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INTRODUCTION 

Let us consider a deformable body under the action of prescribed body forces. Its 
equilibrium state is governed by the well-known (geometrically linear) conditions 
of equilibrium and strain-displacement relations. These conditions and relations have 
to be completed by two different types of other relations: 

1° the constitutive law (i.e. a relation between the stress tensor and the strain 
tensor in the interior of the body); 

2° the boundary conditions (i.e. a system of relations between the stress vector 
and the displacement vector along the edge of the body; these relations describe the 
interaction of the body with its neighbourhood). 

It is the purpose of the present paper to give a detailed discussion of the boundary 
conditions. The point of view that we are going to develop, consists in considering 
the relation between the stress vector and the displacement vector along the boundary 
as an independent, self-consistent "law of interaction" which can be expressed in 
terms of a subgradient relation. This relation will include the known classical, 
unilateral and bilateral boundary conditions as special cases. However, the main 
intention of our discussion is the establishing of the complete equivalence of the 
boundary value problem (in its generalized setting), the principle of virtual work and 
the principle of minimum potential energy on the one hand, and in bringing more 
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light into the relationship between the principle of minimum potential energy and 
its dual problem (principle of minimum complementary energy) on the other one. 
Although our approach can be extended to more general types of constitutive laws, 
in the present paper we restrict ourselves for the sake of simplicity to Hooke's 
law (with the standard assumptions on the elastic coefficients). 

A very comprehensive discussion of mechanical systems (static case and quasi-
static evolution case) in the context of variational statements, convex functional 
and duality with respect to paired topological vector spaces may be found in Moreau 
[10] —[13] and Nayroles [14] — [16]. In these papers a great variety of constitutive 
laws and phenomena (e.g. friction) are expressed in terms of a subgradient relation. 
Special constitutive laws of this type are also studied in Lene [9]. Let us finally refer 
to [5] where nonlinear problems involving Hencky type laws are studied. 

General classical boundary conditions (in linear elasticity) are discussed in Hla-
vacek [6] and Hlavacek, Necas [7]. A profound investigation of boundary con­
ditions involving unilateral constraints, in particular the Signorini problem, may be 
found in Fichera [3], [4] (cf. also Duvaut, Lions [2]). Boundary conditions of 
friction type are studied in the book of Duvaut, Lions [2]. 

The present Part I of our paper is arranged as follows. In Section 1 we summarize 
first of all some known facts concerning traces of Sobolev space functions. Then we 
introduce the concept of the trace of a stress tensor and prove some auxiliary results 
which are also of interest by themselves. In particular, the advantage of this concept 
is that the traces of the stress tensors belong to the dual of the space of traces of the 
displacement vectors. Finally, we discuss in this section some properties of convex 
functionals. The following section presents the (generalized) formulation of our 
boundary value problem (Problem I) and several equivalent versions and special 
cases. Section 3 is devoted to a detailed discussion of a number of examples of 
our abstract formulation of the boundary conditions. In Section 4 we introduce the 
principle of virtual displacements (Problem II) and the principle of minimum poten­
tial energy (Problem III) and make clear the relationships between all problems 
stated. 

In Part II of our paper we prove first of all some existence theorems for Problem III. 
Then we present a detailed discussion of the dual problem to Problem III and of the 
relationships between the both problems. 

1. NOTATION. PRELIMINARIES 

1° Let Q be a bounded domain in IR3 with boundary F. We suppose that Q 
belongs to the class C0'1 *). Then the unit outer normal n = {nl9n29n3} exists 

] ) The bounded domain Q a M3 is said to belong to the class Ck'fl (k = 0, 1, 2...; 0 < n ^ 1) 
if (i) to each x e F there exists an open ball Bx centred at x such that the intersection Bx n F 
can be described by a C^-function, and (ii) Bx n F divides Bx into an exterior and an interior 
part with respect to Q; cf. [17] for further details. 
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a. e. on F (with respect to the surface measure), and its components are measurable 
and bounded (cf. [17]). 

We introduce the Hilbert spaces 

& = [L2(Q)]3 , r = \w\(o)f 
with the scalar products and norms 

(u, v) = ufvj dx 2) , |u | = (u, u)1/2 , 

((u, v)) = u{Vi dx + UijVij dx 2) , ||u|| = ((u, u))1/2 , 
Jil JQ 

respectively (W\(Q) denotes the usual Sobolev space; cf. [17]). 
Setting 

eU = sij(u) = i(ui.J + uj,i) > u e t \ 

0t = {u e r : ei}(u) e^u) dx = 0} 

we have (cf. [2], [7]). 

Lemma 1.1. Let Q e C0'1. Then: 

(i) There exists a positive constant c1 such that 

eu(u) e{j(u) dx + |u |2
 = c^uf VuEr . I f Q 

(ii) (Korrts inequality). Let ^ 0 be any closed subspace of i^ with ir
0 n 0t = {0}. 

Then there exists a positive constant c3 such that 

I £ij(U) Sij(U) dx = C2\\u\\2 Vu G i^Q . 
}Q 

(iii) $ = {uEir:u = a + bxx,a,b = const, x E Q). 
The functions in 0t are called rigid displacements. Maintaining the assumption 
Q E C0,1 we introduce further the Hilbert spaces 

H = [L2(r)y, v=[w2(r)f>). 
Let (h, g)H = JY hiQi dS denote the scalar product on H, while let 

!І-(ZW(o) 1/2 

i=í 

be the norm on V. The imbedding V a H is compact and dense (cf. [17]). 

1, 2, 3. Further, we use the convention that a repeated subscript means summation over 1, 2, 3, 
and the notation ut = du/dxt. 

