

b) If cTv is a cycle, then there exists a real vector w such that c = Xw. 

Proo f see in [ l ] , Theorem l.L 

Let G be an oriented graph, R, L,S real matrices of type (r, r). Then the ordered 
tetrad (G, R, L, S) will be called a network. 

Let us denote by R the field of rational functions of complex variable p with real 
coefficients. If M is a matrix the elements of which belong to R, we call it a matrix 
over R. 

Let a network N = (G, R, L, S) be given, let e be a vector of type (r, 1) over R, 
let #0, q0 be constant real vectors of type (r, 1). Then a vector i of type (r, 1) over R 
is said to be a solution of the network N corresponding to the vector e and initial 
vectors i0, q0, if the following conditions are satisfied: 

(K l ) ATi = o, 

(K2) cT(Lp + R + Sp_ 1) = cT(e + L/0 - Sq0p_ 1) for every cycle cTv of the 

graph G. 

Theorem 1. Let a network N = (G, R, L, S) be given, let X be a matrix the columns 
of which form a complete set of linearly independent solutions of the equation 
ATx = o. Then the solution of the network N corresponding to the vector e and 
initial vectors i0, q0 (if it exists) is given by 

i = X[XT(Lp + R + Sp-1) X ] - 1 XT(e + L/0 - Sq^'1) . 

Proof follows from [ l ] , Theorem 1.3. 

A network N = (G, R, L, S) will be called passive, if the following conditions are 
fulfilled: 

a) the matrices R, S are diagonal, 
b) the matrices R, L, S are positive semidefinite. 
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Theorem 2. Let N = (G, R, L, S) be a passive network. If 

cT(R + L + S) c > 0 

fOr every nonzero cycle cTv of the graph G, then for any vectors e, i0, q0 f/?ere 
exists a unique solution i of N. 

Proo f follows from [ l ] , Theorem 5.2. 

Let Z be a matrix over R. A complex number a will be called a pole of ra-th order 
of the matrix Z, if a is a pole of ra-th order of at least one element of Z and a pole of 
at most ra-th order of each element of Z. 

Let us denote by © the set of all complex numbers with positive real part and by (£> 
its closure (oo belongs to ©). Let S„ be the set of all symmetrical matrices Z over R 
of type (n, n) which fulfil the condition 

Re xTZx _ 0 

for every real vector x of type (n, 1) and for any p e © which is not a pole of Z. 
Let tyn be the set of all matrices belonging to <£„ which fulfil the condition 

Re xTZx > 0 

for every real nonzero vector x of type (n, 1) and for every p e © which is not a pole 
o fZ . 

Obviously: a) Zl9 Z2e 2>n => oc1Zl + a2Z2 e Sn provided a1? a2 = 0, 

b) Z , e S , , Z2eyn=>Z1+ Z2e %, 

c) in particular, every positive (semi-)definite matrix belongs to (&n) S$n. 

Theorem 3. If Z e S n , then there exist real numbers cou...,com and constant 
matrices Hke S7J, k = 0, 1, ..., m, such that 

Z(p) = Z(p) + H0/> + £ H, - T - L , 
fc=l p + CDk 

where Z e S7I has nO TO/es in (5. 

Theorem 4. Let Z e Sn . Then Z G S$n if and only if det Z =# OfOr every p e $>. 

Theorem 5. If Z e *pn then Z _ 1 exists and Z _ 1 e ^3M. 

Theorem 6. If Z e 67J ana7 C is any rea/ constant matrix of type (n, k), then 
CTZC e s*. 

P roo f s of Theorems 3 — 6 can be found in [ l ] , Chap. 4. 

50 



2. A CRITERION OF ASYMPTOTIC STABILITY OF PASSIVE NETWORK 

Let N = (G, R, L, S) be a passive network. The network N will be called asympto­
tically stable if for any real vectors i0, q0 the solution / of the network N correspond­
ing to the vector e = o and initial conditions i0, q0 exists and has no poles in (E>. 

