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ON ASYMPTOTIC STABILITY OF PASSIVE LINEAR ELECTRICAL
NETWORKS

ZDENEK RYJACEK

(Received April 6, 1977)

1. INTRODUCTION

Given an oriented graph G with branches (edges) v, ..., v, and nodes (vertices)
uy, ..., ug let us denote v = (v, ..., v,)7, u = (uy, ..., u,)". Let ¢ be a real vector of
type (r,1). Then the expression K = c'v will be called a 1-complex. If K = €'v
si also a 1-complex, @, & real numbers, let us define aK + dK = (ac + @c)"v. We
put K = c'v = 0if and only if ¢ = 0. We call the complexes K, ..., K,, linearly

independent, if  6;K; = 0 implies that§; = 0,i = 1, ..., r. Similarly, the expression
i=1

L = c"u, where c is a real vector of type (s, 1), will be called a 0-complex. The notions
of aL + &L, L = 0 and linear independence are defined analogously.

For each branch v of G we define dv = u, — u,, where u,(u,) is the terminal
(initia]) node of the branch v. For an arbitrary 1-complex K = ¢'v we define 0K =

=Y ¢; 0v;. If 9K = 0, then the 1-complex K will be called a cycle.
i=1

i=

Lemma 1. Let K = v be a cycle. Then there exist loops K; = dlv, i =1,....m
such that

1. K =Y ady,
i=1

2. if we denote d; = (dyy, ..., d;,)T, € = (cy,....¢,)T, then d;; + 0=c; + 0 for
i=1,...m,j=1,...,r.

Proof may be found in [2], Theorem 1.2. From Lemma 1 one obtains easily

Lemma 2. Let B be a real diagonal positive semidefinite matrix of type (r, r).
Then the condition d"Bd > 0 holds for every loop d'v if and only if ¢<'Bc >0
holds for every nonzero cycle c'v.
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The incidence matrix A = (ay) (of type (r,s)) of a graph G is defined by the
conditions

ayg = 1, if u, is the terminal node of the branch v;,
ay = —1, if u, is the initial node of the branch v,,
ay = 0, if u, is not incident with the branch v,.

Lemma 3. Let K = c'v; then K is a cycle if and only if ATc = o.
Proof is evident.

Let us denote by X the matrix of type (r, n) the columns of which form a complete
system of linearly independent solutions of the equation A™x = o. Then the following
statement is true:

Lemma 4. a) The elements of the vector X'v form a complete set of linearly
independent cycles of the graph G.
b) If c"v is a cycle, then there exists a real vector w such that ¢ = Xw.

Proof see in [1], Theorem 1.1.

Let G be an oriented graph, R, L, S real matrices of type (r, r). Then the ordered
tetrad (G, R, L, S) will be called a network.

Let us denote by R the field of rational functions of complex variable p with real
coefficients. If M is a matrix the elements of which belong to R, we call it a matrix
over R.

Let a network N = (G, R, L, S) be given, let e be a vector of type (r, 1) over R,
let iy, o be constant real vectors of type (r, 1). Then a vector i of type (r, 1) over R
is said to be a solution of the network N corresponding to the vector e and initial
vectors iy, qq, if the following conditions are satisfied:

(K1) ATi = o,
(K2) <"(Lp + R+ Sp~') = c"(e + Li, — Sqop~"') for every cycle c'v of the
graph G.

Theorem 1. Let a network N = (G, R,L, S) be given, let X be a matrix the columns
of which form a complete set of linearly independent solutions of the equation
ATx = o. Then the solution of the network N corresponding to the vector e and
initial vectors iy, o (if it exists) is given by

i=X[X"(Lp +R + Sp~*)X]™* X"(e + Li; — Sqop~").

Proof follows from [1], Theorem 1.3.

A network N = (G, R, L, S) will be called passive, if the following conditions are
fulfilled:

a) the matrices R, S are diagonal,
b) the matrices R, L, § are positive semidefinite.
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Theorem 2. Let N = (G, R, L, S) be a passive network. If
c'R+L+S)c>0

for every nonzero cycle c'v of the graph G, then for any vectors e, iy, qq there
exists a unique solution i of N.

Proof follows from [1], Theorem 5.2.

Lct Z be a matrix over R. A complex number o will be called a pole of m-th order
of the matrix Z, if o is a pole of m-th order of at least one element of Z and a pole of
at most m-th order of each element of Z.

