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SVAZEK 23 (1978) APLIKACE MATEMATIKY ČÍSLO 1 

CONVERGENCE ANALYSIS OF A NONCONFORMING 
FINITE ELEMENT METHOD SOLVING A PLATE WITH RIBS 

VLADIMÍR JANOVSKÝ, PETR P R O C H Á Z K A 

(Received July 8, 1976) 

1. I N T R O D U C T I O N 

The present paper may be considered a continuation of our work [1] where we 
proposed a finite element method solving a problem of a clamped plate with ribs 
which are stiff against bending and torsion. We derived error estimates and con­
vergence assertions depending on the regularity of the solution. It has remained 
to prove the convergence of our method to a weak solution (without the assumption 
of its regularity) in the case of intersecting ribs. 

The main difficulty consisted in proving the assertion that each weak solution 
of our problem can be approximated by a "smooth enough" function. In [1] we 
succeeded in solving this problem for not interesecting ribs. The goal of this paper is 
an extension of this result to the case of intersecting ribs. As a consequence we 
obtain a general convergence theorem. 
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We recall the mathematical formulation of the model considered: Let G be a rec­
tangle in the plane; we introduce a Cartesian coordinate system whose axes are 
perpendicular to the sides of G. Let I and J be the sets of ribs parallel to y and x-axis, 
respectively — see Fig. 1. We define the space V of admissible "shift" functions 
as follows:*) 

V = {w; w e Wla(G), w e Wl'2(r), w e VVo'2(y), dwjdx e Wx
0'

2(r), 

dwjdyEWo'2(y) for each FeI,yeJ] 

and equip it with the norm | | | . | | | . 

IIHII = IH-.0 + Z (l-kr + f- ) + l ( K , + 7- )• 
#e/ \ OX 1 > r / y e j \ O> | , y / 

Problem: Given f e L2(G), find u e V such that 

,« ^ , v ^ f fa2w a2v a2u a2v i j 

(1.1) fl(tt, „) + £ J — — + — - — - I dy + 
iei j r [dy dy ex ay ox ay) 

+ 1 
yeJi 

for all v e V, where 

d2u d2v a2u d2v . 
_l_ > d x = 2 fváxQ y 

y [дx ôx ôx дy ôx дy ]/• 

a(u, v) = V 
д2u д2v , д2u д2v õ2u Ô2v\ , 

Au Av + — г -—- + 2 -f — г — г ì dx d v 
дx дy дx дy ôy ðy Л„2 Јч„2 

The solution u of the problem (1.1) exists and is unique. 

2. NUMERICAL METHOD AND ERROR ESTIMATIONS (SUMMARY) 

For each he(0, 1) we define a division Gh = {Gih}\^\ of the rectangle G into 
rectangular elements Gih. We assume that the system of divisions Gh is regular. 
This means: 

k(h) _ 

a) G = u Gih , 
; = 1 

b) GihnGjh = 0 ; i + j ; i,j = 1, ...,k(h), 

c) C i » n r = 0 , G t t n y = 0 ; f e / , y e j , i = 1, . . . , fc(h) , 

*) For the detailed notation of all functional spaces and their norms see [I]. 
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d) if h(Gih) = diam Gih and Q(Gih) = supremum of diameters of circles ins 
cribed into Gih then there exists a constant C such that 

Q(G 
min - ^ - ^ 

i=i,...MҺ)h(Gih) 

e) h = max Һ(GІҺ). 
i=l,...,fc(A) 

= C > 0 , Лє(0. 1), 

If A is a vertex of Gih e Gh then we say that A is a nodal point of the division Gh. 
Let R be a nondegenerate fixed rectangle and let 

A(R) - {cp; cp = £ aijxiyJ + <*3ix3y + a13xy3} 
O^i + j^.3 

be the set of the so called Ari-Adini's polynomials. For each h e(0, 1) and Gih e Gh 

there exists a regular affine mapping Fih : Gih -> R. 
For h e (0, 1) we introduce a space Vh which approximates the space V: 
Vh = {q>; (poFih1 & A(R) for / = ! , . . . , k(h): (/" A is a nodal pOint Of division 

Gh then 

a) cp, d(pjdx9 dcpjdy is continuous at the point A, 

b) cp(A) = d(pjdx(A) = dcp\dy(A) = OfOr AedG}. 

Remark . V„ * V. 

