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SVAZEK 23 (1978) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

A PARALLEL PROJECTION METHOD 
FOR LINEAR ALGEBRAIC SYSTEMS 

FRIDRICH SLOBODA 

(Received October 25, 1976) 

1. INTRODUCTION 

The well-known projection methods of Kaczmarz [10, 3], Cimmino [6, 3] and 
also the class of projection methods investigated by Householder and Bauer [9] 
are iterative methods for solving linear algebraic equations and operator equations. 

In this paper a direct projection method for linear algebraic systems is described. 
The method is closely related also to other direct methods, as the elimination method, 
the orthogonalization method and the method of conjugate directions. The algorithm 
is in such a form that it may be used for nonlinear problems and also some of its 
properties can be transferred to nonlinear problems. The method enables us to find 
the minimum of a function without using derivatives and has the quadratic termina
tion property, i.e., the minimum of a quadratic function is achieved by a finite 
number of iterations. 

2. DESCRIPTION OF THE ALGORITHM 

Let us consider the system 

(1) Ax = b 

where A is a regular n by n matrix and b is an n-vector. Let us consider the system (1) 
in the form 

(2) rt = bt - <fl|, x> = 0 i = 1, 2, . . . , n 

where rt represent n hyperplanes in the n-dimensional Euclidean space En, (ai9 x> = 
n 

= £ aijXp at = (an, ai2, . . . , ain) is the i-th normal vector of the hyperplane r{ 

1=i 
and bt is the i-th component of the vector b. 
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Definition. Let x0°\ x0
l\ . . ., x0

n) be n + 1 linearly independent points of the space 

En. The algorithm for solution of (l) is defined by the recurrent relation 

(3) *?> = *£>• + 
b, - <a„ xfj t> t>(i 

(-. ,«#-.) 

(*) _ v(fc) _. _j \ Ц ^ ; _ _ _ / „(0 ť 

V^i = x l '^ - x<.l_V> i = 1,2, . . . , n , k= i, i + l , . . . , n . 
where 

«(-) _ x ( o _ x ^ i - i — A i - i A i - i 

Let x0°\ x0
l\ ..., x0

n) be such points that 

( « I V I ' - I ) * 0 i = 1,2, . . . , n . 

Then the following theorem holds: 

Theorem 1. The pOint x ( n ) defined by the algorithm (3) is the solution of(\). 

Proof. Let us consider n linearly independent vectors 

!></> = x<<> - x<°> i = 1,2, . . . , « . 

Let us project the points x0
0 ), x0

1 ), • . . , x0
n) in the direction of the vector v0

1} into 
the hyperplane r r . According to (3) we obtain 

(4) x(1> = x(1> + a < X > = x<°> + «<%</> 

x<2> = x<2> + *«¥» 

Xl = *o "«" a o ^0 

where a(
0
0), a ^ , . . . , a0

n) are real numbers, Let us denote 

v(fc) _ x f - x (1 ) fc-2,3, . . . , n . 

Equations (4) yield 

t,<2> = x<2> - x(1> = x<2> - x<°> + («<2> - a<°>) «,<„«> = ,<2> + (a<2> - a<°>) # > 

(5) t><3> = „<3> + (a<3> - a<0°>K> 

t><
1"

) = ^ ) + W ) - a < o ° > o 1 ) . 

(5) implies that v(i2), v(i3), . . ., v(in) are linearly independent vectors, so that 
x[i\ x[2\ . . . ,x ( i n ) are n linearly independent points of the (n — !)-dimensional 
hyperplane rx. Let us project the points x(1), x(i2), . . . , x(in) in the direction of the 
vector v(i2), which lies in the hyperplane r_, into the hyperplane r2. We obtain n — 1 
linearly independent points x(

2
2), x2

3), . . . , x2
n) of the (n — 2)-dimensional linear 

subspace r n r2. Let us denote 

(6) vf = x?> - x<2
2> fc = 3,4, . . . , « . 

