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SVAZEK 22 (1977) APLIKACE MATEMATIKY &isLo 6

SOLUTION OF THE FIRST PROBLEM OF PLANE
ELASTICITY FOR MULTIPLY CONNECTED REGIONS
BY THE METHOD OF LEAST SQUARES ON THE BOUNDARY

(Part 11)

KAREL REKTORYS,
JANA DANESOVA, JIRi MATYskA and CESTMIR VITNER

(Received October 14, 1976)

In Part I of this paper (Apl. mat. 22 (1977), 349 —394), the formulation of the
problem was given and fundamental theorems on the existence of solution and on its
properties were proved (Chaps. 1 and 2). An approximate method — the so-called
method of least squares on the boundary — was developed and some numerical
examples were shown (Chap. 3).

The present Part 11 (Chaps. 4 and 5) brings the proof of the main convergence
theorem 3.2 from p. 379.

Chapter 4. CONVERGENCE OF THE METHOD

Before giving the proof of the convergence theorem for the method of least squares
on the boundary in the case of multiply connected regions, let us summarize shortly
some basic results from Chapters 2 and 3.

Let the loading on I' satisfy the equilibrium conditions both in forces and moments

on every of the boundary curves I'; (i = 0, ..., k) and let the functions g, iy
satisfy the relations
(4‘]) Jio € W(Zl)(ri) > git € LZ(Fi)

(briefly (gio, gi1) € WE(I';) x Ly(T';)). Let u(x, y) be the (unique) very weak solu-
tion of the biharmonic problem

(4.2) A*u =0 in G,

4 u=g; a—u-—g- on I;
(3) lO?av il i
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According to Theorem 2.1, p. 373, there exists exactly one very weak Airy function
corresponding to the given loading (given by the functions gi, g;;). This function
can be written in the form

(4.4) U(x, y) = u(x, y) — v(x, ¥),
where
(4.5) v(x, y) =i§l jglaijr,»j(x, y) ;

ri(x, y) are the basic singular biharmonic functions (p. 367),a;; (i = 1, ..., k,j =
= 1, 2, 3) are solutions of the system (2.51).

In Chap. 3, the method of least squares on the boundary was developed to find
an approximate solution of the problem (4.2), (4.3). This approximate solution is
assumed in the form

(4'6) usr(x: y) = U:t(x7 )’) + i Ailastij rij(x’ )’) >

i=1j=

where s, t are chosen positive integers (s = 2),

(4.7)  Uu(x,y) = Valx, ) + Wl(x, ») +i§klcs” In[(x = x)> + (v — »)*]

and
45-2
(48) I/st(x7 y) = Z asip Zp(x’ )’) 5
p=1
k 4t
(49) Wsr(x’ y) = Zl Zlbs”q U,'q(X, y) .
i=1q=

Here z,(x, y) are the basic biharmonic polynomials of degrees <s, v;(x, y) in (4.9)
are the basic rarional biharmonic functions defined by

4 z
Vi4141(X, ) = Re (m>, Via1+2(x, ) = Im (i:z')':‘) "

(4.10)

trarss(es) = Re (- 1)) el 3) = Im ((; - ]zi)““)

(I=0,1,...,t— 1), P(x,, y;) are arbitrary but fixed points lying in the interior
of I';(i = 1, ..., k) (thus in the exterior of G), z; = x; + iy;. The (real) coefficients
Qgip> Dstigy Coi @0d iy are uniquely determined (Theorem 3.1) by the condition
(3.13) (the condition of the best approximation of boundary conditions in the sense
of least squares).
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Note that the function

k 3
(4.11) 0 3) = % %ty i),
i=1 j=

and the function Ug(x, y) represent the singular part of the function u(x, y) and
the Airy part of this function, respectively. In fact, (4.11) is a singular biharmonic
function (thus “producing” a multi-valued displacement), provided at least one
of the coefficients o;; is different from zero (Lemma 2.4). On the other hand, each
of the functions (4.7) is an Airy function: The function V,(x, y) is a biharmonic
polynomial and consequently, it is defined not only in G but in every simply connected
region G < E, containing G. Thus the corresponding complex stress-functions
¢(z), Y(z) are holomorphic in G and the formula (2.9),

. 1
(4.12) dy +id, = o (xp — 20" — V)
u

gives an evidently single-valued displacement. The functions v;,(x, y) corresponding
to the functions ¢(z) = 1/(z — z;)'*" and y(z) = 1)(z — z,)'"* (I =0,1, ...,t — 1)
according to the formulae (4.10) are also Airy functions in virtue of the same formula
(4.12) because the functions 1/(z — z;)'*' and —(I + 1)/(z — z;)'*" are single-
valued functions. From the same formula the same result follows for the functions
In [(x — x;)* + (¥ — »:)*], because each of these functions is of the form

In[(x = x;)* + (y — »:)*] = Re (x(2))

xz) =2In(z — z)),

with

and the function

, 2
U(z) = 1(z) = ——
z—z;
is a single-valued function.

The proof of convergence of our method consists in proving that

ko3
Ug(x,y) = U(x,y), Y. Zl"‘sﬁj rif(x, ¥) = v(x, ) in Ly(G) for s > o0 ,t— 0,
i=1j=

where U(x, ) and v(x, y) are functions given by (4.4), (4.5). (Of course the conver-
gence of Ug(x, y) to U(x, y) is of particular importance, because U(x, y) is the Airy
function corresponding to the given loading and therefore the required solution.)

We start with some auxiliary lemmas: In these lemmas, G is the considered bound-
ed (k + 1)—tuply connected region with the Lipschitzian boundary, z; (i = 1, ..., k)
are fixed points lying inside the inner boundary curves I'; (cf. Lemma 2.2, p. 361),
G is a bounded (k + 1)—tuply connected region with a smooth boundary I such
that G = G and that each of the points z; (i = 1, ..., k) lies again inside the inner
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boundary curve [; (Fig. 9). We shall often speak briefly of a weak or very weak
biharmonic function, respectively, instead of a weak or very weak solution of a bi-
harmonic problem. In a similar sense we shall speak of a weak or very weak Airy
function (cf. p. 355).

Lemma 4.1. Let (U(x, y) be a weak Airy function in G. Then to every &, > 0
there exists such a region G = G and such a weak Airy function U(x, y) in G that
its restriction on G') satisfies

au_a_q

— < 0.
v !

La(I)

(4.13) U = T|lw,com < 61,

Roughly speaking: An Airy function in G can be approximated by such an Airy
function defined in a “slightly” larger region G that the traces of both these Airy
functions on I' are sufficiently close.

For the proof see Chap. 5, p.444—448. (The text preceding the relations (5.58).)
Lemma 4.2. An Airy function l7(x, y) in in G can be written in the form
(4.14) U(x,y) = Re(Zp + 1),
where ¢(z) is holomorphic in G and y(z) is of the form
K
xz) = xo(2) + Y eiln(z — zy),
i=1
where Xo(z) is holomorphic in G and c; are real constants.

1) Le. the “part” of the function U(x, ), considered only on G.
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(Thus if T(x, y) is an Airy function, the form of the corresponding stress-functions
is very simple.)

For the proof see Chap. 5, p. 441.

