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ORTHOEXPONENTIAL POLYNOMIALS AND THE LEGENDRE
POLYNOMIALS

OTAKAR JAROCH

(Received April 5, 1977)

Orthogonal exponential polynomials or orthoexponential polynomials have
interesting applications in Automatic Control — Laning-Battin [8], Elecirical
Circuits Theory — CiZek [2], Tuttle [10], Hydrometeorology — Dmitriyev [4], and
as a means for the inversion of Laplace iransforms — Jaroch [5]. A very simple
connection will be shown to exist between the orthoexponential and the Legendre
polynomials.

In this paper, the letiers k, m, n denote nonnegative integers, t and x are real
variables, 3, is the Kronecker delta function and, in Definition I only, [#/2] denotes
the integer part of n/2. As the notation and standardization of both the orthoexponen-
tial and the Legendre polynomials vary, definitions of the Legendre, Jacobi, and
orthoexponential polynomials as used in this paper are re-stated here.

Definition I [6] The functions (p,,(l) = Z bue ™, n=1,2,3,..., are called
k=1

orthoexponential polynomials if the coefficients b,, are so chosen that for all m, n
the following conditions are satisfied: ¢,(0) = 1 and [§ ¢,(1) 9,(t) dt = 5,../|0.]>-
wrkfn\(n+k—=1Y.

k k=1 )°
¢.(1) = ¢”". For all n we have rp,,(+ o) = 0. Orthoexponential polynomials are
bounded and |¢,(f)] <1 for all nonnegative t. Their norm is |¢,| = (2n)""/?
and orthonormal exponential polynomials are therefore i (2n)'? ¢,(1).

The coefficients of orthoexponential polynomials are b, =(—1)

[n/21
Definition 11 [9]. The polynomials P,(x) =Y a,x""*, n=0,1,2,..., are
k=0

called Legendre polynomials if the coefficients a,, are so chosen that for all m, n

the following conditions are satisfied: P,(1) = 1 and [*] P,(x) P,(x) dx = &,,|P,|?
The coefficients of the Legendre polynomials are a,;, = (— 1)" 27" : 2 ; 2k ;

Py(x) = 1. Their norm is |P,| = (n + %)~ /%, and |P,(x)] < Lifonly —1 < x £ L.
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The notation Pf,“”’)(x) is used for the Jacobi polynomials, orthogonal over
(=1, 1) with respect to the weight function (I — x)* (1 + x)/, « > —1, f > —1,
and standardized with P{P(1) = n:a>. Legendre polynomials are a special
case of the Jacobi polynomials for o = = 0. Many properties of the Jacobi poly-
nomials originate from their close connection with the hypergeometric function.
The following relation will be used in this paper:

(1) (I +x) P2P(x) = PYOO»x) + PEP(x), n=1,

where P{”"%(x) = P,(x) are the Legendre polynomials [ 1], [9].

It is known [6] that orthoexponential polynomials can be expressed in terms of
the Jacobi polynomials Pff””(x). However, no explicit mention has been found so
far of a simple relation connecting the orthoexponential and the Legendre poly-
nomials as expressed in the following two theorems.

Theorem 1. Let ¢, (1) be the orthoexponential polynomials and P,,(x) the Legendre

polynomials in accordance with Definitions I and I1; n = 1,2,3,.... Then, for
arbitrary t,
(2) o(1) = H[P2e”" = 1) + P, (27" — 1)].

Proof. In Eq. (2), orthoexponeniial polynomials are expressed, in accordance
with Definitions T and 11, as linear combinations of exponential funciions e™, e "', ...
.., e~ "". The standardization ¢,(0) = 1, ¢,(+o0) = 0, is satisfied at the same time.
It remains to prove that 7 ¢,(1) ¢,(f)dt = §,,(2n)"". Substituting x = 2¢™" — 1
in Eq. (1) we have

207 P2 = 1) = P27 — 1) + P,_y(2¢e7 = 1)

and Eq. (2) is therefore equivalent to

(3) (p,,(t) = e"Pf,O,‘})(Ze” — 1).
The norm of the Jacobi polynomials is known [1] [9] and for the case under con-
sideration we have |P{""|| = 2'/2(n + 1)7"/?. As a consequence,

0 0

j 0ul1) (1) dt = j e P2t — 1) POD(2e " — 1)di

t

and, if the substiiuiion x = 2¢~ ' — 1 is used,

0 -1

o0 +1
[ ot ayan = [0+ PG PG 6 = son)
Q.e.d.
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Remark. Jacobi polynomials are defined by Courant and Hilbert [3] [6] as
polynomials orthogonal over (0, 1) with respect to the weight function x~ (1 — x)? 4,
g > 0,p — q > —1,and denoted by G,(p, ¢, x). The standardization is G,(p, ¢, 0) =
= 1 for all n. In this case Eq. (3) becomes

(4) P(t) = (—1)"""ne™'G,_,(2,2,¢7")

and Eq. (2) assumes the form
(5) ou1) = (1) 27 '[G(1, 1, ™) = Guoy (1, 1, e 7).