Approximate problem. Given h e (0, l),find uh e Vh such that 

rei ( J r dy2 dy2 

+ ľ 
/ЄJ 

a 2 u , <92v _ _ ^ A 

;x 2 Ox2 

for all t> G V/,, where 

= 2 I fv dx dy 

fc(A) /• / 

ЯA("A, V) = £ ( Au,, Av 
/ = 1JG,Л 

d2ui, d2v „ O^u., d2v 
F -2 — - + 2 5 + 

Ox2 O 

д2uhд
2v\ -

+ ) dx d> 
O>2 <Эj;2 

<9x O>' дx дy 

and J^//f is a linear interpolation operator defined along the edges of Gih in the 
following way: Let a function \j/ be defined along the boundary of the rectangle Gih. 
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Let A and B be nodal points which are connected by one of the four edges of the 
rectangle Gih. Then the value of S£ihi// at an arbitrary point X — At + (l — t) B, 

t e (0, 1) of the side AB is defined as follows: 

Selh(\\i)X = t lim \\J(XA + (1 - T) B) + (1 - t) lim \p(xA + (l - x) B) 
t - > l - r->0 + 

provided the limits on the right hand side exist. 
We introduce the norm |j |* | | | / . on the space Vh in the natural way: 

/k(h) / k(h) 

EI"l2,c, + S(H2
2,r + i E 

\ i = l lel\ i=l 

V l l 12 / v II5 í re SA 
}'6J\ í=i || Ox \ OJ7 

Oy \ Ox 
г ) + 

*(*) II .1 / ,Tn\l l 2 \ \ l / 2 

+ " 
II L2(yndGih) . 

There exists a unique solution wA of the problem (1.2) for each h e (0, l). 

Theorem: 1.2. Let u and uh be the solutions of the problem ( l . l ) aud (1.2), r^5-

pectively. Let 

9J?,, = {vv; weL 2 (G ) , vv is polynomial of the second degree on each Gih, i = 1, . . . 

. . . , f e ( h ) } . 

Tl?en the following estimate holds*): 

(2.2) |j|u - u^|||ft ^ C{ inf |||u - (D|||A + inf |u - u,J2>/. + h2} 
<peVh Uheyfth 

where 
Hh) 

| - k „ = ( Z ( | - | 2 , C , ) 2 ) I / 2 . 
1 = 1 

Proof. See [1], Remark 2 and (3.16). 
Now we show that if the solution u is "smooth enough" then the right hand side 

of (2.2) converges towards zero. What is the meaning of the word "enough"? 

Definition. Let Gv be a regular division of G; GL = {GaJJL1!- Let us suppose that 

each side of an arbitrary Gn coincides either with a rib or with the boundary 

of G — see Fig. 2. 

Then we define 
k(i) 

W = {w; w e VH W3>2(Git), vv e W3'2(F) for each F e 1, 
i = l 

vv e W3i2(y) for each y e J} . 

*) Here as well as in the following C denotes a genetic constant independent of h. 
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Fig. 2. 

Lemma 1.2. Let w e W. Then the following estimates hold: 

(3.2) inf |||w - <p\\\h ^ Ch( X Ms.cn + I M i . r + I M D ' ' * • 
r/>eV,. i = 1 *>/ yeJ 

(4.2) inf | w - 9 | 2 , ^ C / . ( £ M U J 1 / 2 -

Proof. This lemma can be proved in the same way as Lemma 4.1 in [1]. 

R e m a r k : If the solution u belongs to the space Wthen 

HI" - uh\\\h g Ch . 

Theorem 2.2. Let u and uh be the solutions of the problem (1.1) and (1.2), respec­
tively. Let us denote the closure of the space W with respect to the norm III •III by 
W.IfueW then 

(5.2) lim II\u — uh\\\h = 0 
Һ-+0 

First we recall a very important auxiliary assertion: 

Lemma 2.2. The norm \\\'\\\H cafi °e extended onto the space Vfor each h e (0, 1). 
Moreover, the estimate 

(6.2) ||M||ft £ C||M|| 

holds for each w e V and h e (0, 1); the constant C is independent of w. 
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Proof . See [1], Lemma 4.3. 

P r o o f of Theorem 2.2: Using the error estimate (2.2) we can state 

(7.2) |||u - wA|||A ^ C{ inf [I]w - <DjjjA + |||u - w|||A + \u - w\2h + 
(peVh 

+ inf \w - \j/\2 h + h2} 
i[,e<mh 

for any w e W; the constant C is independent of w. Let us notice that |u — w|2A ^ 
— II!M — w\\\h' ^ e n c e > m virtue of (6.2) and the fact that u e W we can state: For an 
arbitrary e > 0 there exists w e IV such that 

CIIHH - uA|||A + |u - w|2sA} < e/2 

for each h e (0, 1). According to (3.2) and (4.2), we can choose h0 e (0, 1) such that 

C{ inf |||vv - (p\\\k + inf |vv - i//|2>A + h2} < e/2 
<peVh tl/effih 

for each h e (0, h0). This means that the right hand side of (7.2) can be estimated 
by an arbitrary e > 0 for sufficiently small h. 