Lemma 4.3. Let ¢(z) be a holomorphic function in G > G. Then this function and
its derivatives up to the r-th order can be approximated uniformly on G by polyno-
mials and rational functions with poles at the points z; (i = 1, ..., k) and by their
corresponding derivatives. More precisely: To the function (p(z) holomorphic in
G o G, to every positive integer r and to every 6, > 0 it is possible to find positive

integerss, t and constants Ay, B;,; such that the function

(4.15) Pu(z) = Z Az’ +,Zl ,;(z —, ),
satisfies in G
(4.16) lo(z) = oulz)] <8,
lo'(z) —¢'ulz) <92,
lo®(z) = ¢32(2)] < . -
This lemma is an immediate consequence of Theorem 10.27 (p. 214) and Theorem
13.6 (p. 256) in [6].

Lemma 4.4. (Sec Lemma 5.4, p. 436.) Let a sequence {u,(x, y)} of very weak bi-
harmonic functions converge in L (G) to a very weak biharmonic function u(x, y).
Then this convergence is uniform on every subregion G' = G' = G. Moreover, the
sequence of D’ u,(x,y), where D’ u,(x, y) means an arbitrary (partial) derivative
of u,(x, y), converges to the corresponding derivative D u(x, y) of u(x, y) uniformly
on G'.

In Chap. 2 (Theorem 2.1 and the preceding text) we have seen that every very weak
biharmonic function u(x, y) in G can be uniquely expressed in the form

(4.17) u(x, y) = U(x, y) + v(x, y),
where U(x, y) is an Airy function and
, K3
(4.18) o(x,y) =% Y arilx, ),
i=1j=1
where rij(x, y) are basic singular biharmonic functions defined as solutions of the
problems (2.27)—(2.35), p. 367. Thus (4.18) is the “singular part” of the function

u(x, y). This singular part depends continuously on the function u(x, y):

429



Lemma 4.5. (See Lemma 5.8, p. 443.) Let a sequence {u,(x, y)} of very weak
biharmonic functions converge in L,(G) to a very weak biharmonic function u(x, ¥).
Then the sequence of the corresponding “‘singular parts”

(4.19) v(x, ) = il ila”" rii(x, y)

i=1j=

converges in L,(G) to the corresponding “singular part”

ko3

(4.20) u(x, y) ='Zl ‘zxaij rix, y)
i=1j=

of the function u(x, y).

Using Lemmas 4.1—4.3 we are able to prove the fundamental lemma of this
chapter:

Lemma 4.6 (on density). Let the functions (g, g:)e WO(I'}) x Ly(T), i =
= 0,1, ..., k be given on the boundary I' of G.*) Then to every ¢ > O there exists
such a weak biharmonic function i, of the form (4.6) (i.e. there exist such positive
integers s, t and such real constants @y, big» &g and ;) that

. 0l
(4.21) ”ust - giO”WZ(l)(r,-) <g, == gi1 <e¢
v Lay(Iy)
foralli=0,1, ...,k
Proof: Denote
£
(4.22) n=3> 0.

The traces (u, dudv) of functions u(x, y) from the space W$*(G)are dense in W(I') x
x L,(I') (see [2], Lemma 5.4.4). Consequently, to the given functions g0, g;; and
to this # it is possible to find such a function z € W{?(G) that

(4.23) |z = giollw,coasy < 1> <nforalli=0,1,..., k.

La(Ty)

=,
v i1l

Let u, € W(G) be the (unique) weak biharmonic function satisfying the conditions

Mo _02 i r. i=o0l,.. .k

(4.24) o =z, %=

By theorem 2.1, p. 373, the function u,(x, y) can be uniquely written in the form
(4.25) uo(x, y) = Uo(x, y) + vo(x, ¥) ,
2) Boundedness of G and a Lipschitzian boundary (see Convention 1.1) are always assumed.
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where Uy(x, y) is an Airy function and

(4'26) vO(X’ y) = Z Z %oij I U(x y)

i=1 j=1

is the corresponding *‘singular part” of uo(x, y).

Uy(x, y) being a weak Airy function, it follows from Lemma 4.1 that there exists
such an Airy function U(x, y) defined in a region G o G that we have

ou, aU

(4.27) |[Uo = Ollw,oay <1, o o

<n forall i=0,1, ..., k.

La(T5)

According to Lemma 4.2, this function can be expressed in G in the form
(4.28) U(x, y) = Re(zp + %),

where ¢(z) is a holomorphic function in G and x(z) is of the form
k

(4.29) xz) = xo(z) + Y c;In(z — z))
i=1

with y0(z) holomorphic in G and c; real. (Concerning z; see the text preceding Lemma
4.1.) According to Lemma 4.3, the functions ¢(z) and x,(z) and their derivatives
can be approximated with an arbitrary accuracy (in the sense of (4.16)) by poly-
nomials and simple rational functions with poles at the points z;, and by their corres-
ponding derivatives. More precisely, Iet 6 > 0 be chosen. Then it is possible to find

such positive integers s, t and such constants A;, C,;, B;,;, D;,; that the functions

s

k t
(430) Pt = ZASJZJ + Z z (Z - ) » Fost = zCS.I'Zj + Z Z "J

i=1j=1 j=0 i=11=1(2—2)
satisfy in G
(4.31) |0(z) = 0ul2)] <8, |10(z) = x0ul2)| < 0
and, simultaneously,
(4.32) l0'(2) = el <8, |xo(z) = xowl2)| <0,
(4.33) lo"(z) — @22)| < 6, |xd(z) — x6ul2z)] < 0.

k
If we substitute ¢,(z) and yo.(z) + Y ¢;In(z — z;) into (4.28) for ¢(z) and x(z),
i=1

we get an approximation U(x, y) of U(x, y) in the form
k

(434)  Uulx,y) = P(xy) + Qlx,p) + Ydiln [(x — x)* + (v — »)*],
i=1
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where d; = <',»/2,3) Q.(x, v) is a linear combination of biharmonic*) functions of the
form (4.10), p.426,and P(x, y) is a biharmonic polynomial of order s (or possibly <
< s) which thus can be expressed as a linear combination of the basic biharmonic
polynomials z,(x, y) of the order <s. Consequently, U,(x, y) is of the form

(435)  Uylx,y) = Vulx, y) + Welx, y) + igklé.- In[(x — x;)* + (v — yi)*]

where
452

st(x’ y) = Z sy Zp(x’ y) >
p=1
- k 4t "
VVs,(X, y) = 'Zl Elbstiq Uiq(x5 y) '4)
i=1q=

Obviously U,, e W$(G) and so is the function U, being a weak biharmonic func-
tion in G.%) At the same time, the derivatives of the functions U(x, y), Uy(x, y)
up to the second order (which are required when computing the norm in W$(G))
are constructed from the derivatives of the logarithmic functions appearing in (4.35)
and from the derivatives, up to the second order, of the functions ¢(z), xo(z) and
©.(2), Xos(z), respectively, as is seen from (4.28).