Remark . If the conditions (K l) , (K2) are interpreted as Laplace transforms of 
Kirchhorf's laws, then one can easily prove that for any solutions i l5 i2 of N cor­
responding to the same vector e0 the difference i1 — i2 (which is a solution of N 
corresponding to e = o) has no poles in ft> if and only if 

lim||.SP-1(l1)(0-JS?-1(l2)(0|| = 0 -
t-+oo 

Theorem 7. Let N = (G, R, L, S) be a passive network. Suppose that the following 
conditions are fulfilled for every nonzero cycle cTv of the graph G: 

1. cT(R + S)c > 0, 

2. cT(R + L) c > 0, 

3. if cTRc = 0 then there exists a nonzero cycle cTv of G such that the conditions 
cTSc 4= 0 and cTLc = 0 are simultaneously fulfilled. 

Then the network N is asymptotically stable. 

Proof. 

Lemma 5. Under the same assumptions as in Theorem 7, 

W(p) = X T Z ( p ) X e f „ . 

Proof. The network N is passive and hence by Theorem 6 We ©n. It follows 
from Theorem 4 that We tyn if and only if det W + 0 in $>. Suppose that there exists 
p0 e (5 such that det W(p0) = 0. Then there exists a nonzero vector w such that 
W(p0) w = o, hence Re (wTXTZ(p0) Xw) = 0, which for p0 = p0 + ip0, c = Xw 
and nonzero cycle cTv yields 

(1) cTRc + p0c
TLc + -&- cTSc = 0 . 

\Po\ 

By hypothesis, all terms on the left-hand side of (l) are non-negative and cannot 
be simultaneously zero, which is a contradiction. 

Lemma 6. Under the same assumptions as in Theorem 7, 

det W(ico0) + 0 

for every real co0 + 0. 
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Proof. Suppose det W(ico0) = 0, co0 being a real nonzero number. Then there 
exists a real nonzero vector w such that 

(2) W(icoo) w = o 

and therefore for a nonzero cycle cTv, where c = Xw, it holds 

cтRc + i (ю0c
тLc - — c т S c ) = 0 

and hence cTRc = 0. 

By assumption 3) of Theorem 7 there exists a cycle cTv of G such that cTSc =j= 0 
and cTLc = 0. By Lemma 4 there exists a nonzero vector w such that c = Xw. 
Then (2) implies wTW(ico0) w = 0, consequently 

£TRc + i (co0i
TLc - - cTSc\ = 0 

and hence 
co0c

TLc = cTSc . 

This contradiction proves our lemma. 

Lemma 7. Under the same assumptions as in Theorem 1 the matrix W " 1 has 
no poles in (£>. 

Proof. Lemma 5 and Theorem 5 guarantee the existence of the matrix W~1e tyn; 
by Theorem 3, W1 has no poles in (5 and the poles on the imaginary axis and at 
infinity are simple. Lemma 6 then implies that the only poles of W - 1 in © can be 0 
and oo. 

a) Suppose 0 is a pole of W" 1 . By Theorem 3 there exist matrices H, Ke &n 

such that W1 = Hp _ 1 + K(p), where H is a constant nonzero matrix and K(p) 
has no pole in 0, Simultaneously 

W(p) = XTSX - + XT(R + Lp) X. 
P 

The obvious identity WW1 = / (/ is the unit matrix) then yields 

/ = XTSXH — + XTSXK(p) - + XT(R + Lp) XH - + XT(R + Lp) XK(p). 
p2 p p 

This implies that XTSXH = HXTSX = 0. Multiplying by p and letting p -> 0 one 
obtains 

XTSXK0 + XTRXH = 0 
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(where K0 = lim K(p)). Consequently, HXT(^R + S) XH = 0. Suppose H has a non-

zero column h. Then for a nonzero cycle cTv = (Xh)T v of G one obtains 

cT(R + S) c = 0 , 

which contradicts assumption 1 of Theorem 7. 

b) Suppose oo is a pole of W" 1 . Similarly, from W 1 = Hp + K(p) and W = 
= XTLXp + XT(R + Sp-x) X one obtains HXT(R + L) XH = 0, which contradicts 
assumption 2 of Theorem 7. 