R e m a r k . Now we are to verify the assumption u e W of Theorem 2.2. In [1] we 
succeeded in the case J = 0 (or I = 0, respectively) only. 

3. REGULARITY. CONVERGENCE 

First we introduce the most important assertion of this chapter concerning an 
"apriori" information about regularity of a (weak) solution u of our problem. 

Theorem 1.3. If a function u belongs to V then its traces u and dujdx and dujdy 
are continuous with respect to dG \J F \J y. 

rel yeJ 

The p r o o f of the theorem will be based on some auxiliary lemmas. 

Lemma 1.2. Let Q = {(x, y) e R2, x e (0, ax), y e (0, a2)}, ax 4= 0, a2 + 0 be 
a rectangle and A = [0, 0], B = [al9 0], C = \au a 2 ] , D = [0, a2] its vertices. 
Let us suppose that 

a) we WU2(Q), 

b) w = 0 on AB u BC u CD \ {A} , 

c) w(A) = e, 

d) w is a linear function along AD. 

Then e = 0, i.e. w = 0 on dQ. 
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Proof. We extend the function w onto the set R2 — {(*> y) e ^2> x = 0}- For 
x > ai or y > a2 we set w(x, y) = 0 and for y < 0 we set w(x, v) = w(x, — y). 
Using the fact that w(x, 0) = 0 for x < 0, we can easily verify that w e W1'2(R2). 
It is well known (see e.g. [2]) that w(Q, . ) e W^/2,2(Ri). This is equivalent to the 
condition T < + oc, where 

T = 

and 

m = 

;i + |Č | 2 ) , / 2 \m\2 át 

v(0,y)e~iyЫy 

(see [2], Theorem V2). By the direct calculation we obtain 

i \ a2i 

Substituting it into the formula for T, we get T < + oc ilTe = 0. 

Lemma 2.3. Let Q be the rectangle described in Lemma 1.3. If g e W1,2(dQ) 

then there exists p e Wl ,2(Q) such that p = g on dQ in the sense of traces. 

Proof. We could quote the work [5] but the assumption g e W1,2(dQ) is strong 

enough to allow for a simple proof: Let x(x, y) = ax + Py + yxy + S be the poly­

nomial of the first degree with the coefficients a, /?, y, 5 uniquely determined by the 

following conditions: 

X = g at the points A, B, C, D (vertices of Q). 

We define the function \j/ = g — x o r * 30. It is obvious that t// G JV1,2(OO) and \\i = 

= 0 at A, B, C, D. Let coAB be an infinitely differentiable function with a compact 

support in R2, OJAB = 1 on AB, coAB = 0 on CD. Hence, the function ijsAB(x, y) = 

= \j/(0, x). w / l s(x, y) has the following properties: \j/AB e W1,2(Q), ^AB = 0 on dQ \ ZB, 

^AB — & along the side JJS. In the same way we can define functions ij/BC, \j/CD, 

\jjAD belonging to W1,2(Q) which have the following properties: 

ABC = 0 on dQ \ BC, \JJBC = */> on BC 

i//CD = 0 on dQ\CD, ^ c jp = i/> on CD 

^AD = 0 on dQ\A~D , ^ D = i/> on A/5 . 

Then it is sufficient to set p = i/yA« + ^BC + 'ACD + 'he-

Lemma 3.3. Let Q be the rectangle described in Lemma 1.3. Let us suppose that 

veW1,2(Q) n JV 1 2(AB) n PV1>2(BC) n W1,2(CD) n WJ'2(AD) awd v is continuous 

on dQ\{A). Then v is continuous on the whole boundary dQ. 
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Proof . Let us define: 

s = lim v(tB + (1 - t) A) - lim v(/D + (l - t) A). 
t->o + t-+o + 

The existence of both the limits is guaranteed by the fact that ve W1,2(AB), ve 
eW12(AD). Let us suppose that the assertion of the lemma does not hold, i.e. 
e * 0. 

Let w be the trace of the function defined in b), c), d) of Lemma 1.3, where the 
constant s is given by the above equation (s 4= 0). Then the function v + w belongs 
evidently to W1,2(dQ)*). 