The estimates (4.31)—(4.33) imply that the norm
(4.36) 10 = Oallwo)

can be made arbitrarily small if § has been chosen sufficiently small. Moreover, the
operator of traces from W$(G) into W4(I';) x L,(T';) is continuous. Consequently,
if (4.36) is “small”, then

~ oU g@

”U_ﬁstwz(l)(r,-)’lA“ P’y l=0, l,...,k

La(T)

v v

is “small” as well.
Summarizing, we have: To the function U(x, y) and to the given n > 0 it is possible
to find such a function (4.35) (with s and ¢ sufficiently large) that

~

o0 _ U,

(4'37) ” Ust|1W ayry <N o e

<n forall i=0,1,...,k.

La(T')

3)Bccauseln[(x~x) +(y4y)] lnr = 2Inr;, where r; |z—z|

*) The functions ¢(z), xy,(z) being holomorphlc the funcuon Re (z(pj, + XO") is biharmonic.

4) Note that T(x, y) is of the form (4.7); however, the coefficients Aseps bmq, ¢; are generally
different from the coefficients ag,p, by, ¢y determined by the condition (3.13) of the method
of least squares on the boundary.

5) Both these functions belong even to W $2)(G), but this fact is of no use for us here.
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Putting d,(x, y) = Uy(x, ) + vo(x, y) (see (4.26)), the relations (4.23), (4.24),
(4.25), (4.27) and (4.37) yield (4.21).

Now, it easy to prove the main convergence theorem:

Theorem 4.1 Let (g;9, gig) € WS(I';)) x Ly(I';), i = 0,1, ..., k. Let u(x,y) be
the very weak solution of the problem

(4.38) Au=0 in G,

ou
(4.39) “'_-gio,gzgn on T;.

Then the functions (4.6) constructed by the method of least squares on the boundary
satisfy
(4.40) lim ug(x, y) = u(x,y) in Ly(G).

s 00
1 oo

Proof. We have to prove that to every ¢ > 0 there exist such s, and ¢, that for
every positive integers s > s, t > {, it holds

(4.41) fu = vl <e-

Let ¢, be a decreasing sequence of positive numbers, limeg, = 0 for n — oo.
According to Lemma 4.6, to each of these ¢, there exist such positive integers s, t,

and (real) constants @, ,, by, 1 ig> Co1.is G, that

LA
a—Lix"l'!—g“)l <eg, foralli=0,1,...,k,
g La(T's)

(4.42) |ldis,e,- = Giollwaowy < &ns

where j,,, is the function (4.6) with aj,, replaced by dy, . etc. From (4.42) it follows

dii 2
- — 9
av

<2k + 1)e;.

La(I'i)

k k
(443) ¥ g, = giolwaowrn + Y
i=0 i=0

But s,, t, being found, the inequality (4.43) will the more hold for the function
u, . (x, y) with the coefficients a, . ..., a,, ;; determined by the condition (3.13),
p. 377.°) Thus a subsequence {u,, (x, y)} from the (double) sequence of functions
(4.6) can be found, converging in W4(I'); x L,(I';) to the given functions g;o, gi1:

%)Note that the condition (3.13) can be written in the form
dug,
ov

k

k
[ 5 = sulios + 3,

— G “lz-:(ri):l = min. ’

which implies immediately the assertion just mentioned.
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limug, =g, in W(zl)(ri) >
. 0 .
lim Zontn — gy in Ly(I),
n—r oo ov
i =0,1,..., k. We assert that the whole double sequence {uy(x, y)} converges in

WS(I;) x Ly(T')) to g, gi1, more precisely that to every y & 0 there exist numbers
S and Tsuch thatif s > S, t > T, then

Oug,
P) — dit

Vv

(4~44) ”“sr - giO” woary < Vs <7.

La(Ty)

In fact, if (4.43) is fulfilled for s,, f,, then the more it is fulfilled for every couple
s=s,, t 21, because the coefficients in u,(x, y) are determined by the method
of least squares on the boundary, and consequently, the approximation in the sense

of (4.43) by biharmonic polynomials or rational functions of higher orders can be
only better. Thus we have

. B . )
limug, =g, in WY(T)
§—r a0
t—> o

and

]

Iim
S o
1=«

ot gy in LZ(FI')
v

(in the sense of (4.44)). Finally, u(x, y) being the very weak solution of (4.38), (4.39),
it follows immediately that

(4.45) lim ug(x, ) = u(x, y) in L,(G)

Rimdl o)
t— o0

(in the sense of (4.41)) which completes the proof.

Remark 4.1. Lemma 4.5 implies that the ‘singular parts” of the functions
(4.6), i.e. the functions

k3
vsl(x’ Y) = Zl Zlastij rii(x’ y)
i

converge in L,(G) for s — o0, t - o0 to the “singular part”

k 3

o(x, y) = .Zl _Zl‘xij ri(x, y)
i=1 j=

of the function u(x, y). Consequently, the ““Airy parts” Uy(x, y) of the functions

ug(x, y)converge in L,(G)to the “Airy part” U(x, y) of the function u(x, y). Accord-

ing to Lemma 4.4, this convergence (and the convergence of the derivatives) is uniform

on every closed region G’ = G. Hence we have
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Theorem 4.2. For s — oc, t > o the “dAiry parts” Ugy(x,y) of the functions
(4.6) constructed by the method of least squares on the boundary converge in L,(G)
(in the sense of (4.41)) to the “Airy part” U(x, y) of the very weak solution of the
problem (4.38), (4.39), thus to the very weak Airy function corresponding to the
given loading. Moreover, this convergence is uniform on every closed region
G’ < G. The same assertion holds for the convergence of the sequence of D/ Ug(x, y)
on G', where DI Uy(x, y) means an arbitrary (partial) derivative of U(x, y), to
the corresponding derivative D’ U(x, y) of U(x, y).

Remark 4.2. Theorems 4.1 and 4.2 imply Theorem 3.2, p. 379.

Remark 4.3. Theorem 4.2 implies that although the basic singular biharmonic
functions r;;(x , y) play a fundamental role in our theoretical considerations, they
actually need not be constructed since they play only an auxiliary role in our method,
as mentioned in Chap. 2.

Chapter 5. SOME AUXILIARY RESULTS. PROOFS OF SOME THEOREMS
AND LEMMAS USED IN THE PRECEDING CHAPTERS
1. Smoothness of very weak solutions in G
We start with two lemmas, the first of which follows immediately from Theorem
5.4.2 in [2], p. 274, the second being a consequence of Theorem 4.1.3 (with 4 = A?
and x = 1) in [2], p. 200, and of the well-known Sobolev immersion theorems.

(Convention 1.1 on boundedness of G and on the Lipschitzian boundary is always
preserved.)