3) Let us refer to [17] for the definition, norm etc. of the spaces LP(F)(\ ^ p < -f-oo) and 
W*(T) (s > 0, real). 
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Further, let V* denote the dual of V, || \\v* the dual norm on V* and <h*, h}v the 
dual pairing between h* e V* and heV. Identifying H with its dual one obtains the 
continuous and dense imbedding H c V*, and in the case heH and g e V the 
dual pairing between h and g coincides with their scalar product in H. 

For the elements in V one can introduce the concept of trace (cf. [17]). 

Lemma 1.2. Let QeC0'1. Then: 

(i) There exists a uniquely determined mapping y e S£(Y', V) such that 

y(u) = u\r Vu e [C°°(D)]3 . 

(ii) For each h e V there exists a u e if such that 

y(u) = h , \\u\\ — c\\h\\v 

(c = const > 0). 

2° Now we introduce the spaces of tensor fields 

S = {T : Ty 6 L2(Q), Ty = Tji} , 

T={TeS:TijjeL2(Q)}. 

It is easily verified that S and T are Hilbert spaces with respect to the scalar products 

(*» т) s 
(JijTij dx , G, T e S , 

(°> т ) r = (G 0 T l 7 + o-ijjTik}k) dx , a, T G T , 

respectively. Using the arguments of [17, Theoreme 2.3.1] it can be shown that 

[Cco(.Q)]9 is dense in T. For the elements in T we have the following concept of 

trace. 

Lemma 1.3. Let QeC0'1. Then: 

(i) There exists a uniquely determined mapping n e J£(T, V*) such that 

(«to). = *<,|-n, Vre[C» ( i3)]^) . 

(ii) (Generalized Green's formula) For any x e T and any u e if it holds 

TijUij dx + TjjUidx = <я(т), y(и)>-

(iii) FOr cac/i /z* e V* l/icrc exists a T e T such that 

TT(T) = h*, | | T | | T ^ c|h*| |K* 
(c = const > 0). 

) More precisely, it holds 

<тt(т), K)v = ľ rџnjh, dS т є [Cæ(í2)]9 , VhєV . 

However, we use the above notation for the sake of simplicity. 
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Proof. The assertions (i) and (ii) are readily obtained when starting from the 
(classical) Green formula and using the density of [C°°(.Q)]9 in T. 

Let us prove (iii). To this end, let h* e V* be arbitrarily given. We have then 
|<h*, y(O)>F| = Oi|O| for all O e 0t. With regard to the fact that 01 is a closed subspace 
of Jf7, the Hahn-Banach theorem yields the existence of an element f e J-f such that 

-<h*,y{Q)\ = (f,Q) V8e<M, \f\ S cx\h*\\v.. 

Hence, by virtue of Lemma 1.1 (ii) one obtains exactly one « e f 0 I such that 

(VI) [ Btj(u) BtJ(v) dx = (/, v) + </T*, y(v)}v Vver. 

Set rtj = £ij(u). Then r{j e L?(Q), and ||T||S g c2||h*||K* which is immediately seen 
when setting v = u in (1.1). On the other hand, (VI) implies rijtj = — ft (in the sense 
of &(Q)). Therefore T G T and ||T||T = c3||h*||F*. Finally, using the generalized 
Green formula we find 

(/, v) + <h*, y(v)}v = f Cy(u) et7(v) dx = 

= Tijvijdx= <TT(T), y(v)>K + fadx 
J Q J Q 

for all v e r.By Lemma V2 (ii), h* = n(r). 

3° For the discussion of the mixed boundary conditions (see Section 3) the fol­

lowing lemma will be useful. 
Lemma 1.4. Let Q e C0,1 and suppose that F = F1 u F2 u N where Fl5 F2 are 

disjoint open subsets of F and N has measure zero. 

(i) Let p e [L2(F2)]3. Then for each e > 0 there exists an hE e Vsuch that 

h£ = 0 a. e. on T1 , \p — he\
2 dS = e . 

Jr2 

(ii) Let p e [L2(F2)]3 such that 

p.hi dS = 0 Vh E V with h = 0 a.e.on Tx . 
JT2 

Then p = 0 a. e. on F2. 

(iii) Let h* G V* admit the decomposition 

h* = h*l+ j*(P)5) 
where 

h* 6 V* , <h*, h>K = 0 Vh G V with h = 0 a. e. On F! , 

p e H with p = 0 a. e. on Tx . 

Then this decomposition is uniquely determined. 

) For the sake of clarity, we indicate here explicitly the adjoint j* : H ~> V* of the injection 
j : V-> H (recall that His identified with its dual). 

212 



Proof. Assertion (i) can be proved by using a system of local charts and a standard 
argument (cf. [17, Theoreme 2.4.9]). 

Assertion (ii) is an immediate consequence of (i). 

To prove (iii), let h* e V* have two decompositions 

h* = h* + j*(p) = k* + j*(q) 

where ti*, p and k*, D satisfy the corresponding conditions in (iii). Then we have 

I (Pi- qi)hidS= a*(p - q), h>v = 0 
(E2 

for all h e Vwith n = 0 a. e. on Ft. Hence by (ii), p = q a. e. on F2, therefore p — q 
and /?* = k*. 

4° Let h e H. Then we have the decomposition 

h = hnn + n r , hn = htnt, ht = h — /z,,n . 

Obviously, h„ e L2(F), n* e Hr where 

Ht = {keH : k{n-t = 0 a. e. on F} . 

It is readily seen that L2(F) x Ht is a Hilbert space with respect to the scalar product 
(.,.)L2(r) + (.,.)#• Thus, the mapping h |—> {hn, hj is an isometry from H onto 
L2(F) x Ht; in particular, it holds 

(h, k)H = hnkn dS + htikti dS Vh, k e H . 

Under stronger assumptions upon the boundary F we have a similar situation 
with respct to V In order to make this precise we note first of all 

Lemma 1.5. Let QeC1'1. Then the mapping h 1—• hnt is linear and continuous 
from W^/2(F) into itself. 