186 



The vectors v(
2
fc) satisfy 

t,23> - x(3> - x(2> _ y(3) + (a(3) _ a(D) „(2) 

(7) 4 4 ) = 4 4 ) + (a ( , 4 ) -a ( 1 ) )v ( 2 > 

„2-) - v[
n) -f («<"> - a

(1>) v(2> 

where a*-1, a ^ , . . . , a(,n) are real numbers. Again (7) implies that v(
2

3), v(
2

4), . . . , v(
2

n) 

are linearly independent vectors, so that x(
2

2>, x(
2
3), . . ., x2

n) are n - 1 linearly in
dependent points. According to (6) v2

k) lies in the linear subspace r, n r2. By induction 
we obtain that 

v? > = XW - x ( i ) fc = i + 1, ,- + 2, . . . , n 

are linearly independent vectors and x( i ), x ( /+ 1 ) , . . . , ;x_ are n — i + 1 linearly 

independent points of the (n - i)-dimensional linear subspace f) r} and therefore 
n ; = i 

the point x("> — f| _• is the solution of (l). 
1=1 

Theorem 2. The vectors 

»</+» = x< i+1) - x." i = l , 2 , . . . , n - l 

defined by the algorithm (3) /?ave the following property: 

(8) (a„ v(<+1)) = 0 i = I, 2, . . . , n - 1, ; - 1, 2, . . . , i . 

Proof. The vector v^ lies in the hyperplane r, and therefore (a,, v(,2)) = 0. 
The vector v2

3> lies in the linear subspace r, n r2 and therefore (a1? v(
2
3)) = 0 /\ 

i 

A (^2> ^(23)) = 0. Since the vector v\i+i) lies in the linear subspace f\ r} we have 
1=i 

(ap v\i + 1)) = 0 U l , 2 n - l , j = 1, 2, . . . , i. 

Theorem 3. The vectors 

v™ - x f - x\l) i =* l, 2, . . . , n - 1, fe = i + 1, . . . , n . 

defined by the algorithm (3) satisfy the following recurrent relation: 

_ ( _ _ _ (0 

(-,.•420 ,_1 (9) t . = „<*_>. 

Ï -. 1, 2, . . . , _ — 1, fe = Ï + 1, . . . , n 
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Proof. From (3) we obtain 

ftf-<flf,X
(
f_l> m M) _ v (0 - ^ ( í - 1 ) _ _ _ <fl*> Xi-l _ „ ( 0 

(«.V,-.l) 

For the vectors v(fc) we have 

r i - i = x} '- i ' + 
K ^ i ) 

„(-) _ v(») - *< (o _ tv(fc) r^-in _ ___ **-- x_j_) „(o i - Kxi-i ~ * - - i ) : (Ty-T * V i 
( « Í » * > - I ) 

_ „(*> - Lq^ ____) f,(o 
- ^ . ~ 1 / ( f ) v ^ i - l 

(«*> » i - i ) 

i = 1, 2, . . . , n — 1, fc = i + 1, . . . , n . 

Theorem 4. Let x(
0
0) = (0, . . . , 0)T and let x(

0
} be Of the form 

= (0, ...,tt, . . . , 0 ) T i = 1,2, . . . , n -<«> _ 

where tt = 1. Let A be a strictly regular matrix, i.e., 

an . . . aif 

D, = Ф 0 i = 1,2, . . . , n 

Then the matrix defined by the columns of the vectors v^, v^, 

triangular with unit elements on the diagonal and 

., v(_i is upper 

(-1. » . - i ) * 0 i = 1,2, . . . , n . 

Proof. According to the definition 

itf> - x<o° - 4 0 ) i = 1,2, . . . , n . 

Since _J>

1> = (1, 0, . . . , 0)T and a n 4= 0 we have 

K » . ) * o . 

According to (9) the vector v(i2) is of the form 

(10) _2> = vi» - y<»vP 

where y(i1} is a real number. From (8) we have (ax, vi2)) = 0 and according to the 

assumption D2 4= 0. Since the vector v(

x

2) is of the form (10) we obtain 

KttfO + o. 

Using twice the recurrent relation (9) we obtain 

(11) _3) = «o3) - //M>2 ) - /_>-_> 



where y(
2
2), 7(

2
1} are real numbers. (8) implies that (aj9 v(

2
3)) = 0, j = 1, 2. According to 

the assumption D3 4= 0. Since v(
2

3) is of the form (11) we have 

(a39 v(
2
3)) * 0 . 

By induction we obtain that the vector v(l + 1) is of the form 

(12) t>(/+1) = «#+1) - y.'H° - ••• - y W -
From (8) we have (aj9 v(

f
l+1)) = 0, j = 1, 2, . . . , i. According to the assumption 

Di+1 4= 0. Since v(.i+1) is of the form (12) we have 

( a , v ( i + 1 ) ) 4 = 0 

which is the assertion of the theorem. 