Let us denote by ® the set of all complex numbers with positive real part and by &
its closure (oo belongs to ®). Let &, be the set of all symmetrical matrices Z over R
of type (n, n) which fulfil the condition

Rex"Zx =0

for every real vector x of type (n, 1) and for any p e ® which is not a pole of Z.
Let B, be the set of all matrices belonging to €, which fulfil the condition

Re x"Zx > 0

for every real nonzero vector x of type (n,1) and for every p € ® which is not a pole
of Z.

Obviously: a) Z,,Z,€ &, = o, Z, + a,Z, € S, provided «;,a, = 0,
b) Zl € 6", ZZ€ “Bn = Z1 + ZZ € qsn’

c) in particular, every positive (semi-)definite matrix belongs to (&,) B,

Theorem 3. If Ze &,, then there exist real numbers w,, ..., w, and constant
matrices Hoe €,, k = 0, 1, ..., m, such that

Z(p) = Z(p) + Hop + Y. H, TB-'“Z >
k=1 P+ wg

where Z € &, has no poles in ©.

Theorem 4. Let Ze €,. Then Ze B, if and only if det Z % 0 for every p e ©®.

Theorem 5. If Ze P, then Z~ ! exists and Z~' € PB,.

Theorem 6. If Ze &, and C is any real constant matrix of type (n, k), then
C'zCe G,

Proofs of Theorems 3—6 can be found in [1], Chap. 4.
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2. A CRITERION OF ASYMPTOTIC STABILITY OF PASSIVE NETWORK

Let N = (G, R, L, S) be a passive network. The nctwork N will be called asym pto-
tically stable if for any real vectors iy, q, the solution i of the network N correspond-
ing to the vector e = o and initial conditions iy, q, exists and has no poles in &.

Remark. If the conditions (Kl),(KZ) are interpreted as Laplace transforms of
Kirchhoff’s laws, then one can easily prove that for any solutions i,, i, of N cor-
responding to the same vector e, the difference i, — i, (which is a solution of N
corresponding to e = o) has no poles in & if and only if

lim |26 (0~ 27 @) (0] = .

Theorem 7. Let N = (G, R, L, S) be a passive network. Suppose that the following
conditions are fulfilled for every nonzero cycle <'v of the graph G:

I. <"(R+ $§)c>0,

2. (R + L)c >0,

3. if <"Rc = 0 then there exists a nonzero cycle €'v of G such that the conditions

¢'Sc + 0 and <"Le = 0 are simultaneously fulfilled.

Then the network N is asymptotically stable.

Proof.

Lemma 5. Under the same assumptions as in Theorem 7,
W(p) = XTZ(p) Xe®,.

Proof. The network N is passive and hence by Theorem 6 We G,. It follows
from Theorem 4 that We 3, if and only if det W = 0 in ®. Suppose that there exists
Po € ® such that det W(p,) = 0. Then there exists a nonzero vector w such that
W(p,) w = o, hence Re (w'X"Z(p,) Xw) = 0, which for p, = p; + ipj, € = Xw
and nonzero cycle c'v yields

1 cRe + pycLle + P2 c"sc = 0.
|Pol*

By hypothesis, all terms on the left-hand side of (1) are non-negative and cannot
be simultancously zero, which is a contradiction.

Lemma 6. Under the same assumptions as in Theorem 7,
det W(iwg) # 0

for every real o + 0.
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Proof. Suppose det W(iwy) = 0, w, being a real nonzero number. Then there
exists a real nonzero vector w such that

(2) W(iwg)w = o
and therefore for a nonzero cycle ¢'v, where ¢ = Xw, it holds
T : T I =
c'Re +i|wyc'Lle — —c'Sc) =0
[
and hence ¢'Rc = 0.

By assumption 3) of Theorem 7 there exists a cycle €'v of G such that ¢"Sc + 0
and ¢'Lc = 0. By Lemma 4 there exists a nonzero vector w such that ¢ = Xw.
Then (2) implies w'W(iw,) w = 0, consequently

¢Re + i (wyc"Le — L erse) =0
o
and hence
w3cLe = ¢"Sc.

This contradiction proves our lemma.

Lemma 7. Under the same assumptions as in Theorem 7 the matrix W™ has
no poles in .

