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SVAZEK 23 (1978) APLIKACE MATEMATIKY CisLo 1

CONVERGENCE ANALYSIS OF A NONCONFORMING
FINITE ELEMENT METHOD SOLVING A PLATE WITH RIBS

VLADIMIR JANOVSKY, PETR PROCHAZKA
(Received July 8, 1976)

1. INTRODUCTION

The present paper may be considered a continuation of our work [1] where we
proposed a finite element method solving a problem of a clamped plate with ribs
which are stiff against bending and torsion. We derived error estimates and con-
vergence assertions depending on the regularity of the solution. It has remained
to prove the convergence of our method to a weak solution (without the assumption
of its regularity) in the case of intersecting ribs.

The main difficulty consisted in proving the assertion that each weak solution
of our problem can be approximated by a “smooth enough” function. In [1] we
succeeded in solving this problem for not interesecting ribs. The goal of this paper is
an extension of this result to the case of intersecting ribs. As a consequence we
obtain a general convergence theorem.
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We recall the mathematical formulation of the model considered: Let G be a rec-
tangle in the plane; we introduce a Cartesian coordinate system whose axes are
perpendicular to the sides of G. Let I and J be the sets of ribs parallel to y and x-axis,
respectively — see Fig. 1. We define the space V of admissible “shift” functions
as follows:*)

V= {w;we W5*(G),we W), we W (y), owloxe W (D).
dw[cyeWg(y) for each T'el,yelJ)
and equip it with the norm |||.|||:

6w

>+ Z(]u, }
Y 1,r veJ

Problem: Given f € L,(G), find u e V such that

. 2, 2 2
(1.1) a(u,v) + ¥ J {i 7o, Zu fj—v—}dy+

‘a1 ) |0y* dy*  Ox Oy dx dy

0%u 0% ) %
Ly [ oo 9 0 Y g~ o[ fodxdy
vea), |0x? 0x*>  dx dy dx Oy G

forallve V,where

o0%u 0%v 2u 02 2, 9%
a(w,0) = | (Mudo+ E500 o CE C0 +a dxdy.
G ox? ox? dx dy 0x Oy ()\

E?w

(/l

llwll] = Iwlo.e + 5‘ ([\»l» .+

N

The solution u of the problem (1.1) exists and is unique.

2. NUMERICAL METHOD AND ERROR ESTIMATIONS (SUMMARY)

For each he(0,1) we define a division G, = {G,}5¥), of the rectangle G into
rectangular elements G;. We assume that the system of divisions G, is regular.
This means:

k(hy
'(l) G = U ('lh

i=1

b) G Gu=0: idj: ij=1,.. ., k(h),
¢) G,,,ml“—-(bGl,,ny—(b rei, yed, i=1,....k(h)),

*) For the detailed notation of all functional spaces and their norms see [1].
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d) if h(Gy) = diam Gy, and o(Gy,) = supremum of diameters of circles ins-
cribed into Gy, then there exists a constant C such that

min Q—(—G—"f—)- 2C>0, he(0.1),
i=l,..‘.k(h)h(G,-h)

e) h= max n(Gy).
If A is a vertex of Gy, € G, then we say that A is a nodal point of the division G,.

Let R be a nondegenerate fixed rectangle and let

AR) = {@ip = Y ayx'yl + a5 X’y + a;3xy°)
0Zi+j<3

be the set of the so called Ari-Adini’s polynomials. For each he(0, 1) and G, € G,
there exists a regular affine mapping F;;, : G;;, — R.

For h e (0, 1) we introduce a space ¥}, which approximates the space V:

Vi, = {¢; poF ;' € AR) for i =1, ..., k(h); if A is a nodal point of division
G, then

a) ¢, dp|ox, d¢[dy is continuous at the point A,

b) ¢(A) = dplox(A) = oploy(A) = O for A € dG).

Remark. V, ¢ V.

Approximate problem. Given h € (0, 1), find uy, € V, such that

d%u, 0%v

1.2 ’ ay(uy,, v) + dy +
(12 o)+ 3 {[ TR e
k(h) El ;
+ 32, = gih@"’ 2 gihég dy, +
i=1 ) raeg, 1OV ox ) dy 0x
0%u, 0%v ki 0 uy\ 0 1)
+ T 0 Gy v 1 Iz, ) 2 (g, P axl =
;{ﬁ ox? ox? Z;; . {0x< " ﬁy) ('3x< " (7}’)} }

= 2J. fodxdy
G
for all ve V,, where
k(i) 2 a2 2 2
“uy, 0%v 0%u, 0°v
ay(uy, v) = Auy Av + —= — + 2 - —
(- ©) i; Gm( ’ ox? 0x? Ox dy dx Oy

and &, is a linear interpolation operator defined along the edges of Gy, in the
following way: Let a function ¥ be defined along the boundary of the rectangle G;,.