Commen t . The theorem holds also for arbitrary initial vectors v0
l) = x0

l) — x0
0) 

for which the matrix of their components is upper triangular with unit elements 
on the diagonal. 

3. SOME PROPERTIES OF THE ALGORITHM 

Theorem 5. Let A be a strictly regular symmetric matrix. Let v0
l) = x0

l) — x0
0) be 

vectors of the form 

v(
0° = (0, . . . , t , . . . , 0 ) T i = 1,2, ...9n 

where tt = 1. Then 

(Av\ill9v
(
j
jl1) = 0 i*j. 

Proof. From (9) we obtain 

(Av«\ tf>) = (Av£\ rf) - ^ L ± <#>) = (AvZ\ v?) - ^L1(AVX\ t ^ ) 
(al9 v0 ) (al9 v0 ) 

k = 2, 3, . . . , n . 

Let a] = Av(
0

1}. Then 

(13) (Av(
0
X), vf) = 0 fe = 2 ,3 , ...9n. 

For v(
2
fc) by virtue of (9) and (13) we obtain 

(14) (Av[2\ vV) = (AC vf) - &---f3 (A#\ W) 
(«i> v\>') 

fc = 3, 4, . . . , n. 
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From (9) and (13) we obtain 

(15) (Av(1>, v(*>) = (Av(1>, v(*>) - i ^ Q (Av(1>, v(2>) = 0 
(al9vx) 

k = 3, 4, . . . , n 

(16) (Av(2>, v(*>) = (Av(2> v(fc>) - p ^ Q (Av(2>, v(2>) 
(a2, v\ >) 

k = 3, 4, . . . , n . 

Let a\ = Av(
0
2>. According to (14), (15), (16) we have 

(Av(_1? v(
2

fc>) = 0 i = 1, 2, k = 3, 4, . . . , n . 

Let 

(17) (Av (_ l9 vf_\) = 0 ; = 1, 2, . . . , r, i = 1, 2, . . . , ; - 1 . 

k = jj + 1, . . . , n . 
We shall prove that 

( A v ^ i , vr
k)) = 0 i = 1, 2, . . . , r, k = r + 1, . . . , n . 

According to (9), (17) we obtain 

(18) („„{!>., »<*>) = („*<!>., e>,) - J - ^ f H ( ^ . 2 . , «£>.) = o 

j = 1, 2, . . . , r — 1, fc = r + 1, . . . , n . 

It is sufficient to show that 

(19) (_.»<_!, »*k>) *- 0 fc = r + l , . . . , n . 

By means of (9), (18) we have 

(Av<!lu t><*>) = (A»(r22, »(*>) = . . . = (A4r>, »<*>) fc = r + 1, . . ., n 

and 

(20) („-#, »<*>) = (A*V, e>t) - ^ f l ( M r ) , »(r20 

k = r + 1, . . . , n . 

Let a J = Av0
r>. From (20) we obtain 

(Av(
0
r>, v(fc>) = 0 k = r + 1, . . . , n . 
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The condition a] = Av(

0°, i = 1, 2, . . . , n is fullfiled by the unit basic vectors v(

0° 

and hence the assertion of the theorem is proved. 

Let us denote 

(k} &i \ ^ i > xi— 1 / . •* /-» T • i 
a.-i = -S -77TV i = 1, 2, . . . , n, fe =- i - 1, z,..., n . 

( a . ^ i - i ) 

For special types of sparse matrices, reduced algorithms can be derived for solution 

of( l ) . 

Theorem 6. Let A be a strictly regular, q-diagonal band matrix. Let x 0 = 

= (0, . . . , 0)T and x(

0

k) = (0, . . . , ik9 .. .. 0)T where tk = 1. Then 

(21) x ( k ) = x ( i ) + x(

0

k) fe > (q - l)/2 + i 

i = 1, 2, . . . , n, fe = i + 1, . . ., n . 

Proof. For i = 1, according to the algorithm (3), we have 

Y d ) _ Y ( D , „(-),,(-) - v (°> 4- / y ^ U 1 ) x l ~ xO ' a o uo ~~ xo + a o ^o • 

Since a l f c = 0 for fe > (g — l)/2 + 1, we obtain 

<a l 5 x(

0

0)> = <a l 9 x(

0

k)> = 0 k>(q- l)/2 + 1 

and hence 

«(

0°> = a(

0"> k>{q- l)/2 + 1 

so that according to the algorithm (3) we obtain 

(22) x(k> = x(

0

k> + «»)»»> = x(1> + x(

0"> k > (q - l)/2 + 1 . 