According to Lemma 2.3 there exists a function U e W12(Q), U = v + w on dQ. 
It means that the function z = U — v belongs to WX,2(Q) and z = w on dQ in the 
sense of traces. 

Using Lemma 1.3, we obtain a contradiction: & = 0. 

P roof of Theorem 1.3. 

a) According to the well known embedding theorem (see [4]), the function u is 
continuous even on Q. 

b) Let v be equal to dujdx or dujdy on dG \J F (J y in the sense of traces. Let us 
Eel yeJ 

construct a basic division Gt == {G/iJ/L1! in the natural way — see Fig. 2. If Q = 
= G(/c + i)(/-i) + i,i is an arbitrary rectangle of the division C! then we denote its 
vertices by A, B, C and D — see Fig. 2. According to the definition of the space V, 
the function v belongs to WU2(Q) n WU2(AB) n W'^BC) n WU2(CD) n W12(AD). 
It means that v is continuous on each side of the rectangle Q. Hence it remains to 
show that v is continuous at the vertices A, B. C, D with respect to dQ. (Evidently 
this assertion would complete the proof of Theorem 1.3). 

We make the following assumption: 

(A) v is continuous at the vertices A, C, D with respect to dQ. Using Lemma 3.3, 
we can state that v is continuous at B (with respect to dQ). 

If A, C and D coincides with dG then v is continuous at A, C and D, respectively. 
This fact follows from the definition of the space V immediately. Hence, the assump­
tion (A) is fulfilled in the case Q = G1{. It starts the induction of (A). 

Theorem 2.3. Let u e V be the solution of the problem ( l . l ) . Then ueW (see 

Theorem 2.2). 

To prove the above assertion we need some auxiliary lemmas. 

*) v + w is continuous along dQ and belongs to W1 '2 along each side of dQ. 
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Lemma 4.3. Let Q be a nondegenerate rectangle; let Ft e L2(Q) be given. 
Then there exists a (unique) solution u1 e W3,2(Q) n W0'

2(iQ) Of the problem 

a(ux, ф) = 2 Fxф áx dy*) 

for each <p e W2,2(Q). 

Proof . See [3]. 

Lemma 5.3. Let Q be a nondegenerate rectangle (the same as in Lemma 1.3). 
Let the functions cp0, cpx be given on dQ so that 

a) cp0, (px are infinitely differentiable along each edge of dQ, 

b) the supports of (p0 and (pt do not contain vertices A, B, C, D (i.e. cp0, cpi e ' 

e D(AB) n D(BC) n D(DC) n D(AD)). 

Then there exists an infinitely differentiable function W on Q such that W = cp0, 
dWJdv = (px on dQ in the sense of traces (v is the outward normal vector). 

Proof . Let coAB = OJAB(X, y) be an infinitely diffetentiable function with a com­

pact support in R2; coAB = 1 in a neighbourhood of the AB, coAB = 0 on CD. The 

values of functions (p0 and (p1 on AB are denoted by <p0(x, 0) and <Pi(x, 0), where 

.x e <0, «!> (see Lemma 1.3); we notice that cp0(., 0) and (pt(., 0) belong to D((0, ax)) 

according to the assumption b). 
It can be easily verified that the function 

^AB(*? y) = (<Po(*> 0) + y cpx(x, 0)) ooAB(x, y) 

is infinitely differentiable on Q, WAB = d*FABjdv = 0 on dQ — AB, WAB = cp0 and 
dWABjdv = cpx on AB. In the same way it is possible to define functions WBC, WCD, 
XFAD having the same property as described above, when replacing AB by BC, CD 
and AD, respectively. 

Now it is sufficient to set 

W = WAB + TBC + TCD + TAD . 

This completes the proof. 

Lemma 6.3. Let Q be a nondegenerate rectangle with vertices A, B, C, D. Let F e 
e L2(Q) andcp0, cpx e D(AB) n D(BC) n D(CD) n D(AD) be given. Then there exists 
a unique solution we W3,2(Q) of the problem: Find we W2'2(.Q) such that w = 
= (p0, dwjdv = (pt on dQ in the sense of traces and 

a(w, <p) 

for each cp e W2,2(Q). 