11



Let 4 and B be nodal points which are connected by one of the four edges of the
rectangle G;,. Then the value of %\ at an arbitrary point X = At + (1. - t) B,
1€ (0, 1) of the side AB is defined as follows:

L)X = tlimy(td + (1 — 1) B) + (1 — 1) llm Y(tA + (1 — 1) B)

T -

provided the limits on the right hand side exist.
We introduce the norm HHH,, on the space V, in the natural way:

ol & EAVE
Mullls = (,levlz,au. +IZI o2 + 4 Z ; a +
= € Lo(I'néGin)

e5(i 13 [ (2 —> )

There exists a unique solution u, of the problem (1.2) for each h € (0, 1).

k(h)

Theorem: 1.2. Let u and uy, be the solutions of the problem (1.1) and (1.2), res-
pectively. Let

M, = {w; we L,(G), w is polynomial of the second degree on each Gy, i = I,
., k(n)} .

Then the following estimate holds*):

(22) = wll, £ C{inf|[ju — o||ls + inf |u— &|,, + h*}
' h QeVh fineMn

where
k(h)
"IZ;” = (,gl(l"LGu,)z)”Z .

Proof. See [1], Remark 2 and (3.16).
Now we show that if the solution u is “smooth enough” then the right hand side

of (2‘2) converges towards zero. What is the meaning of the word “enough”?

Definition. Let G, be a regular division of G; G, = {G;};). Let us suppose that
each side of an arbitrary G;; coincides either with a rib or with the boundary
of G — see Fig. 2.

Then we define

k(1)
W= {w;weVNW»*Gy),we W**(I') foreach I' e I,
i=1
we W*2(y) for each ye J} .

*) Here as well as in the following C denotes a genetic constant independent of /.
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Lemma 1.2. Let w € W. Then the following estimates hold:
k(1)
(3.2) inf |w— ol = Ch(Y Wi, + X Iwlr+ X w3,
peVy i=1 Tel yeJ
k(1)
(4.2) inf |w — @y < Ch(Y w3607
e i=1

Proof. This lemma can be proved in the same way as Lemma 4.1 in [1].
Remark: If the solution u belongs to the space W then

o~y = ch.
Theorem 2.2. Let u and u,, be the solutions of the problem (1.1) and (1.2), respec-

tively. Let us denote the closure of the space W with respect to the norm HHH by
W. If ue W then

) i ol = 0.
h=0
First we recall a very important auxiliary assertion:

Lemma 2.2. The norm ]Hmh can be extended onto the space V for each h e (0, 1).
Moreover, the estimate

(6.2) [wllls = cliiwi

holds for each we Vand h e(O, 1); the constant C is independent of w.
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Proof. See [1], Lemma 4.3.

Proof of Theorem 2.2: Using the error estimate (2.2) we can state

7.2) lu = wlll = Clinf [l — @ffl + [l = wil + Ju = wlo +

+ inf ]W - l/’lz,h + hZ}
YeMnp
for any w € W, the constant C is independent of w. Let us notice that |u — w'z_,, =<
< ||lu — wl||s- Hence, in virtue of (6.2) and the fact that u € W we can state: For an
arbitrary ¢ > 0 there exists w € W such that

C{ll!u - u,,l

b+ e — wlau < g2
for cach h € (0, 1). According to (3.2) and (4.2), we can choose /g, € (0, 1) such that
C{ inf [[|w — (pm,, + inf |w — |, + W7} < g2
oeVn Yl
for each he (0, hy). This means that the right hand side of (7.2) can be estimated

by an arbitrary ¢ > 0 for sufficiently small A.

Remark. Now we are to verify the assumption u € W of Theorem 2.2. In [1] we
succeeded in the case J = @ (or I = 0, respectively) only.

3. REGULARITY. CONVERGENCE

First we introduce the most important assertion of this chapter concerning an
“apriori” information about regularity of a (weak) solution u of our problem.

Theorem 1.3. If a function u belongs to V then its traces u and Bu/(?x and ouldy

are continuous with respect to 0G U TI' U y.
Iel vyeJ

The proof of the theorem will be based on some auxiliary lemmas.

Lemma 1.2. Let Q = {(x,y)eR,,x€(0,a,), ye(0,a,)}, a; +0,a, +0 be
a rectangle and A = [0,0], B = [a;,0], C = [a,,a,], D = [0, a,] its vertices.
Let us suppose that

a) we Wh3(Q),

b) w=0 on ABUBCuCD\ {4},

c) w(4) = e,

d) wis a linear function along AD.

Then ¢ = 0,1.e. w = 0 on 09.
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Proof. We extend the function w onto the set Ry = {(.\', y)eRz, X = 0}. For
x> ag or y > a, we set w(x,y) =0 and for y <0 we set w(x, y) = w(x, —y).
Using the fact that w(x, 0) = 0 for x < 0, we can easily verify that we W'*(R}).
1t is well known (sce e.g. [2]) that w(0, .)e W'>%(R,). This is cquivalent to the
condition T < + o, where

T:J"’ (] + gv'z)l/z Iw(é)ll df

and
w(é) = j « w(0, y)e ¥ dy

(see [2], Theorem 1.2). By the direct calculation we obtain

. 2ie sin a,&
w(E) = 22 <1 _ ,_#_g%)_

¢ a<s
Substituting it into the formula for T, we get T < + =« iff ¢ = 0.