Lemma 5.1. Let u(x, y) be the very weak solution of the biharmonic problem
(5.1) A’u=0 in G,

(5.2) =g, —=4gy on I, i=01...k,

with (gio, 911) € WSI';) x Ly(I';). Then there exists such a constant ¢, > 0 depend-
ing only on G(and independent of g, gi) that

k K
(5.3) lul L) S cl(i;)”gio” WA () +i;OHgi1Nr.;(n)).
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Lemma 5.2. Let u(x, y) be the very weak solution of (5.1), (5.2). Then u(x, y) has
in G derivatives of all orders. To every subregion G' = G' = G there exists a con-
stant ¢,(G') > 0 such that we have

(54) lullc = eallullLae) -

where Hu”c(cy) means the norm in the space C(G') of continuous functions in G'.
More generally, there exists a constant ¢;(G’, j) > O such that every partial
derivative D’u satisfies

(55) 1D7u]lcery = esllufliye) -

From Lemmas 5.1 and 5.2 we conclude

Lemma 5.3. (G’ is the subregion of G from Lemma 5.2.) To every D’ there exists
such a constant ¢,(G', j) > 0 that

k k
(5-6) |D7ucery = C4(_§()‘ig-‘0||wz<'>.r;> + Zougnumr,-))-

Remark 5.1. Consequently, in a fixed subregion G’ the derivative D’ u(x, y)
of the very weak solution u(x, y) is “small” provided the boundary functions are
“small” (in the sense of (5.6)). Or, because of the linearity of the problem: The
derivative D’ v(x, y) of the difference v(x, y) of two very weak solutions of (5.1), (5.2)
is “small” provided the differences between the corresponding boundary functions
are “small”.

Remark 5.2. Similarly as in Chap. 4 we shall often speak, in what follows, of
a weak or very weak biharmonic function instead of a weak or very weak solution
of a biharmonic problem (5.1), (5.2). In a similar sense we shall speak of a weak
or very weak Airy function.

Lemma 5.4. Let a sequence of very weak biharmonic functions u,(x, y) converge
in L,(G) to a very weak biharmonic function u(x, y). Then this convergence is
uniform on every subregion G' = G' = G. Moreover, the sequence of D’ u,(x, y),
where D’ u,(x, y) means an arbitrary (partial) derivative of u,(x, y) converges to
the corresponding derivative D’ u(x, y) of u(x, y) uniformly in G'.

The proof is very easy: The first assertion follows from (5.4) because
(5.7) lu = e < callu = wl|1ye) -
The second follows analogously from (5.5).
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2. The complex stress-functions
In Chap. 1 (Lemma 1.1, p. 352) we introduced the concept of an Airy function:
To sufficiently smooth functions

(53) a5 3)s a(n). tylxy)

satisfying the relations

(5_9) 00’“_}_9&:0, ,aji’!_;__aﬁ’zo’
O0x dy 0x ady

(5.10) Ao, +0,) =0

(the so-called equations of equilibrium and compatibility) in a simply connected
region G, there exists a biharmonic function u(x, y) in G such that

0%u %u o%u

—, O, = —— T, = — .
oy? Y ox? ’ ox dy

(5.11) o, =

On the other hand, if u(x, y) is a biharmonic function in G, then the function
(5.11) satisfy (5.9), (5.10).

In Chap. 2 (Lemma 2.1) we mentioned that in a simply connected region G every
biharmonic function u(x, y) can be expressed in the form

(5.12) u(x, y) = Re (Z o(z) + (2)) »
where

(5-13) o(z), x(2)

are holomorphic functions in G, the so-called stress-functions. It follows that if the
functions (5.8) satisfying (5.9), (5.10) are given, then by means of the Airy function
and (5.12) a pair of stress-functions (5.13) can be found. From Chap. 2 we know
that these functions are uniquely determined by the functions (5.8) up to some
linear expressions in z, and that between the functions (5.8) and (5.12) the following
relations hold:

(5:14) ot 0y = 4 Re().
(5.15) o, — o, + 2it,, = 2(2¢" + 1').

Moreover, if the functions (5.8) are interpreted as components of a stress-tensor
in G, then the components d,(x, y), d,(x, y) of the corresponding vector of diplace-
ment satisfy

(5.16) dy +idy = u(xp — 23" — '),

where u and x are positive constants (given by the material considered). The functions
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(5.8) being given, the vector of displacement is uniquely determined up to a linear
expression in z which can be interpreted as a ‘“small” displacement and rotation
of G as of a rigid body.

If G is multiply connected, then to the given (sufficiently smooth) functions (5.8)
satisfying (5.9), (5.10) it is also possible to construct the corresponding Airy function
and the stress-functions (5.13) such that the relations (5.11), (5.12), (5.14), (5.15)
and (5.16) hold. In contrast to the former case, neither the Airy function nor the
stress-functions need be single-valued functions in G. As stated in Chap. 2, we do not
- introduce the concept of a multi-valued real function and of its derivatives here, so
that we shall speak of an Airy function corresponding to the functions (5.8) only
if it is a single-valued function.') According to Lemma 2.2., p. 361, in the case of
a (k + 1)—tuply connected region considered in Chap. 2 the stress-functions
¢(z), Y(z) = y'(z) can be written in the form

(5.17) o2) = X A (= = 2) + Y BIn (= 2) + 00(2).
(5.18) ¥(z) =i§1Ci In(z = z;) + ¥ol2),

where z; (i = 1, ..., k) are fixed points chosen inside the inner boundary curves I';,
A; are real constants uniquely determined by the functions ¢(z), ¥(z), B;, C; are
complex constants depending generally also on the choice of the points z;, and cpo(z),
¥o(z) are holomorphic functions in G.

Remark 5.3. For the proof of Lemma 2.2, the reader has been referred to the book
[4]. However, this proof enables us to draw some useful consequences. Therefore
we sketch it briefly here. Following [4], Sec. 2.10, we shall assume that the boundary

r=roulyu...ul}

is sufficiently smooth (there is no need to make this concept more precise here) and
that the functions (5.8) have continuous partial derivatives up to the second order
in the closed region G. In Remark 5.4 we show how to remove these assumptions.

Let I' be sufficiently smooth and let the functions (5.8) with continuous partial
derivatives up to the second order in G satisfy (5.9), (5.10). Denote

(5.19) 7"4(0;; + ay) = h(x, y).z)

) At the same time, the functions (5.13) need not be single-valued, as shown in Remark
2.4, p. 362.

2) Thus h(x, y) = % Au if the functions (5.8) are derived from the function u(x, y) according
to (5.11).
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Then according to (5.10) we have

(5.20) Ah =0
and the expression

(5.21) — gﬁdx + %dy
dy 0x

is locally a total differential in G. Denote

(5.22) A, =in Ea—hdx - @dy .
, r.\9y 0x

An easy computation (for details see again [4]) shows that then the function h*(x, y)
defined by

(5.23) h*(x, y) = j [(— —g—idx + ggdy) 4

zo

+;§1 i <a Re(In(z = 2)) | dRe(in(z - z)) dy)}

dy 0x

where z, = X, + iy, is an arbitrary (but fixed) point in G, is a single-valued function
in G and that the function

450(2) = h(x, y) —iiAi — Re (iiAi In(z — z;)) + ih*(x, y)

is holomorphic in G and continuous in G. Put

k k
(5.24) ¢'(2) = Do(z) + Y A;In(z — z,) + 3 4;.
i=1 i=1
Construct the function
k
O*(2) = Dofz) + 3
i=1z — z;

choosing the complex constants k; in such a way that

(5.25) '[ G*(z)dz =0, i=1,... k.
r;

This is possible, even uniquely, because

k
(5.26) Y ki—dz=—2nikj, i=1..,k.

r;i=1z —z;

If we denote

@o(z) = jw o*(1)dt,

zZo
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then (5.17) is a primitive function to the function (5.24). Here
(5.27) Bi= —k; — Az .