For i = 2 we get 

x(

2

2) _ x(
2> + a i

2 ) v ( 2 ) = x ( 1 ) + a ( 1 ) v ( 2 ) . 

According to the assumption a2k = 0 for fe > (q - l)/2 + 2 and by (22) we obtain 

<a 2, x ( 1 )> = <a2, x?>> fe > (q - l)/2 + 2 

so that 

(23) a ( 1 ) = a ( k ) k > (q - l)/2 + 2 . 

According to the algorithm (3) and (22), (23) we have 

x?> = x ( k ) + a ( k ) v ( 2 ) = x ( 1 ) + a ( 1 ) v ( 2 ) + x(

0

k) = x(

2

2) + x(

0

k) 

k>(q- l)/2 + 2 . 

By induction the assertion holds for i = p. For i = p + 1 we have 

( 2 4 ) v<P+ 1> _ v<P+ 1> 4- „<*-+-.)„<*+D = Y<"> 4- r-yU0|.U,+ 1> 
*p+l — л p т "p "p — л p ^ "p ''p 
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According to the assumption ap+lk = 0 for k > (q — l)/2 + p + 1 and xp
k) = 

= xp
p) + x{k) for k >(q - l)/2 + p + 1 so that 

<aP + 1 , xp
p)} _ <a,+ 1, x f > fc > (4 - l)/2 + P + 1 

and 

(25) a(*> = a(fc> /c > (q - l)/2 + p + 1 . 

From (24), (25) and by the induction hypothesis we have 

Y(fc) _ Y(fc) . „(k) (p+l) _ (p) , J p U p + l ) . Y(fc) __ Y ( P + 1 ) , Y(fc) 

x
P+i — X

P ^ a
P

 V
P — xp ^ °̂ p y

P -t- x 0 — xp+1 -+- x 0 

fc > (q - l)/2 + P + 1 . 

Similarly we can derive reduced algorithms for other structures of sparse matrices 
such as block diagonal matrices, bordered block matrices and bordered band matrices. 
The analysis of the algorithm (3) for 3-diagonal band matrices is given in [18]. The 
reduced algorithms are also useful for minimization of the corresponding quadratic 
function. In the case of gradient methods the structure of the matrix has no influence 
on the structure of the algorithm [14]. The above described reduced algorithms, 
owing to the simplicity and small storage requirements, may be considered quasi-
iterative algorithms for large sparse systems. The point x(n) will be considered the 
initial point x0

0) for the computation given by the recurrent relation (3). This is the 
same as to start from x0

0) = (0, . . . , 0)T and to solve 

(26) Ay = r 

where r = b — Ax("). The refinement of the solution is then 

z = *<"> + ,,<"> 

where y(n) is the solution of (26). 

4. LU DECOMPOSITION OF A 

The above described method is related to the elimination method in the sense 
that the elimination may be viewed as a successive reduction of the number of linearly 
independent points which lie in the corresponding subspaces. The symmetry of the 
matrix by the elimination method allows to reduce the number of arithmetic opera
tions. In our case the symmetry has no influence on the number of arithmetic opera
tions, but enables us to generate conjugate vectors and therefore the described 
method is related also to the methods of conjugate directions. 

The method is also related to the elimination method from the viewpoint of LU 
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decomposition of a matrix into the product of a lower triangular matrix and an upper 
triangular matrix. Let us consider the matrix 

z i " 1 2 . . . «,„ \ 

1 . . . u,. \ 
U = 

0 

• 1 1 

where ujt are the components of the vectors v\i2i under the conditions of Theorem 4. 
Then we have 

/ ( - i Ч " ) 
' (a2, vľ) (a2, „<->) 0 

(27) C, = AU = 

\ 

\(a„vP) (an,v[2>) ... ( a „ , ^ 0 / 
From (27) we obtain 

(28) A = C,U~l . 

According to (27) we have 

d*tA = (a1,v™)(a2,v™)...(aH,v™l). 

The same decomposition is provided by the escalator method [11,4], the Purcell 
orthogonalization method [13, 4] and the Fox-Huskey-Wilkinson method of A-ortho-
gonal vectors [5, 4]. The analysis of relationships of various direct methods is given 
in [4, 7, 17]. 