Lemma 2.3. Let Q be the rectangle described in Lemma 1.3. 1f ge W'"2(0Q)
then there exists p e W"(Q) such that p = g on 0Q in the sense of traces.

Proof. We could quote the work [5] but the assumption g € W' *(0Q) is strong
enough to allow for a simple proof: Let x(x, y) = ax + By + pxy + & be the poly-
nomial of the first degree with the coefficients «, f8, y. & uniquely determined by the
following conditions:

x = g at the points 4, B, C, D (vertices of Q).

We define the function Y = g — y on 8Q. It is obvious that y € W"*(0Q) and y =
= 0 at 4, B, C, D. Let w4 be an infinitely differentiable function with a compact
support in R,, w,, = 1 on 4B, w,y = 0 on TD. Hence, the function ¥ 445(x, y) =
= (0, x). w44(x, y) has the following properties: ¥ . € W' 3(Q), 45 = 0 on 02\ 4B,
V45 = ¥ along the side AB. In the same way we can define functions Y¥gc, Veps
Y 4p belonging to W'2(Q) which have the following properties:

Age =0 on JIQ\NBC, Yy =y on BC
Yep =0 on 0QNCD, Ycp =1 on CD
Wap =0 on 0QNAD, Y=y on AD.

Then it is sufficient to set p = Y45 + Yyc + Yep + Vap-

Lemma 3.3. Let Q be the rectangle described in Lemma 1.3. Let us suppose that
ve W'2(Q) n W'3(4B) n W"*(BC) n W'*(CD) n W'*(AD) and v is continuous
on 0Q~\{A}. Then v is continuous on the whole boundary 0Q.
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Proof. Let us define:

e = lim o(tB + (1 — 1) A) —lim o(1D + (1 — 1) 4).

t—0 4 t—0 4

The existence of both the limits is guaranteed by the fact that ve W'?(AB), ve
€ W'2(AD). Let us suppose that the assertion of the lemma does not hold, i.e.
e+ 0.

Let w be the trace of the function defined in b), c), d) of Lemma 1.3, where the
constant ¢ is given by the above equation (¢ + 0). Then the function v + w belongs
evidently to W' 2(0Q)*).

According to Lemma 2.3 there exists a function U e W'*(Q), U = v + w on Q.
It means that the function z = U — v belongs to W'?(Q) and z = w on 0Q in the
sense of traces.

Using Lemma 1.3, we obtain a contradiction: ¢ = 0.

Proof of Theorem 1.3.

a) According to the well known embedding theorcm (see [4]), the function u is
continuous even on Q.

b) Let v be equal to ou[ox or Du/é‘vy on 0G U I' U7y in the sense of traces. Let us

rel  yel

construct a basic division G; = {G;(}] in the natural way — see Fig. 2. If Q =
= Gu+1yj—1y+i,1 15 an arbitrary rectangle of the division G; then we denote its
vertices by A, B, C and D — see Fig. 2. According to the definition of the space V,
the function v belongs to W"2(Q) n W' 2(4B) n W'*(BC) n W'*(CD) n W"*(AD).
It means that v is continuous on each side of the rectangle Q. Hence it remains to
show that v is continuous at the vertices 4, B. C, D with respect to 0Q. (Evidcntly
this assertion would complete the proof of Theorem 1.3).

We make the following assumption:

(A) v is continuous at the vertices 4, C, D with respect to Q. Using Lemma 3.3,
we can state that v is continuous at B (with respect to 0Q).

If A, C and D coincides with G then v is continuous at 4, C and D, respectively.
This fact follows from the definition of the space Vimmediately. Hence, the assump-
tion (A) is fulfilled in the case @ = G, ;. It starts the induction of (A).

Theorem 2.3. Let u € V be the solution of the problem (1.1). Then ue W (see
Theorem 2.2).

To prove the above assertion we need some auxiliary lemmas.

*) v -+ wis continuous along 822 and belongs to W2 along each side of 9.
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Lemma 4.3. Let Q be a nondegenerate rectangle; let Fy € LZ(Q) be given.
Then there exists a (unique) solution u; € W**(Q) n Wg**(Q) of the problem

a(uy, @) = 2j Fip dx dy*)
2
for each ¢ € Wi *(Q).

Proof. See [3].

Lemma 5.3. Let Q be a nondegenerate rectangle (the same as in Lemma 1.3).
Let the functions @o, ¢, be given on 6 so that
a) ¢, ¢y are infinitely differentiable along each edge of 9,
b) the supports of ¢, and ¢; do not contain vertices A, B, C, D (i.e. ¢, g€’
€ D(AB) n D(BC) n D(DC) n D(AD)).
Then there exists an infinitely differentiable function ¥ on Q such that ¥ = ¢,,
O¥[0v = ¢ on 0Q in the sense of traces (v is the outward normal vector).