In a similar way one constructs the function (5.18) and checks the validity of the
relations (5.14), (5.15).

Corollary 5.1 to Lemma 2.2. If, moreover, the components d,, d, of the
vector of displacement (5.16) corresponding to the functions (5.8) are assumed to be
single-valued functions in G, then

(5.28) A; =0

and

(5.29) g = Xiti¥e o AXi—i¥)
27[(1 + %) 21[(1 + ;{)

i=1, ..., k,where

(5.30) X, :j X(s)ds, ¥, = f Y(5) ds %)
r; r;
and x is the constant from (5.16).
For the proof of this corollary see [4], Sec. 2.10. It consists in a more detailed
analysis of the expression (2.43), p. 370.

Remark 5.4. The assumption concerning the smoothness of the boundary I’
when deriving the form of the functions (5.17), (5.18) as well as the assumption
of smoothness of the functions (5.8) up to the boundary can be easily removed.
Let G’ be a (k + 1)—tuply connected region such that G’ = G’ = G with a smooth
boundary

I'=Tyaurlju...uly

as considered in Chap. 2 (see Fig. 2, p. 370). Each of the points z;is assumed to lie
inside the inner boundary curve I';, i = 1, ..., k.

If we assume that the functions (5.8) have continuous derivatives up to the second
order in the (open) region G only, then these derivatives are continuous in G" and we
can carry out all the preceding considerations for the region G’. All the results will be
independent of the choice of the region G’: In fact, if G” is another region with the
same properties as G’, then the integrals appearing in the preceding text will be the
same along a curve I'; or I'}, because they are either integrals of expressions which
are locally total differentials or of holomorphic functions. In particular, for the con-
stants A;, B;, C; we get always the same values. The intervals over I'; in (5.30) are
to be replaced by integrals over I'}.

3) Thus X;, Y; are the x- and y-components of the total loading which acts on I'; (of the so-
called main vector on I'}).
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The simple considerations just performed lead to useful consequences. Note first
that if the displacement is a single-valued function and if the main vectors on I}
(i=1, ..., k) are equal to zero, then (5.17), (5.18) and (5.30) (with I'; substituted
for I';) imply

(5.31) @(z) = po(2), ¥(z) = £'(2) = ¥o(2) ,

where ¢, ¥, are holomorphic functions in G.

This case occurs for example if the function u(x, y) connected with the functions
(5.8) by (5.11), is an Airy function in G: In fact, according to the definition, an Airy
function is a single-valued biharmonic function such that the vector of displacement
is a single-valued function. The function u(x, y) being single-valued, so are its derivat-
ives du/dx and du[dy, so that the main vector is equal to zero on every I';. Thus we
have (5.31). Moreover, we assert that in this case the primitive function to y'(z) is
of the form

(5.32) x(z) = 70(2) +i§1ci In(z — z),

where yo(z) is a holomorphic function in G and ¢; are real constants. In fact, the
form (5.32) of the function y(z) with ¢; generally complex can be derived in a quite
similar way as we have obtained the primitive function

z k
J @*dz — ) k;In(z — z)
zo i=1
to the function ®y(z), i.e. by virtue of (5.25), (5.26). But

(5.33) In(z—z)=3In[(x — x;)* + (y — y)’] + iw;,

where w; stands for the amplitude of the logarithm. The functions @,(z), xo(z) being
holomorphic, it follows from (5.12), i.e. from

(5.34) u = Re(Z¢ + %)

and from (5.32), (5.33) that the imaginary parts of all the coefficients ¢; should be
equal to zero in order that u(x, y) be a single-valued function.

Thus if u(x, y) is an Airy function in G, then the stress functions ¢(z), x(z) are
of the form

(539) o) = 0e). 1) = 1) + L eitn(z - =),

where ¢o, Xo are holomorphic functions in G and ¢;, i = 1, ..., k are real constants.
This is the assertion of Lemma 4.2, p. 428.
Now, let u(x, y) be a very weak biharmonic function in G (see Remark 5.2, p. 436).
Let (5.17), (5.18) be the corresponding stress-functions so that (5.34) holds. From
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Lemma 5.2 and Remarks 5.3, 5.4 it is possible to draw simple conclusions on the
dependence of the numbers A;, B;, C; on |u],,*). We shall show, roughly speaking,
that these numbers are “small” if ““”L,(G) is “small”. To this purpose we use con-
struction presented in Remark 5.3, but carried out on a subregion G’ according to
Remark 5.4, and the fact that G’ = G implies that the derivatives of the function
u(x, y)in G are “small” if |u ., g, is “small” (Lemma 5.2):

Thus, let G’ be a fixed region from Remark 5.4. According to this remark, we can
perform all the considerations from Remark 5.3 for this region. Because G’ < G,
the function h(x, y) = }Au (cf. the footnote 2, p. 438) is small in G’ in the sense
of (5.5) from Lemma 5.2, if ||u] ., is small, and so are its derivatives dh/0x, oh[dy
in G". According to (5.22) all the numbers 4; (i = 1, ..., k) are small because they
are integrals from these derivatives along the curves I'; which are fixed, as G’ has
been chosen fixed. By the same reasoning, the function h*(x, y) is small and, con-
sequently, so are the numbers k; in the function @*(z), because according to (5.25),
(5.26) they are proportional to the integrals of the function @(z). (5.27) then gives
that also the numbers B;, i = 1, ..., k are small. Evidently, all these relations are
linear, even homogeneous.?) A quite similar reasoning can be carried out for the
numbers C;, i = 1, ..., k. Thus we can summarize:

Lemma 5.5. Let u(x, y) be a very weak biharmonic function in G (cf. Remark 5.2)
and let (5.17), (5.18) be the corresponding stress-functions (so that (5.12) holds)
with fixed points z;, i = 1, ..., k. Then there exists such a constant ¢ > 0 that the
relations

(5.36) |4 < C”u“Lz(G)’ ’Bil < cfuf iy » ]C-'| s C”u”LZ(G)
hold for all i =1, ..., k.
In Chap. 2, p. 370 we have introduced the numbers y;;, i =1, ..., k, j=1,2,3
by the relations (2.45),
(537)  y;, =(x+ 1)A;, 7y, =Re(xB; + C;)), 73 =1Im(xB; + C;).

We have immediately

Lemma 5.6. Let u(x, y) be the very weak biharmonic function from Lemma 5.5,
Yijpi=1,...,k, j=1,2,3 the numbers (5.37). Then there exists such a constant
C < 0 that

(5.38) vl < C”””Lz(c) :

4) The points z; are always assumed fixed.
5) So that if we say, for example, that 4; is small if Hu||L2(G)is small, it means that a constant
’

K > 0 exists, depending on the constant ¢ in (5.5) and on the length of the curve I'{, such that

[4;] < KlullLy6
holds, etc.
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The points z; in (5.]7), (5.18) being chosen fixed, every very weak biharmonic
function u(x, y) produces 3k numbers 7;;, uniquely determined by this function.
Lemma 5.6 implies

Lemma 5.7. Let the sequence {u,(x, y)} of very weak biharmonic functions
converge in Ly(G) to a very weak biharmonic function u(x, y). Let y;;, (i = 1, ..., k,
i=1,23,n=12,...), yi; be the above mentioned numbers corresponding to the
functions u,(x, y), u(x, ), respectively. Then we have

(5.39) limy,, =vyy forall i=1,. .k, j=12,3.

n—+aoo

The proof follows immediately from (5.38), because

IVU - )’unl = C““ - “n”Lz(G)

and |u — u,,”Lz(G) — 0 for n - oo.