Proof. Let {Sr, ar} (r = 1, ..., m) be any system of local charts for F in the sense 
of [17]. The hypothesis Q e Cil implies that each component nri of the unit outer 
normal (with respect to the local chart under consideration) is Lipschitzian. Our 
assertion follows now from [17, Lemme 2.5.5]. 

Let Q e C1 -1. We have then hn e W2
/2(F) and ht e Vt for any h e V, where 

Vt = {ke V'.k^i = 0 a. e. on F} . 

The norm [| • ||^2/2(r) + ||*||V turns W2
/2(F) x Vt into a Banach space. Then the 

mapping h |~> {/?„, ht} is an algebraic and topological isomorphism from V onto 
W2

/2(F) x Vt. Indeed, the continuity of this mapping follows from Lemma 1.5, 
while its bijectivity is seen at once. The assertion is now a consequence of the Open 
Mapping Theorem (cf. [8]). 
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Passing to the dual spaces one obtains that the mapping h* l-> {h*9 h*} where 
hn and /?* are uniquely determined by 

<h*, h}v = </!„*, h„>^/2
(T) + <ft?, «r>V, 6) Vh E V, 

is an algebraic and topological isomorphism from V* onto W2
 1/2(F) x V*. 

Let us finally note that Vt is continuously and densely imbedded into Hv Thus, 
identifying Ht with its dual one obtains the continuous and dense imbedding Ht cz V*. 

Collecting the above results we get 

Lemma 1.6. Let Q eC1'1. Then: 

(i) There exists uniquely determined mappings 

yn e <£(r\ W\l2(r)) , yt e X(T9 Vt) 
such that 

yn(
u) = ui\r n(, ytj(u) = uj\r - yn(u) ns 

for all u e [C°°(D)]3, and 

y(u) = yn(
u) n + yt(u) Vu e TT . 

FOr each pair {h, k} e W2/2(F) x ^r fhere exists a u e'V such that 

yn(u) = h, yt(u)= k, 

HI ^ ^.(IHU'V) + ||k||F) 
(cj = const > 0). 

(ii) There exists uniquely determined mappings 

nne&(7,W~2
lt\r)), n,eJ?(T,V?) 

such that 
nn(T) = Tu\r ninj , nti(r) = T0-|r rtj - nn(x) nt 

for a//T6[C°°(0)]9, ana7 

<7T(T), h>K = <7Tn(T), hnyw^\r) + <7Ir(T), ht}v* 

for all T e T and all h e V For each pair {h*, k*} e W2
i/2(F) x V* there exists 

a T e T suc/z that 
7E,.(T) = h* , 7Cf(r) = k* , 

HTII < r fll/i*!! ~1//2 -4- lit*II *". ||T||T =- Ci\\n \\Wl ( r ) - f I] AC | | K J 

(c2 = const > 0). 

(iii) For any T G T ant/ any u ei^ it holds 

TijUijÓX + 
Jo 

= <rc„(T)> ?n( W )>W 2
l / 2 (T ) + < 7 C r W ? 7 / ( w ) > K t ' 

tijjUiáx = 

6) The parentheses on the right hand side mean the dual pairings between the respective spaces. 
Further, W2~1/2(F)= dual of W|/2(F), V\ = dual of Vv 
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5° Let cp : V—> (— oo, + oo] be a proper, convex and lower semi-continuous func­
tional. We denote by D(cp) its effective domain, i.e. 

D(cp) = {he V:cp(h) < +oo}. 

Next, for any proper functional cp : V-> (— oo, + oo] we introduce the conjugate 
functional 

CP*(h*) = SUp [</!*, h)v - Cp(h)] 
heV 

with the effective domain 

D(cp*) = {h* e V* : cp*(h*) < +00} . 

Obviously, 

(1.2) cp(h) + cp*(h*) ^ (h*, h>F Vh e V, V/i* e V* . 

The functional <p* is proper, convex and lower semi-continuous if cp does (cf. [8], 
[10]). Further, by a result of Brondsted and Rockafellar (cf. [1]), 

(1.3) 3/ i0eV , 3h*0 e V* : cp(h0) + cp*(h*0) = </i*, h0>K . 

We introduce the following 

Definition. Let Q e C1'1. The proper functional cp : V-> ( — oo, + oo] is said to be 
decomposable if there exist functionals cpn : W\I2(T) -> (—00, +00] and cpt : Vt —• 
-> (—00, +00] such that 

cp(h) = cpn(hn) + cpt(ht) Vfc e V 

where h = hnn + ht. 
Obviously, the functionals cpn and cpt are proper. Let us note two properties of 

proper, decomposable functionals. 

Lemma 1.7. Let Q e C1,1 and let cp : V-> (— oo, +00] be a proper, decomposable 

functional. 

Then the following two conditions are equivalent: 

(i) cp is convex (resp. lower semi-continuous), 

(ii) both cpn and cpt are convex (resp. lower semi-continuous). 

Proof, (i) => (ii). The convexity of both cpn and cpt is easily deduced from the 
convexity of cp. 

Let {hs} c Wl/2(T) (s = 1, 2, . . . ) be any sequence such that hs -> h strongly in 
W\'2(r) as s -> oo. Fix k0 e Vt with \j/t(k0) < +00, and set hs = hsn + k0, h = 
= hn + k0. By Lemma 1.5, hs ~> /1 strongly in Vas s -> oo, and therefore 

cpn(h) = cp(h) - cpt(k0) S lim inf cp(hs) - <pr(k0) 

= lim inf cpn(h
s) . 

215 



The lower semi-continuity of (pt is deduced from the lower semi-continuity of <p 

by an analogous argument. 

(ii) => (i). The convexity of (p is obvious, while the lower semi-continuity is obtained 

easily when taking into account the algebraic and topological isomorphy between V 

and W2

1/2(F) x Vt. 