Fф áx ày 
Q 

*) The bilinear form a(., .) is defined over Q; see (1.1) with G replaced by Q. 
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Proof . Let Ft be equal to F — A2W; W is an infinitely differentiate function 
on Q, W == (p0, dWjdv = <px on dQ (see Lemma 5.3). According to Lemma 4.3, 
there exists ut e W32(Q) n W0'

2(Q) such that 

a(uu (p) = 2 F!<B dx dy 

for each (p e JV0
,2(.Q). Integrating by parts, we obtain the equality 

2 

Hence, we get finally: 

F!<p dx áy = 2 j F(p áx áy - a(W, q>); (p e W2'2(Q) . 
Q J Q 

a(ux + W, (p) = 2 F<p dx dy 

for each <p e PV0'
2(;Q). Evidently, we can set w = uj + W. 

Lemma 7.3. Let Q be a nondegenerate rectangle with vertices A, B, C, D. There 
exists w eW2,2(Q) satisfy the following conditions: 

a) a(w, (p) = 0 fOr each <p e JV0'
2(.Q), 

b) w = (p0,dwjdv = <pj On <3Q in the sense of traces where (p0 e W0'
2(AB) n 

n W0
2'2(BC) n W2'2(CD)n W^'^A^anLl^j e W0

lj2(AB)n W£-2(BC)n J V ^ j C D ^ 
n ^ ( A D ) . 

Furthermore, there exists a constant C independent of (p0, (B-j such that 

|| W|| 2,il =? ^{l^okAB + \<Po\2,BC + KUGD + K ^ A D + 

+ \<PI\I,AB + k i | i , B c + |<Pi|i,cD + k i | i ,AD} = aC 

Proof. According to [5]*), we can find a function We JV2'2(Q), W = <D0 and 
dWjdv = (pt ob dQ in the sense of traces, \\W\\2>Q g Ca, where the constant C does 
not depend on (p0, q>t. Let wt e W0'

2(Q) satisfy the equation 

a(wu(p) = -a(W, (p) 

for each (p e W0'
2(Q). It is well known that wt exists and 

lh||2,^C||^||2,fl 
where C is independent of W (i.e. of <p0, <Pi)**). Setting w = w, + W, we obtain 
a function with the properties a), b). The estimate ||w||2jfl ^ C . a is evident. 

*) See Lemma 3.1 in [1], where we have quoted Jakovlev's theorem. 
**) With regard to [4], it is evident that the bilinear form a(., .) is W0

,2(Q) — eliptic and 
a( Y,.) is a linear continuous functional over W0

,2{Q). The existence of w.and the corresponding 
estimate is a consequence of the Lax-Milgram theorem. 
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P r o o f of Theorem 2.3. Let G t be the "basic" division of G; let Q be an arbitrary 
rectangle of the division Gx with vertices A, B, C, D — see Fig. 2. According to 
Theorem 1.3, the functions u and dujdx and dujdy are continuous at the points A, 
B, C, D with respect to dG U V U ?• We define on each Q a polynomial 

re I yeJ 
5 

co = co(x, y) = X 0 y x V 

satisfying the following conditions: 

co(X) = u(X) ^ ( Z ) = ^ ( X ) = 0 

ebr Ojr 

Ox Ox 

Oy oy ox ay Ox Oy 

i!5L(jr)-o -*»_(*) .-o 
dx Oy dx2 dy2 

for K = A, B, C, D, respectively (36 conditions). 
The above conditions determine the polynomial co on Q uniquely. The function co 

is twice continuously differentiable over G and vanishes together with its first-order 
derivatives over dG. It means that co e WQ'2(G) n JV3,2(G). The traces co, dcojdx 
on r e I and co, dcojdy on y e J are piecewise polynomials of the 5-th degree which are 
continuous with its second-order derivatives over F and y, respectively (see [6]). 
We can easily verify that co e V n W. 

Using (.1.1), we get the following condition: 

a(u, ę) = 2 fcp dx d j 
J Й 

for each (/> e WQ2'2^), where O(., .) is restricted onto Q*). 

We set 

U = u — OJ 

(on the whole G). It is evident that the function U satisfies the following conditions 

on Q: 

a) a(U, cp) = 2 J (/ - A2co) <p dx dj; 
J« 

for each <p e WQ'2(Q), 

*) If <p e D(Q) then evidently cp e V. Hence the conditions hold for each <p e D(Q). Using the 
density of D(Q) in W2

}

,2{Q) and the continuity of a(u,.), we obtain the present condition. 



b) U = (p0 and dUJdv = (pu where 

<p0 G W2'2(AB) n W2'2(BC) n W0
22(CD) n W0

2>2(AD) 

and 

q>t e Wl'2(AB) n W^2(BC) n WJ'^CD) n PV0
1,2(^^) • 

In virtue of the density of D(-) in W0'
2(-) and W0'

2(-), there exist sequences 

{<P0n}?-l, {?!«.}"«1 ™^ t h a t 

<Pon e DO4^) n D(BC) n D(CD) n D(AD), 

<pu e D(AB) n D(BC) n D(CD) n D(A.D)*) 

Using (1.1), we get the following condition: 

a(u, (p) — 2 f(p dx dy 
J n 

for each cp e W0
,2(-3), where a( . , .) is restricted onto Q**). 