Every very weak biharmonic function u(x, y) can be uniquely decomposed (see
Theorem 2.1 and its proof, if necessary; this decomposition is independent of the
choice of the points z;) into the “Airy part” U(x, y) and the “singular part”

Ma—
.Mw

o(x, y) = o rif(x, )

I
[}

i=1j=1

with «;; uniquely determined. Here, o;; are the solutions of the system (2.51),
k 3
(5.40) Y N wiiBijpg =Vpg» P=1,..,k, g=1,2,3.
i=1j=1

For the notation see Chap. 2, p. 371. The determinant D of this system is different
from zero (Lemma 2.5). Consequently, the solutions of this system depend continuous-
ly on its right-hand side. This fact and Lemma 5.7 immediately imply

Lemma 5.8. Let the sequence {u,(x,y)} of very weak biharmonic functions

converge in Ly(G) to a very weak biharmonic function u(x, y). Then the sequence
of the corresponding singular parts

k3
vn(xs J’) =Z Z aijn rij(x’ y)
i=1j=1
converges in Ly(G) to the singular part
k3
o(x, y) = -21 Zl“ij rif(x, y)
i=1 j=
of the function u(x, y).
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The proofis very easy: D % 0, y;;, — y;; according to Lemma 5.7, thus «;;, — o;;.
The functions r;(x, y) belong to the space L,(G), hence we have v,(x, y) = v(x, y)
in L,(G).®

3. Proofof Lemma 4.1, p. 428.

Remark 5.5. In what follows G is a bounded (k + 1)-tuply connected region
with a Lipschitzian boundary, z,(i = 1, ..., k) are as usual arbitrary points lying
inside the inner boundary curves I';; G is a bounded (k + 1)-tuply connected region
with a smooth boundary, such that G ¢ G = G and that each of the points, z;,
i =1, ...,k lies inside the inner boundary curve I'}. (Cf. Fig. 9, p. 428.)

We start with the following lemma proved in [1], p. 1227

Lemma 5.9. To every function z € W(zz)(G) and to every n > 0 it is possible to find
such a function 2(x, y) biharmonic in G that

(5.41) 2e C(G)
and
. Jdz 02
(542) Iz = 2llw.corry <1 v ol <1~

In [1] a simply connected region is treated, so that Lemma 5.9 is formulated there
for this case.® But in its proof this assumption is nowhere used so that this lemma
holds for multiply connected regions considered in Remark 5.5. Inequalities (5.42)
can then be written in the form

0z 0%

(5.43) |z - f”wzm(r.-)” <ns o= ol < forall i=0,1,...,k.

Let us give a sketch of the proof of Lemma 5.9 (for details see [1], p. 122—128),
because useful conclusions can be drawn from it.

Let {G,} be a sequence of regions of the type shown in Remark 5.5 (thus every
point z; lies always inside the corresponding inner boundary curve [y, i = 1, ..., k)
such that

(5.44) GG, G, cG, forevery I=1,2,...,
(5.45) limm(G, — G) =0,
-

) The functions r;j(x, ¥) belonging to W{2X(G) (as weak solutions of the problems (2.27) to
(2.35)), we have even the convergence in W(ZZ’(G). But this fact is of no interest here.

7) Lemma 5.9 itself is not used in the sequel. However, we need Lemma 5.10 which follows
from the proof of Lemma 5.9.

8) G is bounded, I'is Lipschitzian.
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where m(G, — G) is the Lebesgue measure of the region G, — G. Thus the region G
is “approximated from outside” by a sequence of regions G, (see Fig. 10). Such
a sequence obviously exists. Let u, € W‘ZZ)(G) be the weak biharmonic function

. . ° . . .
satisfying u, — z € W$(G) (thus satisfying, in the sense of traces, the boundary
conditions

Fig. 10

ou, 0z -

Uy, =2z, ~ = L on s
° v dv

given by the function z). Let us extend the function u, in a usual way (cf. e.g. [2],
p. 80) onto the whole region G, so that this extension — denote it by U, — belongs
to W$(G,). Denote by u, e W$(G)) the weak biharmonic function in G, satisfying
u, — Uge I?V(ZZ)(G,), where U, is considered as the restriction of U, on G,. In [1] it is
proved — and, as said above, the assumption that G is a simply connected region
is used nowhere in the proof — that a subsequence exists —- denote it, for simplicity,
by {u/(x, y)} again — such that

(5.46) lim [uy — d@flw,cr6 =0,
-0

where ﬁ,(x, y) is the restriction of the function u,(x, y) on G. The operator of traces
from W§(G) into W$"(I') x L,(I) being continuous, it is sufficient to take for the
desired function 2(x, y) the restriction #(x, y) of a function u/(x, y) with a sufficiently
large index [ (so that [ug — &y e, is sufficiently small) to obtain (5.42) (or
(5.43)). At the same time, u,(x, y) being biharmonic in G,, i(x, y) belongs to C“(G),
which completes the proof.
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The way of proof of Lemma 5.9 permits to formulate another lemma which will be
more suitable for our purpose:

Lemma 5.10. Let uy(x, y) be a weak biharmonic function in G. Then there exists
such a sequence of regions G, with properties (5.44), (5.45) and such a sequence
of weak biharmonic functions u/(x, y) defined on G, that their restrictions @,(x, y)
on G satisfy (5.46).

Thus, if ue(x, y) is a weak biharmonic function in G, it is possible to find such
a weak biharmonic function u/(x,y) defined in a “larger” region G, that
luo — @f|w,c ) is sufficiently small. In virtue of the continuity of the operator
of traces, the numbers
ou, 0

E ov |

”uo - ﬁ’”“’z“)(ra) ’

La(Ti)

are then alsosufficiently small. This is “almost” Lemma 4.1. However, it is not clear
whether it is possible to achieve that u/(x, y) be an Airy function in G, provided
uo(x, y) is a (weak) Airy function in G. We shall show that it is possible.