Proof. Let w,p = w,p(x, y) be an infinitely diffetentiable function with a com-
pact support in R,; w4z = 1 in a neighbourhood of the AB, wyup =0 on CD. The
values of functions ¢, and ¢, on AB are denoted by @o(x, 0) and (pl(x, 0), where
x €40, a;» (see Lemma 1.3); we notice that ¢ ., 0) and ¢,(., 0) belong to D((0, a,))
according to the assumption b).

It can be easily verified that the function

¥ 45(x, ¥) = (0o(x,0) + y 94(x, 0)) @45(x, y)

is infinitely differentiable on Q, ¥ ,5 = 0¥ ,5/0v = 0 on 0Q = AB, ¥, 5 = ¢, and
0¥ 45/0v = @y on AB. In the same way it is possible to define functions ¥sc, ¥Ycp,
¥ ,p having the same property as described above, when replacing AB by BC, CD
and AD, respectively.

Now it is sufficient to set

Y=Y+ ¥+ Yoo+ ¥Yup-
This completes the proof.

Lemma 6.3. Let Q be a nondegenerate rectangle with vertices A, B, C, D. Let F €
€ L,(Q) and ¢4, ¢, € D(AB) n D(BC) n D(CD) n D(AD) be given. Then there exists
a unique solution we W*?(Q) of the problem: Find we W**(Q) such that w =
= @, dW[dv = @ on 0Q in the sense of traces and

a(w, q)) = ZJ Fo dxdy

Q

for each ¢ € W3*(Q).

*) The bilinear form a(., .) is defined over £; see (1.1) with G replaced by Q.
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Proof. Let F; be equal to F — A?¥; ¥ is an infinitely differentiable function
on Q, ¥ = ¢g, 0¥[0v = ¢; on dQ (see Lemma 5.3). According to Lemma 4.3,
there exists u; € W32(Q) n W§**(Q) such that

a(uy, ¢) = 2‘[. Fipdxdy
Q

for each ¢ € WOZ’Z(Q). Integrating by parts, we obtain the equality
2] F,pdxdy = 2.[ Fo dxdy — a(¥, ¢); p € W23(Q).
Q Q
Hence, we get finally:
a(u, + ¥, ) = ZJF(p dxdy
for each @ € W§"*(Q). Evidently, we can set w = u; + Y.

Lemma 7.3. Let Q be a nondegenerate rectangle with vertices A, B, C, D. There
exists we W**(Q) satisfy the following conditions:

a) a(w, @) = 0 for each ¢ € Wg*(Q),

b) w = @, 6w/0v = @, on 0Q in the sense of traces where ¢, € WOZ'Z(AB) N
N W¢(BC) n W§*(CD)n W3'*(AD) and ¢, € Wo**(AB) n Wy *(BC) n Wy *(CD)
A Wy A(AD).

Furthermore, there exists a constant C independent of @, ¢, such that

“W”2,n = C{I(/’OIZ,AB + |‘Po|2,sc + I(Polz.cn + |(P0|2,AD +

+ I(plll,AB + I‘P1l',Bc + |§01|1,cu + |(P1|1.AD} = aC

Proof. According to [5]*), we can find a function ¥ e W>*(Q), ¥ = ¢, and
0¥[ov = ¢, ob 02 in the sense of traces, |¥|,,, £ Ca, where the constant C does
not depend on @g, ¢. Let w, € Wy *(Q) satisfy the equation

a(wy, @) = —a(¥, ¢)
for each ¢ € W§'*(Q). It is well known that wy exists and
”WIHZ,D = C“'PHZ.Q

where C is independent of ¥ (i.e. of ¢y, ¢@,)**). Setting w = w, + ¥, we obtain
a function with the properties a), b). The estimate |w, o < C . « is evident.

*) See Lemma 3.1 in [1], where we have quoted Jakovlev’s theorem.

**) With regard to [4], it is evident that the bilinear form a(., .) is W2 '%(2) — eliptic and
a( ¥,.) is alinear continuous functional over W&’Z(Q). The existence of wyand the corresponding
estimate is a consequence of the Lax-Milgram theorem.
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Proof of Theorem 2.3. Let G, be the ‘‘basic” division of G; let  be an arbitrary
rectangle of the division Gy with vertices 4, B, C, D — sce Fig. 2. According to
Theorem 1.3, the functions u and du/dx and du[dy are continuous at the points A,
B, C, D with respect to G U I' U y. We define on each Q a polynomial

el yedJ
5 . .
w=oxy) =Y a;x'y
i,ji=0
satisfying the following conditions:

2 0
o) =u(x) T2 =2 =0
ox? 0y
Jw u, .
(X)) =" (x
ox ( 0x( )
3 3 3
‘Z‘f’.(xi =M(x) - ‘73(‘1_ X) = iw‘z(x) =0
Jdy Jdy ox® dy Ox Oy
2 4
oo x)=0 22 (x)=0
0x Oy ox? 0y

for X = A4, B, C, D, respectively (36 conditions).