We set 

U ~ U — CD 

(on the whole G). It is evident that the function U satisfies the following conditions 
on Q: 

a) a(U, cp) - 2 ( / - A2co) (p dx dy for each q> e W2>2(Q), 

b) U ~ <pQ and dUJdv = cpl9 where 

(p0 e W0
2'2(AB) n W0

2'2(BC) n W0'
2(CD) n Wo2,2^) and 

<l>i e FK0
1,2(-4-8) n PV0

lj2(BC) n WJ'^CD) n WJ'^AD). 

In virtue of the density of D(-) in W0'
2(') and JV0'2(*), t h e r e e x i s t sequences 

{<POn}?=l> {<Pln}n=l SUCh t h a t 

(p0n e D(AB) n D(BC) n D(CD) n D(AD), 

<pin e D(AB) n D(BC) n D(CD) n D(AD)***) 

*) If <p0 and 9>! are identically zero over a side then we set (p0n and <pln equal to zero along 
that side. This is the case of the sides coinciding with the boundary dQ. 

**) If (p e D(Q) then evidently cp e V. Hence the conditions hold for each (p e D(Q). Using the 
density of D(Q) in W0

,2(Q) and the continuity of a(u, . ) , we obtain the present condition. 

***) If (p0 and tpl are identicaly zero over a side then we set (p0nand <pln equal to zero along 
that side. This is the case of the sides coinciding with the boundary dQ. 
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(n = 1,2, . . .) and defining 

<*n = \<P0 - <P0n\2,AB + |</>0 ~ <Pon\lJC + | P o ~ <p0n\l,CD + |<P , ~ ^OnkAD 

A = k l ™ <Pln\l,AD + k l ~ ^ l» | l ,BC + \<Pl - 9 l « | l , C D + 

+ \<Pl - <P\n\\,AD 

we have 

a„ -> 0 , ft, -> 0 for n -> oo . 

For each n we solve an auxiliary problem: Find U„ e W0

,2(Q) such that 

Un = <p0n, dUnjdv = (l>i„ on <9(2 in the sense of traces , 

a(U„, ę) = 2 (f — A2ы) ę dx d ľ 

for each cp e W£'2(Q). 

According to Lemma 6.3, the solution U,, exists and 

U„e W32(.Q). 

We define w,. = UM + <x>. The function u — u,. = U — U,, satisfies the condition 

a(u — w„, </>) = 0 

for each q> e W2'2(0) and u — un = cp0 — <p0/J, (d\dv)(u - t/„) = </>, - <pln on 
dQ in the sense of traces. Using Lemma 7.3, we conclude 

\\u ~unh,nS C(an + / Q - 0 

for n -> oo. 
If we realize that Un belongs to Vthe.n evidently un e V, too. Moreover, un belongs 

to W. It remains to show that un —> u with respect to the norm ||| ' | | |. 
According to the definition of |jj-| | |, we have the inequality 

II!" - "»lll = c t X X I " - "n|2,Gi, + «„2 + # ) ] 1 / 2 • 
1 = 1 

It was shown that the right hand side converges towards zero for n -> oo. 

Theorem 3.3. Let u and uh be the solutions of the problem ( l . l ) and (V2), respec­
tively. Then our method converges in the following sense: 

lim In — MJ L = 0 . 
/.-»o 

Proof. See Theorem 2.3, (5.2) (Theorem 2.2) and (6.2). 
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4. NUMERICAL EXAMPLE 

(One case of a more general boundary condition.) 

So far we have studied the clamped plate with ribs — see the previous chapters 
and our paper [1]. The present nonconforming method can be applied to more 
general cases of boundary conditions. The following example was tested practically 
and the results are given in this chapter. 

2 CM 

RÍB 

2 

2M 

H? 
л> 

щ\ 

2X2 ELEMENTS 

M 

S 
M 

H 
4 / 4 ELEMENTS bX& ELEMENTS 

Fig. 3. 