Proof. Lemma 5 and Theorem 5 guarantee the existence of the matrix W™ 1e B,;
by Theorem 3, W~ has no poles in ® and the poles on the imaginary axis and at
infinity are simple. Lemma 6 then implies that the only poles of W™ in & can be 0
and oo.

a) Suppose 0 is a pole of W™'. By Theorem 3 there exist matrices H, Ke S,
such that W™! = Hp~' + K(p), where H is a constant nonzero matrix and K(p)
has no pole in 0. Simultaneously

W(p) = szx% + X'(R + Lp) X.
The obvious identity WW ™' = I (I is the unit matrix) then yields
1= XTsxH ;}2- + XTSXK(p)i + XT(R + Lp) XH i + XT(R + Lp) XK(p).
This implies that X"SXH = HX"SX = 0. Multiplying by p and letting p — 0 one
obtains

XTSXK, + X'"RXH = 0
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(where K, = lim K(p)). Consequently, HX"(R + §) XH = 0. Suppose H has a non-
p—0
zero column h. Then for a nonzero cycle ¢'v = (Xh)" v of G one obtains
<R+ S)c=0,

which contradicts assumption 1 of Theorem 7.

b) Suppose o is a pole of W', Similarly, from W™' = Hp + K(p) and W =
= X"LXp + X"(R + Sp™') X one obtains HX"(R + L) XH = 0, which contradicts
assumption 2 of Theorem 7.

Proof of Theorem 7.

Let i(p) be a solution of N corresponding to the vector e = o and initial conditions
iy, g, (its existence follows from Theorem 2). By Theorem 1,

N i sq L
® () = A7) (L~ 53, 1)
where
A(p) = X[XZ(p) X] ' XT= XW IXT.

From Lemma 7 it follows that A has no poles in & and hence the only pole of i
in ® can be 0.
Suppose 0 is a pole of W™'X"Sp~'. Then there exist matrices H, K of type (n, r)
such that
W IXTSp™t = Hp~™! + K(p),

where H is a constant matrix and K(p) is regular at 0 (and hence K, = lim K(p)
exists). This implies further that p=0

X'Sp~' = W(Hp™' + K(p)),
which yields

XTSp~t = XTLXK(p)p + XTLXH + X"RXK + (XTRXH + XTSXK) p 4+
+ XTSXHp~2.
This implies that X"SXH = 0 and therefore
4) H™X"SXH = 0.

Multiplying by p and letting p — 0 one obtains X'S = X'RXH + X"SXK, and
hence

(5) H™X'S = H™X"RXH .

Suppose that the j-th column h of H is nonzero. Then d'v = (Xh)Tv is a nonzero
cycle of G and it follows from (4) that d7Sd = 0, therefore by assumption 1 d'Rd > 0
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and hence the element (j, j) of the matrix HTXTRXH is nonzero. However, from
d'Sd = 0 and from the fact that S is a diagonal positive semidefinite matrix it follows
that d'S = o, and hence the j-th row of the matrix HTX"S is zero, which contradicts
(5). This contradiction proves that W~ *X"Sp~! has no poles in ® and it follows
from (3) that i has the same property.

From Theorem 7 one can immediately obtain the following well-known theorem:

Theorem 8. Let N = (G, R, L,S) be a passive network. Suppose d'"Rd > 0 for
each loop d"v of G. Then N is asymptotically stable.

Proof follows from Theorem 7, Lemma 2 and from the diagonality of R.
For networks with a diagonal matrix L one can obtain the following

Theorem 9. Let N = (G, R, L, S) be a passive network with a diagonal matrix L.
Suppose the following conditions are fulfilled for every nonzero loop d'v of G:

1. d"(R + S)d > 0,
2. d"(R + L)d > 0,

3. if d'Rd = 0, then there exists a loop d'v of G such that simultaneously d'Sd +
+ 0 and d"Ld = 0.

Then the network N is asymptotically stable.

Proof. Theorem 9 can be proved in a similar manner as Theorem 7. By Lemma 2,
assumptions 1 and 2 of Theorem 9 are equivalent with those of Theorem 7. Assump-
tion 3 is used only in the proof of Lemma 6, which can be proved analogously using
assumption 3 of Theorem 9, Lemma 1 and the diagonality of the matrices R, L, S.

Remark. From the physical view-point, Theorem 9 gives sufficient conditions of
asymptotic stability which can be used for networks with loops without nonzero
resistors. Such a loop without nonzero resistors must contain a nonzero capacitor
and an inductor (assumptions 1 and 2) and the capacitor must be contained in
another loop (assumption 3). Theorem 7 is a generalization of this condition to
networks with inductive couplings.
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Souhrn

O ASYMPTOTICKE STABILITE PASIVNICH LINEARNICH
ELEKTRICKYCH OBVODU

ZDENEK RYJACEK
V prdéci je uvedeno kriterium asymptotické stability feSeni linedrniho elektrického
obvodu se soustiedénymi parametry, jeZ je oslabenim podminek dosud zndmych —
kriterium lze pouZit i na obvody, jejichz nékteré smycky neobsahuji nenulovy

ohmicky odpor.
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