The above conditions determine the polynomial w on Q uniquely. The function w
is twice continuously differentiable over G and vanishes together with its first-order
derivatives over 0G. It means that w e W3'*(G) n W**(G). The traces w, dw/dx
onI' el and w, dw[dy ony € J are piecewise polynomials of the 5-th degree which are
continuous with its second-order derivatives over I' and 7. respectively (see [6]).
We can easily verify that we V n W.

Using (1.1), we get the following condition:

a(u, ¢) = ZI Jodxdy
Q

for each ¢ € W '*(Q), where a(., .) is restricted onto Q*).
We set
U=u-w

(on the whole G). It is evident that the function U satisfies the following conditions
on Q:

a) a(U, @) = 2J (f = A’w) ¢ dx dy

2

for each ¢ € WZ*(Q),

density of D(2) in W&'Z(.Q) and the continuity of a(u,.), we obtain the present condition.
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b) U = ¢, and dU[dv = ¢, where

@0 € W§(AB) 0 W3*(BC) n Wg*(CD) n WE(AD)
and
@1 € Wy *(AB) n Wy *(BC) n Wy'*(CD) n WE3(AD).

In virtue of the density of D(+) in Wg(+) and Wg'*(+), there exist sequences
{‘POn}f:u {(pln}:c=1 such that

®on € D(AB) " D(BC) n D(CD) n D(AD),
@y, € D(AB) 0 D(BC) n D(CD) n D(AD)¥)

Using (1.1), we get the following condition:
a(u, @) = 2J- fo dx dy
2

for each ¢ € W5 "*(Q), where a(., .) is restricted onto Q**).
We set

U=u—ow

(on the whole G). It is evident that the function U satisfies the following conditions
on Q:

a) a(U, ¢) = 2-[ (f — N’w)pdxdy for each ¢e Wi ?*Q),

Q

b) U=¢, and 0U[ov = ¢,, where
®o € W5 *(AB) 0 Wg*(BC) 0 Wg*(CD) o Wg*(AD) and
@y € Wy *(AB) 0 Wy *(BC) n Wy**(CD) 0 Wy»*(4D).

In virtue of the density of D(-) in W¢'*(+) and Wy°*(+), there exist sequences
{@on} 1> {@1n}iy such that

®on € D(AB) n D(BC) n D(CD) ~ D(AD),

Pin € D(AB) N D(BC) N D(CD) A D(AD)***)

*) If ¢y and ¢, are identically zero over a side then we set ¢g, and ¢, equal to zero along
that side. This is the case of the sides coinciding with the boundary 9Q.

**) If ¢ € D(Q) then evidently ¢ € V. Hence the conditions hold for each ¢ € D(2). Using the
density of D(R2) in W&'Z(.Q) and the continuity of a(«, .), we obtain the present condition.

**%) If ¢, and ¢ are identicaly zero over a side then we set ¢, and ¢,, equal to zero along
that side. This is the case of the sides coinciding with the boundary 0.
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(n =1, 2....) and defining
o, = |90o - (pOn'Z,AB + |</)o - (P0n|2,BC + I‘Po - <P0n!z,cu + |(Ps = Pon|2,4D »
B, = '(Pl - (/)1"!1,,40 + |(P1 - Q’Jnll,m: + l<P1 - ‘P1n|1.cn +

+ |(P1 - (Plnll,Az)
we have
a, =0, p,»0 for n— o0.

For each n we solve an auxiliary problem: Find U, € Wg*(Q) such that

U, = ¢o,, 0U,[0v = ¢, on Q2 in the sense of traces,
a(U ) =2 J (f - A%) ¢ dx dy
Q

for each @ € W§"*(Q).
According to Lemma 6.3, the solution U, exists and

U,e W(Q).
We define u, = U, + . The function u — u, = U — U, satisfies the condition
a(u — u, @) =0

for each e W>*(Q) and u — u, = @y — @g,, (0[0V)(u — u,) = ¢, — @y, on
0Q in the sense of traces. Using Lemma 7.3, we conclude

Ju = uf,0 = Cla, +B,)—0
for n — oo.
If we realize that U, belongs to V then evidently u, € V, too. Moreover, u, belongs
to W. Tt remains to show that u, — u with respect to the norm |H ”!
According to the definition of [” i[ , we have the inequality

k(1)
o = wfl| = CLY (lu = w36, + o0 + BD]'"2.
i=1

It was shown that the right hand side converges towards zero for n — 0.

Theorem 3.3. Let u and u, be the solutions of the problem (1.1) and (1.2), respec-
tively. Then our method converges in the following sense:

lim H!u — Uy
h—-0

Proof. See Theorem 2.3, (5.2) (Theorem 2.2) and (6.2).