Let i?Wt be mutually conjugate vectors. Then we can write 

(29) UTAU = D 

where U is the matrix defined by the columns of the vectors v\ll x and D is the diagonal 
matrix with the diagonal 

d = ( # > , Av^), (v[2\ Av[V), ..., (-W l f A^,) . 

From (29) we obtain 

A-1 = UD~lUT . 

According to Theorem 5 we have 

(v^AvYlJ-Wl^a,), 
i.e., the inner products in the recurrent relation (3). According to Theorem 4 the 
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matrix U is upper triangular and the number of arithmetic operations of the algorithm 
(3) for the solution of (1) is as follows: 

l/3n3 + n2 — l/3w operations of multiplications, 

1/3n3 + 3/2n2 — 11/6rc operations of additions, 

n operations of divisions. 

The total storage requirements are less than n2\A + n + 2 which is known as the 
smallest upper bound for storage requirements for a direct method. Input of data is 
very convenient for the algorithm since single rows of the matrix are required on each 
iteration. For a ^-diagonal band matrix it is necessary to store (q — l)/2 + 1 vectors. 
The above described method can be applied to the solution of a system with strictly 
diagonally dominant matrix and symmetric positive definite matrix. 

5. APPLICATION 

In [14] it is shown how the algorithm (3) can be modified in a suitable way to form 
an efficient algorithm for minimization. Let us consider the quadratic function 

(30) f(x) = (Ax, x) - 2(6, x) + c 

where A is a symmetric positive definite n by n matrix, b is an n-vector and c is 
a scalar. 

General algorithm. Let x0
0), x0

l), . . ., x(
0

n) be n + 1 linearly independent points 
of the space En. Then the algorithm for minimization of (30) is defined as follows: 

(31) x?> = x?_>. + c.JV.2. 

where 
f,(0 _ Y(0 _ Y ( - - l ) vi-l — xi-l xi-l 

and a ^ j are scalar coefficients such that 

/(x(i_i + av(/__i) = min! i = 1, 2, . . . , n , k = i, i + 1, . . . , n . 

a = a ( i \ 

It was shown [14] that v(-__! are mutually conjugate vectors and at the point x(
n

n) the 
function (30) achieves its minimum, i.e., the algorithm has the quadratic termination 
property. 

Special case. Let x(
0
0) = (0, . . ., 0)Tand x(

0
fe) = (0, . . . , tk9 . . . , 0)Tfor k = 1, 2, . . . 

. . . , n, where tk = 1. Then afj^ defined by the algorithm (31) satisfies 

(32) c#>. = b i ~ ^ " ^ i = 1, 2, • . . , n, k = i, i + 1, . . . , n . 
( f l | . » . - - i ) 
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In [15] a generalization of the above described algorithm for minimization of 
strictly convex functions is suggested. L e t / : E„ ~> F, be a continuously differentiate 
strictly convex function. Let x0

0), x^V • •, x(o° be n + 1 linearly independent points 
of the space En. Let x(

0
0) be an initial point and let x(

0
fc) - x(

0
0) + v(

0
fc), v(

0
/c) - (0, . . . 

. . ., tk, . . ., 0)T where tfc = A is a suitable positive real number. Then the algorithm 
for minimization of f(x) is-defined as follows: 

(33) Algorithm. 

Step (i): For given x(
0
0), x(

0
/<} = x(

0
0) + v0

/c) do the calculation by the recurrent 
relation 

where 

ү(fc) _ ү(fc) , „(*) w ( 0 X І — X І - I + a i - i w i - i 

w ( 0 _ f ,(0 / | | ł ; (0 II M _ ү ( i ) _ ү ( i - D 
W i - 1 — vi-ll Г i - 1 ' У i т l T •*.:-! X i ^ l 

and a\2i is defined as 

f(x?2x + a w ^ ) - min! i - 1, 2, . . ., w, k - i, i + 1, . . . , n . 

= <л 
Step (ii) : Replace x(

0

0) by x(n) and go to Step (i). 

According to the choice of A which defines the vectors v0

c) in Step (i), we obtain the 

following algorithms: 

Algorithm I. A — min (/?, \x(n) — x(

0

0)||) where h is a constant, usually h - 0-5(l). 

Algorithm II: A - mm (fc, |/(x<">) - f(x™)\>) , p e (0, 1> . 

Algorithm III: A - min (/i, ||/x(x(o0))ll) where /V(x) = (5//5x„ . . ., dfjdxn). 