Lemma 1.8. Let Q e C 1 , 1 , and let <p : V-> (— oo, +00] be a proper, decomposable 

functional. 

Then 

cp*(h*) = cp*n(ht) + <p*(h*) Vh* e V* 

where </.*, h)v = </i*, hn)w'J\r) + <tf, h,)r,for all h e V. 

Proof. In virtue of the algebraic and topological isomorphy between V and 

wy\r) x V„ 
cp*(h*) = sup [</!*, h)v - <p(hj\ 

heV 

= sup [<ft*, h}W2u2in - (p„(hj] + 
/J6W21/2(E) 

+ sup [<h*, k>F* - (^f(k)] 
keVt 

~*fL*\ = <PЖ) + <PЖ) 

for any h* є V*. 

2. SETTING OF THE BOUNDARY VALUE PROBLEM 

1° In what follows, we consider the following situation. Suppose that a deformable 

body occupies a bounded domain Q c: R3 which is assumed to belong to the class 

C0'1. We look for the displacement vector u e 'V and the stress tensor a eT in the 

equilibrium state of the body under the action of the given body force f G f̂. 

To make this situation precise, let us assume that the strain-displacement relations 

e.. = Sij(u) = i(utJ + ujti) 

hold a.e. in Q, and that the conditions of equilibrium 

otjj + ft = 0 

are satisfied a.e. in Q. Further, we suppose that in Q the stress-strain relations 

(Hooke's law) 

Gij ~ aijklSkl 

hold where the elastic coefficients aijkl are assumed to satisfy the following con­

ditions: 

aijki is measurable and bounded on Q , 
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ijkl — ujikl 
aiiki — üi иj for a.a. x є Q , 

aijki£ijski = aosijsij for aM symmetric 

tensors e^ and all x e Q ; a0 = const > 0 . 

To complete the formulation of our problem we introduce a general relation 
between the stress vector and the displacement vector along the boundary F. This 
relation will include a number of known classical boundary conditions as well as 
conditions involving unilateral or bilateral constraints. On the other hand, the general 
setting that we are going to introduce enables us to present a transparent approach 
to the dual problems. 

In all what follows, let cp denote a proper, convex and lower semi-continuous func­
tional from Vinto (—00, +00] , cp* its conjugate functional. 

Definition. The displacement vector u e if and the stress tensor o e T are said to 
satisfy the boundary conditions (associated with the pair {cp, cp*}) if 

cp(y(u)) + cp*(-n(o)) + (n(o), y(u)}v = 0 . 

In view of (1.3) and the surjectivity of both y and n (cf. Lemmas 1.2 and 1.3), the 
set of all {u, 0} e.if x T which satisfy the boundary condition (associated with the 
pair {cp, cp*}) is non-void. 

Now we state the following 

Problem I. Find u e if and o e T such that 

(2.1) oUJ + f = 0 a.e. in Q, 

(2.2) ou = aijklskl(u) a.e. in Q, 

(2.3) cp(y(u)) + cp*(-n(o)) + <7i(G), y(u)}v = 0 . 

Let us note two equivalent formulations of the boundary condition (2.3). Firstly,, 
{u, 0} G V x T satisfies (2.3) if and only if 

(2.3') cp(h) - cp(y(u)) + <7T(CJ), h - y(u)}v ^ 0 Vh e D(cp) 

or, equivalently, 

y(u)eD(cp), ~n(o) e dcp(y(u)) . 7) 

Secondly, {u, 0} e if x T satisfies (2.3) if and only if 

(2.3") cp*(h*) - (?)*(-n(o)) - </?* + n(o), y(u))v ^ 0 V/z* e D(cp*) 

) Let X be a normed linear space, <-,.)> the dual pairing between the dual X* and X. The 
subdifferential mapping d<P of a proper functional 0 : X -> (— 00, +00] is defined to be d<P(x) = 
= {x* e X* : 0(y) > 0(x) + (x*, y - .v> Vy e X}, 
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or, equivalently, 

- n(o) e D((p*), y(u) e dq>*( - n(o)) 8) 

(cf. e.g. [8]). 

2° The boundary condition (2.3) may be equivalently replaced by other relations 
when imposing certain additional conditions upon (p. 

Lemma 2.1. Let Q e C0,1. Suppose that (p is positively homogeneous, i.e. 

(B(0) = 0 , (p(th) = t (p(h) V t > 0 , V/ieV . 

Then {u, o} e if x T satisfies (2.3) if and only if 

(2.30 <p(y(u)) + «°)> y(")>v = o, ~n(o) e d(p(o). 

Proof. First of all, it holds 

D((p*) = d(p(0), (p*(h*) = 0 V/z* e D((p*) 

(cf. [8, §§ 4.1, 4.2]). Let {u, o}ei^x T satisfy (2.3). Since -n(o) e D((p*), we have 
(p*( — n(o)) = 0 and (2.3) turns into (2.31). 

Conversely, let {u, o} e if x T fulfil the conditions (2.3i). The first one means 
y(u) e D((p), while the second one is equivalent to (p(h) + (n(o), h>f = 0 for all 
y e V. Hence {u, o} satisfies (2.3'). 

Lemma 2.2. Let QeC0,1. Suppose we are given a proper, convex functional 
\\i : H -> (— oo, +co] such that D(\jj) = {h e H : \j/(h) < +00} is open. Further, 
let \JJ be continuous at some point of D(ij/). 

Let ifr* denote the conjugate functional of ij/: 

r(h) = sup [(h, g)H - ^(g)] . 
geH 

Set (p = \\J oj 9). Then {u, 0} e if x T satisfies (2.3) if and only if 

n(o) = j*(p) with p e H , 

HJ y(u)) + ^ * ( - P ) + {PJ y(u))H = 0. 