[
=0
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4. NUMERICAL EXAMPLE
(One case of a more general boundary condition.)

So far we have studied the clamped plate with ribs — see the previous chapters
and our paper [1]. The present nonconforming method can be applied to more
general cases of boundary conditions. The following example was tested practically
and the results are given in this chapter.

2
>
RIB TP
N
1 1
2 -~
2 2X2 ELEMENTS
2M
H
M
S
M
]
4 X4 ELEMENTS Fig. 3. 8X 8 ELEMENTS

Let a plate be clamped along the edges 4D, BC and simply supported along the
edges AB, CD — see Fig. 3. We shall consider two perpendicular systems of ribs,
as usual:

— see Fig. 2
— 1
= {i}i-1

It is easy to derive the following variational formulation of the problem considered:
To find u € Vsuch that the equation (1.1) holds for each v € ¥, where

V={w;,we W>*G), D,y =0 ae. on ADuU BC for o =1,
w=0 ae on ABuUCD, we W2A(I) n Wy, owjox € Wy *(I)
foreach TI'el, we Wg*(y), ow|dy € Wy'*(y) foreach yeJ}.

The space Vis equipped with the norm ||| || defined in Chapter 1.
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Let G, = {G,}5%) be a regular division of the region G, let R be a fixed non-
degenerate rectangle and let A(R) be the set of Ari-Adini’s polynomials over R.
We denote by F;, the regular affine mapping from G;, onto R. Let

(2.4) V= {w;woF,'eAR) foreachi=1,... k(h), if Q
is a nodal point of the division G, then D®w is continuous
at  Q with respect to G for |ot] <1, if QeAD v BC then
D*w(Q) =0 for |¢/ <1, if QeABUCD then w(Q)=0}.

It is easy to verify that H)W,, from Chapter 2 is a norm on ¥, when ¥, is now defined
by (2.4).

We define finite element procedure in the natural way: To find u, € V, such that
(1.2) holds for each ve V.

If we define the space of regular solutions of (1.1) in the following way

(3.4) W= {w;weV,we W>Gy,), we W»(I')), we W>3(y)),
s=1,...mi=1..,kj=1..,1, m=((k+1)(1+1}

where V is now defined by (1.4) and the geometrical notation is clear from Fig. 2,
we can follow the same lines as in the proof of convergence of approximations to the
regular solution in [1]. When the regularity of the solution of the problem (1.1) is not
known apriori at all, then we can prove the convergence of the present nonconform-
ing method in a similar manner as in the case of the clamped plate.

As can be readily seen, the analysis of the proposed procedure can be regarded
as a combination of a plate flexure analysis and of a beam flexure and torsion in Saint-
Venant sense. The computer programme for the analysis of a plate with ribs was
thus written in two stages.

In the first stage, the stiffness matrix of the plate was constructed by the non-
conforming method — Adini’s rectangle. The explicit form of the stiffness matrix
for Adini’s rectangle Las been published in many papers such as e.g. [9]. In [1] and
in the previous chapters of this paper it was a type of problem discussed. It is readily
seen that the theorems and lemmas remain valid also for a more general form of
problem (i.e,, when the real values of material constants are taken into account).
In our examples we have considered isotropic plates with Hooke’s law in the stan-
dard form:

[ 0w
ox?

S o D I
o} = M, ¢ = D] (s} 5 (e} = |~ 53
Y ’

5 0w

0x Oy J
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where M, M, M, are the bending and twisting moments, respectively, and

P
[]212(1_v2) (v)o(1~v)/2_

t being the thickness, E Young’s modulus and v Poisson’s ratio.

In the second stage the stiffness matrices of beams with respect to the torsion and
flexure rigidity was found. For details of the torsional properties of a beam see [8].
According to the numerical method proposed, the stiffness matrix of an element
of a beam is as follows:

[Q:] C12/Br ef2 0 =12/ 612 0 [ [wi
M; 6/> 41 0 — /" 2/l 0 l(pil
T, } _EJ 0 0 gl 0 0 —gfl ,}
0; —12/F —6/1> 0 12/ —6/I* 0 |]w;
Mj 6/1> 2/1 0 61> 4]l 0 ||o;

(75 | 0 0 —¢l 0 0 el ||¢&;

where Q, M, T are the shear force, the bending and the twisting moment, respectively,
w, @, &, are the corresponding generalized displacements, ¢ = Jp,/(2(1 + v) J) with
Jp standing for the torsion rigidity (see [8]). 1 is the length of an element with the
endpoints i and j, J the momentum of inertia.

The two stages were then assembled to form the programme for the analysis
of a complete plate with ribs.

To check the accuracy of the method and in particular to determine the rate
of convergence with respect to the number of elements employed, several problems
were calculated and results compared with results obtained by the folded plate
method — see [7].

Because of an extraordinary precision of results obtained by the folded plate
method in the case of boundary conditions used in the following examples, this
only case was analysed. Our effort was concentrated to test various cases of geometry
and types of loading.