Let a plate be clamped along the edges AD, BC and simply supported along the 
edges AB, CD — see Fig. 3. We shall consider two perpendicular systems of ribs, 
as usual: 

- see Fig. 2 

J = {yjVj-t 

It is easy to derive the following variational formulation of the problem considered: 
To find u e Vsuch that the equation ( l . l ) holds for each v e V, where 

V = {w; w e W2>2(G), Daw = 0 a.e. on AD u BC for |a| g 1 , 

w = 0 a.e. on AB u CD, w e W2'2(F) n Wo'2(F), dw/dx e W^2(r) 

for each F e 1, we W0

2>2(>)> dwjdy e W^2(y) for each y e J} . 

The space Vis equipped with the norm III •III defined in Chapter 1. 
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Let Gh = {G*/J/ = i be a regular division of the region G, let R be a fixed non-

degenerate rectangle and let A(R) be the set of Ari-Adini's polynomials over R. 

We denote by Fih the regular affine mapping from Gih onto R. Let 

(2,4) Vh = {w; w o F^1 e A(R) for each i = 1, . . . , fc(fc), i/ Q 

is a nodal point of the division Gh then Daw is continuous 

at Q with respect to G for |a | ^ 1 , if QeADuBC then 

D* w(Q) = 0 for |a| ^ 1, i/ QeABuCD then w(Q) = 0} . 

it is easy to verify that | | |* | |L from Chapter 2 is a norm on Vh when VA is now defined 

by (2.4). 

We define finite element procedure in the natural way: To find uh e Vh such that 

(1.2) holds for each v e Vh. 

Tf we define the space of regular solutions of (l . l) in the following way 

(3.4) W= {w;weVwe W3>2(Gsl), w e W3'2(Ff), w e W2>2(yj), 

s = V . . . , m , i = 1, ...,fc, j = 1, . . . , 1, m = (fc + 1)(1 + 1} 

where Vis now defined by (1.4) and the geometrical notation is clear from Fig. 2, 

we can follow the same lines as in the proof of convergence of approximations to the 

regular solution in [1]. When the regularity of the solution of the problem (l . l) is not 

known apriori at all, then we can prove the convergence of the present nonconform­

ing method in a similar manner as in the case of the clamped plate. 

As can be readily seen, the analysis of the proposed procedure can be regarded 

as a combination of a plate flexure analysis and of a beam flexure and torsion in Saint-

Venant sense. The computer programme for the analysis of a plate with ribs was 

thus written in two stages. 

In the first stage, the stiffness matrix of the plate was constructed by the non­

conforming method — Adini's rectangle. The explicit form of the stiffness matrix 

for Adini's rectangle has been published in many papers such as e.g. [9]. In [1] and 

in the previous chapters of this paper it was a type of problem discussed. It is readily 

seen that the theorems and lemmas remain valid also for a more general form of 

problem (i.e., when the real values of material constants are taken into account). 

In our examples we have considered isotropic plates with Hooke's law in the stan­

dard form: 

d2w 

~dx~2 

мx 

мy 
= [->] { « } -

д2w 

дy2 

, õ2w 

дx ôy 
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where Mx, My, Mxy are the bending and twisting moments, respectiveJy, and 

[ - > ] -
EЃ 

12(1 - v2) 

1 v 0 

v 1 0 
0 0 (1 • - v)/2__ 

t being the thickness, E Young's modulus and v Poisson's ratio. 

In the second stage the stiffness matrices of beams with respect to the torsion and 
flexure rigidity was found. For details of the torsional properties of a beam see [8] . 
According to the numerical method proposed, the stiffness matrix of an element 
of a beam is as follows: 

e, 
м, 
т, 
Qj 

мj 

\ = EJ 

12/í3 6/Z2 0 - 1 2 / / 3 6// 
6//2 4// 0 - 6//2 2/Z 
0 0 e/Z 0 0 

12/Z3 - 6 / / 2 0 12/í3 -6/Z-
6//2 2// 0 6/Z2 4/Z 
0 0 -є/Z 0 0 

0 ~~ \wi 

0 \<PІ 

ejl iíi 
0 ч 
0 Vj 

ejl _ UJJ 
where Q, M, Tare the shear force, the bending and the twisting moment, respectively, 
w, cp, £, are the corresponding generalized displacements, e = JDl(2(l + v) J) with 
JD standing for the torsion rigidity (see [8]). 1 is the length of an element with the 
endpoints i and j , J the momentum of inertia. 

The two stages were then assembled to form the programme for the analysis 
of a complete plate with ribs. 

To check the accuracy of the method and in particular to determine the rate 
of convergence with respect to the number of elements employed, several problems 
were calculated and results compared with results obtained by the folded plate 
method — see [7] . 