Let us consider the system 

(34) dfldxi=fi(xux2,...,x,) = 0 f - 1 , 2 , . . . , n . 

Definition. T/ie occurrence matrix of the system (34) is a Boolean matrix, associat

ed with the system (34) as follows: 

An element of the matrix ,5,-y, is either a Boolean 1 Or 0 according to the rule 

1 ifthej-th variable appears in the i-th equation 
0 otherwise. 

This occurrence matrix influences the structure of the algorithm (33). For the 

algorithm (33), the following theorem holds [15]: 
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Theorem 7. Let f: En -> E{ be a continuously differentiate strictly convex func
tion satisfying 

lim /(x) = + oo . 
11*11 ~+ o° 

Let the occurrence matrix corresponding to the function f(x) be a q-diagonal 
band matrix. Let x0

0) e En be an arbitrary initial point and let v0
k) = x0

k) — x0
0) 

have the form 

C = (o, . . . , t t , . . . , o ) T 

where tk = X. Then x(fc) defined by the algorithm (33) fulfils 

xf) _ *<<> + „<*> k > (q - i ) / 2 + i 

/ = 1, 2, . . . , « , k = /, / + 1, . . . , n . 

For g — 1 we obtain the nonlinear Gauss-Seidel iteration. This theorem enables us 
to reduce the computational time required for minimization of/(x). For a ^-diagonal 
band matrix it is necessary to store (q — l)/2 + 1 vectors. According to Theorem 7 
an alternative implementation of the algorithm (33) is described as follows [15]: 

(35) Algorithm. 

Step (0): Define X and set x(
0
fc) = x0

0) + v(k) for k = 1, 2, . . . , n; set / = 1. 

Step (1): Compute 

Y(i) _ yd-1) . r / i -Du/O Xi — X i - i + a i - l Wi-1 

where 
(0 _ „(0 /|L,(0 || f.(0 __ ү ( 0 _ ү ( í - i ) 
i - i — vi-íl\\vi-í\\ > v i - ì ~ X І - I XІ-Í 

and a\'_ / ' is a scalar coefficient such that 

/ W - V + awj'ii) = min! 

a = «<_-/> 

Step (2): Compute 

*<!>. = x{_ . - (x^, - x<,'>, w<_t) w<_x fc = « + 1, 

Step (3): Compute 
v(*> - Y

( f c ) 4- a(
fc)

 w(i) x i — x i - l + a i - l w i - i 

where a(fc__ t is a scalar coefficient such that 

f(x(k2t + aw(._!) = min! k = i + 1, . . . , n . 

a = «»»! 
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Step (4): Set i = i + 1. If i <; n then go to Step (l), else go to Step (5). 

Step (5): Replace x(

0

0) by x(n) and go to Step (0). 

In Step (2) we define the orthogonal projections of the point x ( i ) defined in Step (1), 

on the corresponding parallel directions using the fact that the vectors w-^j are 

normalized. In Step (3) we consider the linear minimizations on the corresponding 

parallel directions using the result of Step (2). Step (2) may be considered a pre

dictor and Step (3) a corrector of the local minimizers. 

In [16] a modification of the above described algorithm is suggested. The algo

rithm for band occurrence matrices requires 0(n) function evaluations for determina

tion of n linearly independent vectors. The conjugate gradient methods require 0(n2) 

function evaluations in each iteration and the structure of the occurrence matrix 

has no influence on the total number of function evaluations. 

The other methods of this type [1, 2, 12] require n2 linear minimizations per itera

tion and the structure of the occurrence matrix has no influence on the total number 

of linear minimizations. The structure of algorithms [1, 12] is purely sequential. 

The above described algorithm is suitable for implementation on a parallel machine. 

The minimizations on parallel directions are independent of the computational point 

of view and can be calculated simultaneously. The structure of the occurrence matrix 

influences the number of processors. Each processor of a parallel machine has to 

store one vector. 
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S ú h r n 

PARALELNÁ PROJEKČNÁ METODA PRE LINEÁRNĚ 
ALGEBRAICKÉ SYSTÉMY 

FRIDRICH SLOBODA 

V článku je popísaná priama projekčná metoda pre riešenie systému lineárnych 
algebraických rovnic. Algoritmus je ekvivalentný algoritmu pre minimalizáciu 
odpovedajúcej kvadratickej funkcii a možno ho zobecnit' pre minimalizáciu ostro 
konvexných funkcii. 
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