Proof. Observing that Im(j) n D(\\J) =t= 0 and that j * is injective we conclude 
from [8, § 3.4, Theorem 3] that 

/ 2 4 ) j D((p*) ={h*EV*:h* = j*(g), g e Dty*)} , 

\ (p*(h*) = ^((j*)'1 h*) Vh* e D((p*). 

The assertion is now seen at once. 

) Here we have identified y(u) with its canonical image in V**. 
9) Cf. footnote 5. 
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Lemma 2.3. Let Q e C 1 , 1 and let cp be decomposable (cf. Section 1.5°). 

Then {u, a] e V x T satisfies (2.3) if and Ou/y /f 

(2 3 ) fa"WW)) + <Pt(-nn(°)) + < ^ ( ° r ) ? ?n(w))>Wi(r) = 0 , 

1 <PMU)) + **(-**(")) + <**(*)> vM)>vt = o • 
Proof. Let {u, <r} e TT X T satisfy (2.3'). Given arbitrary h e W\!2(r) and k e Vn 

we set h = hn + k. Lemma 1.5 implies h e V, and by Lemma 1.6 (ii) 

<?„(*) - <Pn(Уn(u)) + <яи((т), Л - ľn(")>W2 1/2 
(Г) 

+ <Pr(fc) ~ <Pt(yt(u)) + <^v°")> fc ~ ?r(")>Vt = 0 . 

Setting k = yf(u) (resp. h = yn(
u)) -i- i n e l a s t inequality one finds 

<p»(ft) - %W«0) + <*»(')>h ~ yn(»)Wl\n = ° > 

<Pt(k) - ^r(?r(")) + <Vt(°)> fe - 7f(")>Ft = ° 

for all h e W\l2(r) and all ke Vt, respectively. This system is equivalent to (2.32). 

The converse assertion is obvious. 

3. EXAMPLES 

We now illustrate that (2.3) includes a number of classical boundary conditions 

as well as conditions involving unilateral or bilateral constraints along the boundary. 

Existence theorems which apply to the examples discussed below may be found in 

Part II, Section 5. 

1 c Let us begin with considering some classical boundary conditions. In Examples 

1 — 4 the domain Q is assumed to belong to the class C0'1. 

Example 1 (displacement boundary condition). Let u0 e Vbe given. We consider 

the condition 

(3.1) y(u) = u0 . 

Let ip denote the indicator function of the closed convex set {u0}> i.e. 

[0 for h = u0 a.e. on F , 
] +00 for h e V, h 4= u0 . 

The functional cp is proper, convex and lower semi-continuous. It is easy to see that 

(p*(h*) = <ft*, u0>K V/i* e V* . 

The equivalence of (2.3) and (3A) is immediate. 

Example 2 (traction boundary condition). Given g* e V* we subject the stress 

tensor a to the condition 

(3.2) -.(<-) = g* . 
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Set 
Cp(h) = ~(g*Jtyv V/7GV. 

Then 

[0 for h* = — g* , 
cp*(h*) = , 

1 + oo otherwise . 

As above, the equivalence of (2.3) and (3.2) is seen at once. 

Example 3 (generalized support condition). Let A : H -> H be a monotone gra­

dient mapping (cf. [5]). Then u and a are required to satisfy the condition 

(3.3) n(a)= -j* o A oj(y(u)) 

(recall that j denotes the injection from Vinto H). 

The mapping A maps strongly convergent sequences into weakly convergent 

sequences; further, A is the Gateaux derivative of the convex, continuous functional 

ф(h) = (A(th), h)нát, hєH 

(cf. [5]). Therefore, (3.3) is equivalent to each of the following conditions: 

(3.3.) yjj{jh) - ^(j y(u)) + <*(*), h - y(u)}v ^ 0 Vh e V, 

(3 3 ) { n ^ e l m ^ ' 

\HJ TM) + <P*(-0'*)"1 4°)) + «°\ M>v = 0 • 
Set (p = ij/oj. By (2.4), 

* ( / 1*) = \r((j*y3 h*) for (j*)-1 h* 6 D(r), 
^ ' | + oo otherwise, 

and the equivalence of (2.3) and (3.3) is an immediate consequence of Lemma 2.2. 

Suppose additionally that A is bijective. Then A'1 is also a monotone gradient 

mapping, and it holds 

Ф" ih) = [(A-\th),h )H dt - t\A(tA~\0)), A^O)),, dt 

for any h e H (cf. [5]). 

As a special case of (3.3) we consider the elastic support condition 

7i(cr) = j*(p) with p = —a y(u) + g a.e. on F 

where a e L°°(F), a = a0 = const > 0 a.e. on F and g e H. In the present case, the 

functional cp and cp* take the form 

-K/s)- i «|h |2 dS 
г 

g i h . d S . h e V, 
r 
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I 

<?*(«*)= 2 
-|O + O|2dSfOr h*=j*(q), OeH, 

+ oo otherwise . 

Example 4 (mixed boundary conditions). Let Fs (s = 1, 2, 3) be mutually disjoint 
3 

open subsets of F such that F \ u Fs has measure zero. 
5 = 1 

Suppose we are given the following data: 

u0 6 V, 

g e [L2(r2 u F3)]3 , a e L°°(F2 u F3) where 

a = 0 a.e. on F2 , a ^ a0 = const > 0 a.e. on F3 . 

Let us consider the following boundary conditions: 

(3.4) y(u) = u0 a.e. on Ft , 

(3-5) <7t(<т), h}v = {-ay{u) + ŰЃ) й, dS 
JГzuГ, 

Vh G V with h = 0 a.e. On F2 . 

Analogously as above, we introduce the functionals 

fO fOr h = u0 a.e. on Fi , 
<PAҺ) = 

+ oo /br heV, h ф ц 0 Ű.Є. oл Г, , 

*(,,) - ì l : a\h\2 áS gJiiáS for heH 

and 

<P = 9i + ^2 where cp2 = ý ° j . 