Because of an extraordinary precision of results obtained by the folded plate 
method in the case of boundary conditions used in the following examples, this 
only case was analysed. Our effort was concentrated to test various cases of geometry 
and types of loading. 

The constructions were analysed under various mesh sizes in otder to test the 
convergence of the method. The results obtained are given in tables together with 
the solution by the folded plate method. The percentage error of the approximation, 
calculated as 

approximate value — folded plate solution 

folded plate solution 
100% 

are also given in the tables. According to the formula for percentage errors, an over-
estimation will be shown by a positive sign and an underestimation by a negative 
sign. For the sake of simplicity in each of the three examples and for each mesh size 
the elements of division are of the same geometry. 
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The first problem considered was that of an isotropic square plate 2 x 2 m2 

with a thickness of 2 cm, clamped along the opposite edges and simply supported 

along the rest of the boundary, subjected to a uniformly distributed load of 1 kp/cm2. 

The only rib (2 x 12 cm2) is situated in the middle of the plate and it connects the 

simply supported edges — see Fig. 3, where also the various grids used are shown. 

The torsion rigidity of the rib has no influence in this case. The results are given 

in Table 1. From this table it is seen that the finite elements results are in reasonably 

good agreement with the solution obtained by the folded plate method and they 

do converge towards the exact values (we suppose, of course, that the folded plate 

method yields reasonably accurate values). 

RIBS 

2cмf ^ j - rTcм 
7M 1 , 7M | . 1M 

\к 

~т 

% 

3X 2 ELEMENTS 

н к s к н 
6 M ELEMENTS 

Fig. 4. 

In order to test the ability of the method to take more irregular load-functions 

into consideration, the plate 3 x 2 m 2, with the same thiskness as in the first example, 

is now subjected to 10 Mp at the points K and two parallel ribs connect the simply 

supported edges — see Fig. 4. From Table 2 which shows the results obtained 

we can see again a reasonably good agreement between the results reached by the 

two methods. 
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The third example keeps the geometry of the plate from the first example but now 
only a half of the plate is subjected to a uniformly distributed load of 1 kp/cm2 — 
see Fig. 5. The results obtained are shown in Table 3. It is evident that the finite 
element solution is quite satisfactory. In order to test the behaviour, a detailed 
discussion is carried out. 
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Fig. 5. 
i 

Due to the particular deflection function assumed (vertical deflection w), the sqcond 
derivative values, i.e. d2wldx2 and d2wjdy2 will be bilinear in x and y over each element 
of the division and hence the bending moments will vary linearly over the element. 
In addition, the internal moments calculated from the adjacent elements will be 
discontinuous at their common node. The discontinuities decrease with the mesh 
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size. In our examples the average values are taken and it is readily seen that the 
resulting curve is very close to the folded plate method in each of the examples dis­
cussed. 

CONCLUSION 

A finite element solution of a plate with ribs proposed in [ l ] for a more general 
geometry of construction (intersecting ribs) has been discussed. Convergence theo­
rems were proved. In order to show the practical use of the method, the analysis 
of three examples was carried out. The results obtained are shown to be in a good 
agreement with the folded plate method [7]. 

From the technical standpoint the finite element solution given can be readily 
applied to the solution of structures containing openings, elastic supports, supported 
on pillars etc. On the other hand, the method does not explicitly respect the influence 
of the excentricity of ribs. Because of the simplicity of the procedure discussed, 
it can be used to minicomputers. 

Acknowledgement. Thanks are due to Ing. Hlavacek, CSc, MU CSAV for valuable 
remarks and to Doc. Kfistek, CSc and Ing. Kvasnicka, CVUT, for providing the 
needed results obtained by the folded plate method. 
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ANALÝZA KONVERGENCE NEKONFORMNI METODY 
KONEČNÝCH PRVKŮ PŘI ŘEŠENÍ DESKY SE ŽEBRY 

VLADIMÍR JANOVSKÝ, PETR PROCHÁZKA 

V této práci je studována konvergence jedné nekonformní metody konečných 
prvků pro problém desky se žebry. Je sledován problém formulovaný v [ l] a je 
přihlédnuto ke konečnému počtu obecně křížících se žeber. Konvergence metody 
je prokázána teoreticky a na praktických příkladech je prokázána i v aplikacích. 
Na praktických příkladech jsou zkoumány i vlastnosti metody v závislosti na hustotě 
sítě. Konvergence numerické metody je dokázána za předpokladu, že není známa 
,,a priorní" regularita řešení výchozího problému. 
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