Example 1. The value of ¢,0(1) is to be computed from Eq. (2). For t = 1 we have
2e™" — | = —0-264241 and thus @,o(1) = 3[P;o(—0-264241) + Po(—0-264241)] =
= 1(0-237018 — 0-148194). The result is ¢;o(1) = 0-044412. A calculation of values
of the orthoexponential polynomials based on Definition I involves, for large n,
computations with prohibitively large numbers. In this example, if Definition I is
used for the computation of (/)10(1) then the largest coefficient involved is by, =
= —960960.

Theorem 2. Let ¢,(1) be the orthoexponential polynomials and P,(x) the Legendre
polynomials in accordance with Definitions 1 and II; n = 1,2,3,.... Then, for
arbitrary t,

(6) P —1)=20¢,() = 2@, (1) + ...+ (1) 20,(t) + (—1)".

Proof. For n =1 we have ¢,(t) = §[P,(2¢”" — 1) + 1] as a consequence of
Theorem 1 and thus P;(2¢™" — 1) =2¢,(t) — 1. For n =2 we find ¢,(1) =
= 1[P,(2¢7" = 1) + P,(2¢™" — 1)] or @,(1) = }[P>(2¢7" — 1) + 2 ¢,(r) — 1] and
that too agrees with Eq. (6). The proof proceeds by induction. Let us assume that
Eq. (6) is valid for a certain integer n > 1. It follows from Theorem 1 that ¢, 1(t) =
= [P,(2e7" = 1) + P,2e”" = 1)] or P, y(2e7" — 1) =209, (1) —

— P,(2e7"—1). Substituting for P,(2¢~* — 1) from Eq. (6) we have P, (2¢ 7' — 1) =
=2¢,() = 20,(t) + ... + (1) 2¢,(1) + (=1)""". Qe.d.

Remark. For the Jacobi polynomials in the Courant and Hilbert notation [3]
an analogous relation follows from Eq. (5):

(1) G(LLe)=1=20¢,(t) +2¢,(t) = 25(1) + ... + (=1)"29,1).

Example 2. Theseries 1 —2 ¢, (1) + 2 ¢,(1) = 2 @3(1) + ... + (= 1)"29,(1) + ...
... = 0 is convergent for any positive t. The n-th partial sum of this series is (—1)".
. P,(2¢7" — 1) as a consequence of Theorem 2. Laplace’s theorem on the asymptotics
of the Legendre polynomials [9] states that P,(x) = O(n~'/?) for n — oo if only
—1 < x < 1. Thus, the n-th partial sum of the series under consideration is (—1)" .
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.P,,(Ze" —-1)= o(l) and the series therefore converges. Accordingly, the series

2% (=1)""" @,(t) = 1 converges for any positive t; for 1 = 0 the series is divergent.
n=1

CONCLUSION

The theorems proved in this paper are useful if a formulation is sought, for ortho-
exponential polynomials, of some of the many known resulis in the theory of classical
orthogonal polynomials. Furthermore, Theorem | may be convenient for the com-
putation of values of orthoexponential polynomials if ihe values of the Legendre
polynomials are available. In addition to the recurrence formula

(8) (n+1)2n = 1)@,y =
=[(4n* — e " —=2n*]2¢, — (n — 1)(2n + 1) @, ,

n=1,23..¢ =e¢’, ¢, =0 (see Jaroch-Novotny [7]) we have here another
relation, namely ¢,(t) = 3[P,(2¢™" — 1) + P,_,(2¢e™" — 1)], which is useful when
an effective algorithm is required for the computation of values of orthoexponential
polynomials.
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Souhrn

O SOUVISLOSTI ORTOEXPONENCIALNICH MNOHOCLENU
S LEGENDREOVYMI MNOHOCLENY

OTAKAR JAROCH

n

Vyjddfeni ortoexponencidlnich mnohoclentt ¢,(f) = Y b,.e ¥ podle definice 1 je
k=1

pro velkd n nevhodné pro numericky vypocet funkénich hodnot, protozZe k vysledku
prichdzime od¢itdnim velkych Cisel. V tomto piipad€ je uZite¢ny rekurentni vzorec
(8) nebo v tomto <&ldnku dokdzand véta 1, totiz ¢,(1) = H{P,2e "— 1) +
+ P,_;(2e" " —1)], kde P,(x) jsou Legendreovy mnohoc¢leny. Véty, ukazujici na
souvislost ortoexponencidlnich mnohoc¢lentt s Legendreovymi mnohocleny jsou
uziteéné jednak pro numerické vypolty jednak proto, Ze umoziuji jednoduchym
zpusobem pienést na ortocexponencidlni mnohocleny nékteré vysledky z teorie klasic-
kych ortogondlnich mnohoclenti. Ortoexponencidlni mnohocleny jsme definovali
se standardizaci ¢,(0) = 1 pro vSechna n, protoze pfi této volbé zvldsté vyniknou
souvislosti s klasickou teorii ortogondlnich mnoho¢lent.
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