The conjugate functionals of <pt and <l> can be calculated (with minor changes) as 
above: 

<p\(h*) 

ф*(q) 

</?*, u0>K /or h* e V* such that <h*, h)v = 0 
for any h E V with h = 0 a.c. On r1 , 

+ oo otherwise ; 

' f 1 

+ 00 

a + a|2 dS fOr q e H with q = 0 

a.e. on Tx, q = —g 

a.e. on F2 , 

otherwise . 

Further, (2.4) implies </>*(h*) = ijs*(q) for h* e V* such that h* = j*(q) with 

q e D(.>*). 
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In order to calculate explicitly the functional cp* we note first of all that <p2 is 
defined and continuous on the whole V Then 

,p*(h*)= inf [>?(h*) + <p*(h*)] 
hi*,h2*eV* 

h*!+h*2 = h* 

(cf. [8], [10], [18]). Let now h* e D(cp*) and h* e D(<p*) be arbitrary. Setting h* = 
= h* + h* it holds </>*(/]*) < +oo; i.e. h* e D(cp*). Conversely, let h* e D(cp*) be 
arbitrary. Then there exists a decomposition h* = h* + h* with ft* e D((p*) and 
h* e D(<p*) (i.e. ft* = ;*(<?) with c7 e D(i/y*)) such that <p*(ft*) = cp*(h*) + <p*(h*). 
By Lemma 1.4 (iii), the elements h* and h* are uniquely determined by h*, and there­
fore 

( _ J <", "o>V + \ [ ~ |g + g|2 dS for h* e D(cp*) , 
</> l>? ) ~ i 2 j r 3 a 

[ + oo otherwise , 

where 

£(</>*) = {ft* e V* : h* - h* + f*(^r) where h* e V* such that 

<h*, h>F = 0 fOr any heV with h = 0 a.e. On Fx, 

a e H such lhal q = 0 a.e. on Tl9 q = —g a.e. on F2} . 

It is now readily verified that with the above choice of (p the boundary conditions 
(3.4), (3.5) can be equivalently written in the form (2.3). 

Example 5. Let Q e C1 ,1 , and let k0 e Vt and h* e W2
 1/2(F) be given. We consider 

the boundary conditions 

(3.6) yt(u) = k0 , T T » = ft* . 

Let us introduce the functional 

<?,,(")= -<hthyw^(r) for hewy2(r), 
fO if k = k0 , 

^ [ + oo i/ keV,, k + k0 

and define 
(p(h) = </\(h„) + <p,(hf) / ^ heV 

where h = hnn + ht. The functional cp is proper, convex, lower semi-continuous and 
decomposable. It holds 

(0 if h* = - h ; 
+ oo otherwise, 

<P*(k*) = <k*, k0)Vt for k* e V* . 
By Lemma 1.8, 

„ W = J<*?.*O>K. if *: - = - * . * . 
^ ' [ + oo otherwise, 

where <h*, h>v = <h„*, h„> aw
l
2

h
in + <hf, h,>Ft for any heV. 
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The equivalence of (3.6) with (2.32) is obvious. 
Preserving the assumption Q e C1,1, we can verify analogously that the boundary 

conditions 

(3.7) yn(u) = h0 , nt(a) = k* 

where h0 e W2
/2(F), k* e V* (e.g., h0 = 0, k* = 0 in the case of a contact support) 

are also included in (2.32) as a special case when setting 

[0 if h = h0, 
^ ( / 7 ) " " | + 0 0 if heW\l2(r), h*h09 

cpt(k) = ~ <k*, k>Kt. for ke Vt. 

Finally, when choosing appropriately the functionals (pn, (pt and using similar 
arguments as those of Example 4, the general mixed boundary conditions discussed 
in [6], [7] can also be expressed in the form (2.32). Further, let us note that our 
approach does not require a e [W2(-^)]9 (cf. [6]). The disadvantage of this require­
ment consists in the fact that Problem I and Problem II are no more equivalent 
(cf. Theorem 4.1 below). Moreover, this requirement seems to be less convenient 
with regard to the general duality (cf. Part II, Section 6). 

2° We pass to a discussion of some boundary conditions that involve unilateral 
and bilateral constraints. 

Example 6 (Signorini problem; cf. [3], [4]). Let k* e V* be given. We consider 
the boundary conditions 

/3 g\ {ln(u) = 0 a.e. on F , (nn(a), yn(u)yw[/2
(r) = 0 , 

\<nn(a), h}wy\r) ^ O V I i e W^/2(F) , h ^0 a.e. on F , 

(3.9) nt(a) = k* . 

Let us set cp(h) = cpn(hn) + (pt(ht) for any h e V, where 

fO fOr h e W2
/2(F) , h ^ 0 a.e.onT, 

(pn(h) = I + oo fOr h e W]!2(r) , h > 0 on a subset 
[ of positive measure, 

(pt(k) = -<k* , k>Kt fOr k e Vt. 

The conjugate functional of <pn and cpt, respectively, becomes 

(0 fOr h* 6 W2"
1/2(F) with </z*, h>^/2

(r) ^ 0 
cpZQi*) = I for any h e W\l2(r) with h ^ 0 a.e. on F , 

[+oo otherwise; 

0 9 

+ oo otherwise . 
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(3.11) 

It is easily seen that the boundary conditions (3.8), (3.9) are a special case of (2.32) 
with the above choice of cpn and cpt. 

Further, the boundary condition (3.9) may be obviously replaced by 

(3.90 7r(w) = ko 

where k0 e Vt is given (for the choice of the functional cpt we refer to Example 5). 