The constructions were analysed under various mesh sizes in otder to test the
convergence of the method. The results obtained are given in tables together with
the solution by the folded plate method. The percentage error of the approximation,
calculated as

é i alue — soluti
approximate value — folded plate SO}]»U_IOfI‘{ 1002

folded plate solution

are also given in the tables. According to the formula for percentage errors, an over-
estimation will be shown by a positive sign and an underestimation by a negative
sign. For the sake of simplicity in each of the three examples and for each mesh size
the elements of division are of the same geometry.
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The first problem considered was that of an isotropic square plate 2 x 2 m?
with a thickness of 2 cm, clamped along the opposite edges and simply supported
along the rest of the boundary, subjected to a uniformly distributed load of 1 kp/cm?.
The only rib (2 x 12 cm?) is situated in the middle of the plate and it connects the
simply supported edges — see Fig. 3, where also the various grids used are shown.
The torsion rigidity of the rib has no influence in this case. The results are given
in Table 1. From this table it is seen that the finite elements results are in reasonably
good agreement with the solution obtained by the folded plate method and they
do converge towards the exact values (we suppose, of course, that the folded plate
method yields reasonably accurate values).

RiBs

2M

3
2
1%
p2
1
iy
2o

3X 2 ELEMENTS

6X4 ELEMENTS

Fig. 4.

In order to test the ability of the method to take more irregular load-functions
into consideration, the plate 3 x 2 m?, with the same thiskness as in the first example,
is now subjected to 10 Mp at the points K and two parallel ribs connect the simply
supported edges — see Fig. 4. From Table 2 which shows the results obtained
we can see again a reasonably good agreement between the results reached by the
two methods.

25



ajeid

i

; 896-86TC — i L-966 67-€801 . we ! PaPI%J
SI19-1— 1+ ¥8197C— . 19-1 : 9L-T101 | LYS-0— 9€-LLOT ! Syl i SSv-t 8 XTI
Les— 1 98LLIT— $S-9 ; ¥0-2901 | 99-c—  vh¥SOT IS¢ m S0S-¢T | ¥ X9
| , M B W » L
anjea " 1owo % | anfea 10119 %5 _ anjea 10113 9, _, anfea

! I

SJUSW?[? JO

‘
Hpyy Sw S Sat m JaquInN
|

JUSWOW AN BFOU WNWIXEA sjuawowr aA7Isod WNWIXEW [BIIUSD) UONIdPOp [e1U)

|
|
|

CoIqelL
” 7 T T T i [ ,
| : j _ | ﬁ | arerd
, SL-6L0T— | [ 8969, ! © 60-009 | S§S-96S U Iwea | P2PIo}
6I'T | €6¥S0T— | 68¢ | 068L | €5T  LTSI9 wo— | €0ves | 6vT 1 T6TI | 8 x8
oL€ | 9LTooT— o~ Lo9EIl | €899 Lr1— | 6LL8S | T8S ~ over ¥ Xv
60-€1 | Lp-LO8T— - i - o 10E6 i EI-8STI ¥6-T v €0-vI9 | Ly8I ﬁ Los-t T XT
w | _ 4 | W j m w
10113 % _ anjeA ! Jome % anjea n 10119 % 7 anfeA 10112 % onjeA m 10119 Y “ anfeA “
u — ' |
| [
Hpy 7y I Sw Sw | Sm SJUQW[I JO
juswow juswoux w | TequnN
| eAneSoU WNWIXEN oanisod wnuwirxey | sjuswow 2anisod fenua) _ uond3ysp [enua)
- i ,
T 31qeL