P roo f of Theorem 7. 

Let /(p) be a solution of N corresponding to the vector e = o and initial conditions 
i0, q0 (its existence follows from Theorem 2). By Theorem 1, 

(3) i(P) = A(P) (L;0 - sq0 A) 

where 
A(p) = X[XTZ(p) X ] " 1 XT = XW XXT. 

From Lemma 7 it follows that A has no poles in (E> and hence the only pole of i 
in © can be 0. 

Suppose 0 is a pole of W~1XTSp~1. Then there exist matrices H, K of type (n, r) 
such that 

W - ^ ^ p - 1 = Hp"1 + K(p), 

where H is a constant matrix and K(p) is regular at 0 (and hence K0 = lim K(p) 
exists). This implies further that p~*° 

XTSp-' = W^p-' + Kip)), 
which yields 

X ^ p - 1 = XTLXK(p)p + XTLXH + XTRXK + (XTRXH + X ^ X K ) ^ 1 + 

+ XTSXHp 2 . 

This implies that XTSXH = 0 and therefore 

(4) HTXTSXH = 0 . 

Multiplying by p and letting p -> 0 one obtains XTS = XTRXH + XTSXK0 and 
hence 

(5) HTXTS = HTXTRXH . 

Suppose that the j - th column h of H is nonzero. Then dTv = (Xfi)Tv is a nonzero 
cycle of G and it follows from (4) that dTSd = 0, therefore by assumption 1 dTRd > 0 
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and hence the element (/, j) of the matrix HTXTRXH is nonzero. However, from 
dTSd = 0 and from the fact that S is a diagonal positive semidefinite matrix it follows 
that dTS = o, and hence the j - th row of the matrix HTXTS is zero, which contradicts 
(5). This contradiction proves that W~1XTSp~1 has no poles in (5 and it follows 
from (3) that / has the same property. 

From Theorem 7 one can immediately obtain the following well-known theorem: 

Theorem 8. Let N = (G, R, L, S) be a passive network. Suppose dTRd > 0 for 
each loop dTv of G. Then N is asymptotically stable. 

P r o o f follows from Theorem 7, Lemma 2 and from the diagonality of R. 

For networks with a diagonal matrix L one can obtain the following 

Theorem 9. Let N = (G, R, L, S) be a passive network with a diagonal matrix L. 
Suppose the following conditions are fulfilled for every nonzero loop dTv of G: 

1. dT(R + S)d > 0, 

2. dT(R + L) d > 0, 

3. if dTRd = 0, then there exists a loop dTv of G such that simultaneously dTSd =# 
* 0 and dTLd = 0. 

Then the network N is asymptotically stable. 

Proof. Theorem 9 can be proved in a similar manner as Theorem 7. By Lemma 2, 
assumptions 1 and 2 of Theorem 9 are equivalent with those of Theorem 7. Assump­
tion 3 is used only in the proof of Lemma 6, which can be proved analogously using 
assumption 3 of Theorem 9, Lemma 1 and the diagonality of the matrices R, L, S. 

Remark . From the physical view-point, Theorem 9 gives sufficient conditions of 
asymptotic stability which can be used for networks with loops without nonzero 
resistors. Such a loop without nonzero resistors must contain a nonzero capacitor 
and an inductor (assumptions 1 and 2) and the capacitor must be contained in 
another loop (assumption 3). Theorem 7 is a generalization of this condition to 
networks with inductive couplings. 
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S o u h r n 

O ASYMPTOTICKÉ STABILITĚ PASIVNÍCH LINEÁRNÍCH 
ELEKTRICKÝCH OBVODŮ 

ZDENĚK RYJÁČEK 

V práci je uvedeno kriterium asymptotické stability řešení lineárního elektrického 
obvodu se soustředěnými parametry, jež je oslabením podmínek dosud známých — 
kriterium lze použít i na obvody, jejichž některé smyčky neobsahují nenulový 
ohmický odpor. 

Author's address: Zdeněk Ryjáček, Vysoká škola strojní a elektro, Nejedlého sady 14, 306 14 
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