Example 1 (friction along any tangential direction; cf. [2]). Let h* e JV2~1/2C0 
and k e L°°(F) be given where k > 0 a.e. on F. Let us introduce the conditions 

(3.10) nn(a) = h*0, 

nt(G) — J*(p) with p e Ht
 10) and 

|p | ;g k a.e. on F , where: 

|p | < k => yt(u) = 0 , 

|p | = k^> 3/1 = 0 :yt(u) = ~lp . 

Note that (3.11) is equivalent to 

nt(a) = j*(p) with p e Ht and 
(3. n o ')' , 

|p | = k , k|yf(u)| + Pi yti(u) = 0 a.e. on F . 

We define 

<Mg) = k\q\ dS for qeHt. 

The functional \jjt is convex, continuous and positively homogeneous on Ht. A simple 
calculation yields 

, *, x (0 for q e Ht with \q\ < k a.e. on F , 
ip*(q) = < , . ' ' " 

v ; [ + oo otherwise . 

The equivalence of (3.110 to 

(3 11 ) (nt(a)elm(j*), 
K ' 2) 1 UJ<yM) + ^(-U*)~l *<(*)) + <^(4 yt(u)>vt = o 
is easily verified. 

Finally, setting <pr = ipt °jr w e n a v e 

[0 for k* e Vf with k* = jf (q) , 
(pf(k*) = I qeHt, \q\ = k a.e. on F , 

l+oo otherwise 
(cf. (2.4)) and (3.112) is obviously equivalent to the second condition in (2.32). 

1 °) We denote by j t , jn the injections from Vt into Ht and from W2
/2(T) into L2(F) respectively, 

and byj*,j* the adjoint mappings. Recall thatj* andj* are injections, too. 
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As in the preceding example, (3.10) may be replaced by the condition 

(3.10') yn(u) = h0 

where h0 e W2
/2(F) is given (let us refer to Example 5 for the choice of the func­

tional <£•„). 

Example 8 (friction along the normal direction; cf. [2]). Suppose we are given 
k* e V* and kt e L°(F) (i = V 2) where k{ = 0 = k2 a. e. on F. We consider the 
boundary conditions 

nn(o) = j*(p) with p e L2(F) and 

ki = P = k2 a.e. on F , where: 

k! < p < k2 => yn(u) = 0 , 

P = ^1 => 7n(w) = 0 > 

| P = k2=>7„(u) = 0 , 

(3.13) 7rr(a) = k* . 

A straightforward calculation shows that (3.12) is equivalent to 

rc„(<r) - j*(p) with p e L2(F) and kj = p = k2 , 

•fci yn(u)+ + ^2 ?„(")" + p yn(u) = o a.e. On F. 
Setting 

(3.12) 

(3.12.) 

<P„(<Z) 

we have 

Ш = o 

( - k ! g + + k2g~)dS fOr aєL2(F), 

if qe L2(F) with kx = — q = k2 a.e. On F , 

+ oo otherwise , 

and the system of conditions (3.12x) is equivalent to the conditions 

(3 12 ) W*) e I m 0 '?) ' 

\UJ* ?»(«)) + ^ * ( - 0 ' * r *»w) + <*»(*)> ^)>Wr ( D = o 
Analogously as in the preceding example, set cpn = \jj„ ojn. Then 

(0 for h*eW2

1/2(r) with h* = j*(q), 

<p*(h*) = I qeL2(r), kt = - a = k2 a.e. On F, 
l + o o otherwise, 

and the equivalence of (3.122) to the first relation in (2.32) is evident. 

As in Example 6, the boundary condition (3.13) may be replaced by 

(3.13') yju) = k0 

where k0 e Vt is given. 

225 



In the end let us note that we may consider mixed boundary conditions of all 
foregoing types (e.g. classical, Signorini and friction type conditions on the respective 
parts of the boundary) when adopting the arguments of Example 4. However, we 
omit the details. 

3° We conclude this section by considering the relationships between some of our 
above examples. 

Lemma 3.1. Let Qe C0,1, and let h* e J7* be fixed. Further, let <p0 : V—> R be 
a convex, lower semi-continuous functional that fulfils the following additional 
conditions: 

<p0(h) = 0 V/i e V, 

Do = {heV:<pQ(h) = 0} * 0 . 
Set 

<pm(h) = m <p0(h) - </i*, h}v for heV, m = 1, 2, ... . 

Then it holds: 
(i) lim <pm(h) = \j/(h) for any h e V, where 

m-* oo 

(h) = [~<h*'h>v if heD°' 
^ ' | + oo otherwise . 

(ii) Let {um,om}e'f~ x T (m — 1,2, ...) satisfy the boundary conditions (2.3) 
associated with the pair {<pm, <pm}, and let {um, am} -> {u, a} in "V x T as m -> oo. 
Then the pair {u, o} satisfies the boundary condition associated with the pair 

{<?></>*}• 

Proof. Assertion (i) is immediate (note also that D0 is convex). 
For proving (ii) we conclude first of all from the inequality 

(3.14) <pm(h) - <pm(y(um)) + (n(om), h - y(um)yv = 0 

which holds for any h e Vand m = 1, 2, ... that 

(3.15) m <p0(y(um)) ̂  c\\h - y(iim)|K Vft e D0 , m = 1, 2 , . . . 

(c = const > 0). Therefore <pQ(y(u)) = lim inf <p0(y(um)) = 0, i.e. y(u) e D0 = D(<p)' 
Next, inserting h = y(u) in (3.15) one obtains lim <pm(y(um)) = -(h*,y(u)}v = 
= <p(y(u)). Letting now m -> oo in (3.14) we get (2.3'). 

Let QeC1'1. Set for he Vand m = 1,2, . . . 

<pm(h) = m í |/i,| d 5 - <h*0, K>wl'\n , 

<Pm(h) = m í |/i„| dS - </c*, fct>K,, 

<Pm(li) = m í h„+ dS - </cJ, hr>v-t 

226 



where h%eW^ll2(r), k* e V* are fixed. The first functional corresponds to the 

boundary conditions (3.10), (3.11) with k = m, while the second and third one cor­

respond to (3.12), (3.13) with —kt = k2 = m and —ki = m, k2 = 0, respectively. 