Every very weak and consequently, every weak biharmonic function ue(x, y) in G
can be uniquely written in the form

ko3
(5:47) uo(x, ) = U(x, y) + 3, ¥ oy rifx,v) 5

i=1j=1
where U(x, y) is the ““Airy part” of ug(x, y), r;;(x, v) are thie basic singular biharmonic
functions defined in Chap. 2 and a;;, i = 1. ..., k, j = 1,2, 3 are uniquely deter-
mined constants which are solutions of the system (2.51),

k3
(5~48) Z Z“ijﬂiquz)’pq’ p=1...k, ¢=123.
1

i=1j=

Here y,, are the numbers (2.47) corresponding to the function u(x, y) (cf. also the
text preceding Lemma 5.6) and f;;,, are analogous numbers corresponding to the
functions r;(x, y) (keeping the points z, fixed). Similatly, in G, (I = 1,2, ...) we
can write

ko3
(5.49) ux, y) = Ufx, )Y Y rii%, ),

i=1 /=1
where r;;(x, y) are weak biharmonic functions defined (like the functions r;(x, y))

as solutions of the problems (2.27)—(2.35) considered on the region G, and oy
are solutions of the system

kK 3
(5~50) Zl ‘Zlaijlﬁiqul =Yp» P=1 ..k, g=1,2,3.
i=1j=

Here y,, correspond to the fupction ulx,y), p

ijpgt correspond to the functions
r,'j[(X, }’).
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It is not difficult to prove that

(551) hm ‘qul = 'qu »
1=
(5.52) Hm Bijpa = Bijoa

(5.51) follows at once from Lemmas 5.10 and 5.6. In fact, the function dy(x, y)
is the restriction of the function u(x, y) on G so that the numbers y,,; corresponding
to this function are the same as those corresponding to the function u,(x, y). (5.46)
and Lemma 5.6 imply (5.51).

To prove (5.52), consider any one of the functions r;(x, y), say the function
ry5(x, y) — the solution of the problem (2.30)—(2.32), p. 368 for i = 1. Let us extend
this function onto the region G, defining ri2(x, y) = x outside G. In this way we get
a function which corresponds in the proof of Lemma 5.9 to the function Uy(x, y).
However, extending this function in this way, the functions corresponding in the
above proof to the functions u,(x, y) (I = 1,2, ...) will be precisely the functions
ri2x, y). Consequently,

lim th — f‘xzr”wﬂ)(c) =0.
1=
In a quite similar way we get, more generally,

(5.53)  lim |ri; — Piwaarney =0 forall i=1,..,k, j=1,2,3
1=

which implies by Lemma 5.6 the required relation (5.52).
The determinant D of the system (5.48) is different from zero (Lemma 2.5, p. 371).
So is the determinant D, of the system (5.50). By (5.52)

limD, =D
1=
and thus by (5.53)
(5.54) limag, = a; forall i=1,..,k, j=1273

indc:]

(independently of the choice of the points z;). Now (5.53) and (5.54) give

k 3 k 3
(5-55) lim H ) 1%‘ r,-j(x, J’) - Zl > Xij1 ?ijl(x’ y)” WG = 0.
=N=h

P e
From (5.47), (5.49) and (5.46), (5.55) we get finally
(550 i 0 = O, = 0.
Let uo(x, y) be a weak Airy function in G. Then in (5.47) we have uo(x, y) =
= U(x, y) so that
(5.57) }‘:‘; luo = Ui w ) = 0
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and in view of the continuity of the operator of traces from W$(G) into W (I') x
x Ly(T)

duy _ 00,

(5.58) hm 4o — Uillw sy = 0, lim & o

1-» 0

=0, forall i=1,...,k,

La(Ti)

which yields immediately the assertion of Lemma 4.1.
4. Proof of Lemma 2.4, p. 369.

Denote
k3
(5.59) V(X, }’) = ‘Zl Zlaij rij(x$ .V) ,
i=1 j=

where r,-j(x, y) are the basic singular biharmonic functions (defined as solution of
(2.27)—(2.35),p. 367) and a;; are (real) constants. Let us assume that V(x, y) is a (weak)
Airy function in G. We assert that this assumption implies

(5.60) a; =0 forall i=1,....k, j=1,23.

If we prove (5.60), Lemma 2.4 will be proved completely.
Thus, let V(x, y) be a weak Airy function in G. Denote for brevity

AV = S(x, y).

According to Remark 5.3 (01 its modification by Remark 5.4), to this function there
exists such a single-valued conjugate function T(x, y) that S + iTis a holomorphic
function in G and

(5.61) ' f(s +iT)dz =0

over every closed curve ¢ (sufficiently smooth) lying in G. In fact, regardless of the
coefficient 1/4 which has no influence on the validity of the above assertion, these
functions have been denoted by h(x, y), h*(x, y) and ®y(z), respectively, in Remark
5.3. From the assumption that V(x, y) is an Airy function it follows that 4; = 0,
B; = 0 (see (5.28), (5.29); note that V is a single-valued function so that X; = 0,
Y; = 0) and consequently, k; = 0 (i = 1, ..., k) which implies (see (5.25)) (5.61).

Since the functions r;;, are solutions of problems of the form (2.27)—(2.35), the
function V is of the form

(5.62) V=ay +a,x+asy on I'y, i=1,...,k
and
(5.63) V=0 on I,.

Let us construct a function w(x, y) sufficiently smooth in G and such that

(5.64) ' w(x, y) = aiy + apx + a;zy
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in a certain neighbourhood of the curve I'; (i = 1, - - -, k) belonging to G and
(565) w(x, y) = O

in a certain neighbourhood (belonging to G) of I'y. Such a construction is evidently
possible.

Further, let us construct a sequence of subregions G, of G (G, = G for every n)
tending to G in the sense of Theorem 3.6.7 from [2], p. 173. It is possible to assume
that the boundary I'™ = I'® U I U ... U T of each of these regions is suffi-

ciently smooth. Let us denote by ¥,(x, y) the weak solution of the problem
(5.66) AW, =0 in G,
(5.67) Vy = we Wi(G,).
First, extending each of the functions ¥, by w on the whole G, we have according
to Theorem 3.6.7 in [2]
(5.68) limV, =V in W{*(G)
and, in particular,
(5.69) limAV, = AV =S in LyG).

n- o

Further, the function V(x, y) is sufficiently smooth in the interior of G. Thus the
Green theorem can be applied,

(5.70) Ji[ AV, AVdx dy =J <AV%Ii -V, g—A—V)d + Ji[ v, A*Vdx dy. )
Gn roy v

For all n larger than a certain n, we have
5V,, n)
(5.71) V, = ayy + ainx + agy, = v +apmv, on I'M i=1,..k,
v

(5.72) V,=0, ‘;V" =0 on I§.
v

Further, for every i = 1, ..., k we get

. Wy 08\ 4o Wy _y, 0T\ 4 10
riem\ Ov v rom\ 0V " s

9) In order to be able to write (5.70) we have constructed the sequence of regions G,, because
sufficiently smooth boundaries I'™ and a sufficiently smooth function w guarantee a sufficient
smoothness of the functions V, in G,. If V were sufficiently smooth in G, we could have used
(5.70) directly for-G with ¥V, =

19) The Cauchy-Riemann conditions for the conjugate functions S, T imply

oS aS oS oT oT oT
_ = — vx + —_y, = —y = -
v 0x dy

e — — Y, = — .
Y dy ox 7 0Os
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Integrating the second term in the right-hand side by parts and noting that ¥V, and
T are single-valued functions, we get

1, = v, v, ds
ram ov Js

~

I; = ay .0+a,-2J

and by (5.71)

(Sve — Tv,) ds + a,sj (Sv, + Tv,)ds =

rim rim

=ai2J (Sdy + de)—~a,»3j (Sdx — Tdy) =0
rim

rim

in view of (5.61) written in the real form.
Consequently, the first integral on the right-hand side of (5.70) is equal to zero.
So is the second, because A’V = 0in G. Thus for every n > n, it holds

J‘j AV, AVdxdy =0
G
and by (5.69)

(5.73) ”G(Av)z dxdy = 0.