26



|

| ‘
| , | | | | , | - owd
.| 78899 | | 98T€S | 99-667 | 8LIIE ! 1£-887 ' 6L'10E | PaPIoJ
| ST€— | 95069 | 899 — = Ov89S  TTH | 8GL8T . Ll | LT9OE |LIL — | 8680E  LET — | YESOE | 8 X8
L 6lb— . 78969  L6L — | SESLS . SIOL | 9T-IST | 90-1— | OISIE 60€ —  VTL6T b€ — o spaze v X8
M - - LIvE— | 96¥IL | 88T | ITEIT | 969 60-06T | 0€:€F —  9T€ly | €90 — | 9L€0E | 8 X¥
o= = 666T— | $9T69 | 6191 | ¥IIST  SSY | 8SL6T SS8T —  19:0LE | €8S — | 6€6IE | ¥ XV
i i e e - Lt-L 05-88T | S9-TIT— | OV-106 = vh8l— | €pLSE | ¥ XT
= — loess—  80e8 | €68 | 6LYLT | 8SIT | 6¥HT  ¥LBI LTPET | bLIT— | 6€L9€ | TX¥
- = = == = LI¥D | 65L9T | 880T— | 05068 | 60-61— | OF6SE | T XT
! u, , W “ ! W | | | i A,
J0119 % w onjea u 10019 % ‘ anfeA A 10113 9 anjeA 10419 % anjea m 10119 % '_ anjeA | 10a19 % __ anjea “
| ﬁ I S , . | B I S
Xew ¢ fq i xg s | s m Xy [SHuswiale 3o
vl = _ W AN o w N ,s,-,E.,;!fw_ ToquinN
‘wou *j1sod *XeN ; SjudWOW [BIIUDD) |
| ! , | | | V W _ |
| | | | | | | - o
oLy — PE8E9T— | 160L:0 | | SEVT0 ©8KSS0 | 85€9-0  PoPIOJ
00:0 | OL¥by— | 911 — ST6I91— | S8F— | SEPLO ﬁ LOL — | I9VT0 | ILT — | E¥950 | 6vT — | E5790 1 8 X8
€0-T— | 69-S¢p— | 8Ip — | €L-90LI— | PES— | OLVLO | e — | 1IST0 | 166 — | 91850 " 19¢ — | 15990 ¥ X8
| 96— | 0T:81Y— | L9:01— L EEEorI— - . — 60T — | 9870 | 1ST — | L89S0 | 9T —  9TS90 , 8 X ¥
vy — ﬁwm.w@l 9Lt — | §99LST— - = SEv —  IPST0 199 — | 81650 | ¥85 — | 6TL90 ¥ X¥
8LS— | 66:81P— | T9-9E— | TTee0l— | — - | - - | = - 6£9 —  ¥9.90 | ¥ XT
60:€ | TE6Sh— | 88:ST—  0T-T90T— = = ELTI— | SPTO | $96T— | €6IL0  LS-LI—  SLPLO | T X¥
LOT— | 0§:SEP—  TTII— mwvﬁ:lw i e e - 0$-81— | YESLO . T XT
A, H _ | , “
, A | , ,
10119 9 _ anfeA Jo0119 % _ anfeA 10119 % anfea _ 10119 % anfea H 10419 95 7 anjea “ 10119 % anjea _
, ! X |sjuawafd jo!
y a LR ) o) q 14 i
4% n M ="M ' M ﬁ M _ M M soquIny
SJUSWIOW dA1)BSOU WNWIXBIA uonosspgeg ‘

€ 2IqeL



The third example keeps the geometry of the plate from the first example but now
only a half of the plate is subjected to a uniformly distributed load of 1 kp/cm? —
see Fig. 5. The results obtained are shown in Table 3. It is evident that the finite
element solution is quite satisfactory. In order to test the behaviour, a detailed
discussion is carried out.
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Due to the particular deflection function assumed (vertical deflection w), the second
derivative values, i.e. 9>w/dx* and 0°w/[dy* will be bilinear in x and y over each element
of the division and hence the bending moments will vary linearly over the element.
In addition, the internal moments calculated from the adjacent elements will be
discontinuous at their common node. The discontinuities decrease with the mesh

Fig. 5.

28



size. In our examples the average values are taken and it is readily seen that the
resulting curve is very close to the folded plate method in each of the examples dis-
cussed.

CONCLUSION

A finite element solution of a plate with ribs proposed in [1] for a more general
geometry of construction (intersecting ribs) has been discussed. Convergence theo-
rems were proved. In order to show the practical use of the method, the analysis
of three examples was carried out. The results obtained are shown to be in a good
agreement with the folded plate method [7].

From the technical standpoint the finite element solution given can be readily
applied to the solution of structures containing openings, elastic supports, supported
on pillars etc. On the other hand, the method does not explicitly respect the influence
of the excentricity of ribs. Because of the simplicity of the procedure discussed,
it can be used to minicomputers.

Acknowledgement. Thanks are due to Ing. Hlavagek, CSc, MU CSAV for valuable
remarks and to Doc. Kiistek, CSc and Ing. Kvasni¢ka, CVUT, for providing the
needed results obtained by the folded plate method.
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ANALYZA KONVERGENCE NEKONFORMNI METODY
KONECNYCH PRVKU PRI RESENI DESKY SE ZEBRY

VLADIMIR JANOVSKY, PETR PROCHAZKA

V této prdci je studovdna konvergence jedné nekonformni metody koneénych
prvk@ pro problém desky se Zebry. Je sledovdn problém formulovany v [1] a je
prihlédnuto ke konecnému poctu obecné kiizicich se Zeber. Konvergence metody
je prokdzdna teoreticky a na praktickych ptikladech je prokdzdna i v aplikacich.
Na praktickych ptikladech jsou zkoumadny i vlastnosti metody v zdvislosti na hustoté
sité. Konvergence numerické metody je dokdzdna za predpokladu, Ze neni zndma

,,a priorni“ regularita feSeni vychoziho problému.

Authors’ addresses: RNDr. Viadimir Janovsky, CSc., MFF KU, Malostranské namésti 25,
11 800 Praha 1, Ing. RNDr. Petr Prochdzka, CSc., DP Metroprojekt, 120 00 Praha 2, Na Slo-
vanech.

30



		webmaster@dml.cz
	2020-07-02T03:05:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