Passing to the limit m -* oo we get the functionals which correspond to the boundary, 

conditions (3.6) with k0 = 0, (3.7) with h0 = 0 and (3.8), (3.9), respectively. 

4. VARIATIONAL FORMULATION 

1° In this section, we present two equivalent formulations of Problem I (cf. 

Section 2.1°). 

Let us introduce the proper, convex and lower semi-continuous functional 

F(v) - ia(v, v) + cp(y(v)) - (f, v), ve r 

where 

a(u, v) = 

Further, we define 

aцki fiiy(") Єkiip) áx > u,vєГ . 

rad = {ver:y(v)eD(cp)}. 

The functions in rad will be called "geometrically admissible displacement fields''; 

for v e rad the expression F(v) represents the "potential energy" of the body con­

sidered. 

Let {u, a} G ' f x T satisfy (2.1), (2.2). We obtain by the generalized Green formula 

(cf. Lemma 1.3 (ii)) 

(4.1) a(u, v) = <TI(O-), y(v)>K + (/, v) Vv e r . 

Now we state the following two problems: 

Problem II (principle of virtual displacements). 

Find u e rad such that 

(4.2) a(u, v - u) + (p(y(v)) - cp{y(u)) ^ (/, v - u) Vv e i \ d . 

Problem III (principle of minimum potential energy). 

Find u e rad such that 

(4.3) F(v)ZF(u) Vuerad. 

The relationships between the problems stated is explained by 

Theorem 4.1. 

(i) If{u, a} e r x T is a solution to Problem I then u is a solution to Problem II. 

(ii) Let u e rad be a solution to Problem II. Set otj = aijkluk , a.e. in Q. Then 

{u, G} belongs to r x T and it is a solution to Problem I. 
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(iii) The function u e ir
ad is a solution to Problem II if and only if it is a solution 

to Problem III. 

Proof, (i) Let {u, a] e V x T be a solution to Problem I. Then u e i"ad and 

<p(y(v)) ~ <p(y(u)) ^ -<TZ(CT), y(v) - y(u))v Vv e rad 

(cf. (2.3')). Replacing v in (4A) by v — u and adding the result obtained to the above 
inequality we get (4.2). 

(ii) Let u e Y ad be a solution to Problem II. Inserting v = u + ij/ in (4.2), \jj e 
e [QI(Q)Y being arbitrary, one obtains 

a(u, 4>) = (/, 4>) • 

Hence, setting a(j = aiJklukil a.e. in Q we have 

f ctJ4ttj dx = f M, dx W e [®(Q)f . 
J Q J Q 

Thus a e T and o^j + ft = 0 a.e. in .Q (and the relation (4.1) holds). 
Replacing v in (4.1) by v — u we conclude from (4.2) that 

cp(y(v)) ~ (p(y(u)) + <7i(O), y(v) - y(u)}v ^ 0 

for any v e i^ad. The mapping y being surjective, this inequality is equivalent to that 
in (2.3'). 

(iii) Let u e Yad be a solution to Problem II. Then 

F(v) ^ F(u) + \a(v — u, v — u) 

^F(u) 

for any v e Vad, i.e. u is a solution to Problem III. 
Let, conversely, u e Yad be a solution to Problem III. Let v e Y'ad be arbitrary. 

Then (1 - t) u + tv e Yad for any t e (0, 1) and 

F(u) ^ F((l - t) u + tv) 

<; F(u) + -̂ T2 a(v - u, v - u) 

+ t[a(u, v - u) + <p(y(v)) - <p(y(u)) - (/, v - u)] , 

or, equivalently, 

u(u, v — u) + <D(y(v)) — </>(y(u)) + i l a(v — u, v — u) g: (/, v — u). 

Letting t -> 0 we obtain (4.2). 
2° We conclude this section with the following simple observation. 
Let {uI? &A, {u2, O2} e f x T be two solutions to Problem I. Then 

u! - u2 e m , el7(wt) = £0-(u2), <x, v = a2ij . 
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Indeed, by Theorem 4.1 both ux and u2 satisfy (4.2). This yields 

0 ^ a(ux — u2, ut — u2) 

£ij(ui ~ ui)Zij{ui ~ u2)dx . 
i 

Consequently, £,7(^1 — u2) = 0 a.e. in Q, and the assertion is obvious. 
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S o u h r n 

OBECNÉ OKRAJOVÉ ÚLOHY A DUALITA 
V LINEÁRNÍ TEORII PRUŽNOSTI, I 

ROLF H Ú N L I C H , JOACHIM NAUMANN 

Rovnovážný stav pružného tělesa, na něž působí vnější síly, je popsán všeobecně 
známými podmínkami rovnováhy, vztahy mezi posunutím a deformacemi, konstitu­
tivními rovnicemi lineární teorie pružnosti a okrajovými podmínkami. V článku se 
podrobně studují okrajové podmínky, přičemž východiskem je obecný vztah mezi 
vektory, napětí a posunutí na hranici, jenž může být vyjádřen v termínech subgra-
dientního vztahu. Ukazuje se, že tento vztah zahrnuje jako speciální případy všechny 
známé klasické, oboustranné i jednostranné okrajové podmínky. Dále je v článku 
ustanoven princip virtuálních posunutí a princip minima potenciální energie a je 
dokázáno, že tyto principy jsou ekvivalentní výchozí okrajové úloze. 

Aut hor's addresses: Dr. Rolf Hiinlich, Dr. Joachim Naumann, Sektion Mathematik der Hurn-
boldt-Universitát zu Berlin, PF 1297, 1086 Berlin. 
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