(5.73) implies that Vis harmonic in G. Using the Green theorem once more, we get'")

R O (6 )

But

v
V=a; +apx+asy, a—=ai2vx+a,»3vy on I';, i=1,...,k.
v
Consequently, for every i = 1, ..., k we have .

(5.75) J —ds - a,lf (a dy — a;3dx) —
I;

aizai3f xdx+a,~3a,-2‘[ ydy+a,-22J‘ xdy—aéjl ydx.
r; I; r; I;

11y Here it is no more necessary to consider the regions G,, because all the symbols in (5.74)
have sense.
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The first three integrals on the right-hand side of (5:75) obviously vanish. For the
remaining two integrals we have in view of the orientation of the curves I';

j xdy <0, J‘ ydx > 0.
Tr; I

Vél/ds =0
ro ov

by (5.63). Hence (5.74) yields, with regard to AV = 0,

(LI (2o

V(x,y)=0 in G.

Further,

and by (5.63),

The functions r;; being linearly independent in G, it follows a;; = Oforalli =1, ...
..., k,j=1,2,3 which we were to prove.

5. Proof of Theorem 3.1, p. 379.

Let s, 1 be fixed positive integers. Denote by M the set of all (real) linear combina-
tions of the functions

(5.76) 2)(x, 9) s v y), In[(x = x)* (v — yi)’], i, y),
p=1,..,48-2, g=1,..,4, i=1,..,k, j=12,3.

(See (3.9), (3.10) and the following text.) By the definitions of the functions (5.76)
it follows immediately that they are linearly independent on M'z).

12) In more detail: (i) The functions ry; are linearly independent in G — this is a trivial con-
sequence of Lemma 2.4. (ii) The functions r;; on the one hand and the remaining functions on the
other hand are linearly independent. (It means that no function of one group can be a linear
combination in G of functions of the other one.) This follows from the fact that the latter ones
are Airy functions, while r;; are not. (iii) The logarithmic functions are linearly independent.
Further, the logarithmic functions on the one hand and the functions z, v; 0N the other hand are
linearly independent as well. (iv) The biharmonic polynomials z, are linearly independent (see
[1]); so are the functions jg» @S follows from their construction. (v) The polynomials zp on the
one hand and the rational functions vy, on the other hand are linearly independent (in G):
In the opposite case, since they are polynomials and fractional rational functions, they would be
linearly dependent not only in G, but in the whole plane E, (with the exception of the points
(x;, ). But this is not possible: for (x;, ¥;) = (0, 0) and for (x;,.y;) = (0, 0) and ¢ > 2 because
of the poles of the functions v;, at the points (x;, y); for (x;, y;) = (0,0) and g =1 o0r g =2
this fact follows by a direct computation. . Co
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For every two functions u, v € M define

(5.77) (w, )y = j wds + [ 2% j ou vy
r rov ov

First, (5.77) has sense for every pair of functions u, v from M, because all the func-
tions (5.76) belong to W{?(G). Further, we show that (5.77) is a scalar product on
M. 1t is sufficient to prove

(5.78) (u,u)y =0=u(x,y) =0 in G,

since all the remaining axioms of the scalar product are obviously fulfilled. Thus,
letu € M and (u, u)r = 0. Then (5.77) implies easily

(5.79) u=0 in W), af_o in Ly(I),
v

2 2
(u,u)r=-[u2ds +j (a—u>d5+J' (a—u)ds.
r r\0s r\ov

But the function u(x, y) is a linear combination of weak biharmonic functions
(5.76) and by (5.79) it is a weak solution of the problem

because

A*u =0 in G,

u=20, QE:O on I.
ov

By the uniqueness of the weak solution we have
u=0 in W?G).

All the functions (5.76) being continuous in G, it follows that u(x, y) = 0 in G which
proves (5.78).

Consequently, the determinant of the system (3.20) is the Gram determinant
constructed of the functions (5.76). But these functions are linearly independent
in M. Hence this determinant is different from zero. The system (3.20) is thus uni-
quely solvable which completes the proof.
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Souhrn

RESENI PRVNIHO PROBLEMU ROVINNE PRUZNOSTI
PRO VICENASOBNE SOUVISLE OBLASTI METODOU
NEJMENSICH CTVERCU NA HRANICI

KAREL REKTORYS,
JANA DANESOVA, JIRf MATYSKA, CESTMIR VITNER

V pfipad€ jednosuse souvislé oblasti Ize prvni problém rovinné pruznosti (str. 352)
pfevést — zhruba YeGeno — na biharmonicky problém (1.10), (1.11). K jeho pfi-
bliznému fedeni (v redlném tvaru) lze pouZit metodu nejmensich &tverclt na hranici,
rozpracovanou v [1] (viz také str. 374). U této metody neni tfeba ptedpoklddat, Ze
feseni patii do W{?(G), stati, aby go € Wi'NI'), g, € L,(I'). (Podrobné viz v [1] —
hranice oblasti se pfedpoklddd lipschitzovskd.)

PredloZeny ¢ldnek je zobecnénim prdce [1]. Nejde o zobecnéni formdlni, ale
o feSeni zcela novych problémi, s kterymi se v pfipadé vicendsobné souvislych oblasti
setkdme. Jde o obtize dvojiho druhu:

1. Postupujeme-li formdln€ jako v pfipad€ jednoduse souvislé oblasti, dostaneme
velmi slabé FeSeni u(x, y) a k nému prostiednictvim vztahd (1.5), str. 353, funkce
0., Oy, T, které cice spliiuji rovnice rovnovdhy a kompatibility, avSak soufadnice
pfislusného vektoru posunuti nemusi byt jednoznacné funkce. Proto je tfeba najit
takovou matematickou formulaci problému (v redlném tvaru), kterd vystihuje jeho
fyzikdlni podstatu (str. 367). Diikaz existence a jednoznacnosti (velmi slabého) FeSeni
takto formulovaného problému je proveden v druhé &dsti kapitoly 2 (existencni véta
2.1, str. 373). Pouzivaji se v ném podstatné vlastnosti funkci r;; zavedenych na str. 367.

2. Priblizné feseni metodou nejmensich Ctvercil na hranici jiz nelze hledat ve tvaru
(0.4), str. 350, ale ve tvaru (3.9), str. 376. Tim se mimo jiné dostanou do vypotu
i funkce r;;. Podstatné pro metodu je to, Ze pii numerickém vypoctu v ni vystupuji
jen hrani¢ni hodnoty téchto funkci, a ty jsou velmi jednoduché.
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Préce je psdna tak, aby prvni tii kapitoly byly Citelné i pro ,,konzumenty‘ matema-

tiky. Po matematické strdnce je t&Zi§t& ¢ldnku v kap. 4 (dtikaz konvergendni v&ty
3.2 ze str. 379) a v kap. 5 (pomocnd lemmata).
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CSc., doc. RNDr Cestmir Vitner, CSc., Katedra matematiky a deskr. geometrie Stavebni fakulty
CVUT, Trojanova 13, 121 34 Praha 2. _ :
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