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FOR MULTIPLY CONNECTED REGIONS BY THE METHOD
OF LEAST SQUARES ON THE BOUNDARY (Part I)

KAREL REKTORYS, JANA DANESOVA, Jiki MATYsKA, CESTMIR VITNER

(Received October 14, 1976)

INTRODUCTION

For simply connected regions, the so-called first problem of plane elasticity is
equivalent, roughly speaking (for details see p. 354), to the first biharmonic problem

(0.1) ANu=0 in G,

ou
(0.2) u=go(s), — =gis) on TI.

ov
Here G is the considered region with its boundary I', v the unit outward normal.
To the solution of this problem, a scale of methods has been developed, each of them
havirg its specific advantages and drawbacks. For example: The method of firite
differences is very simple, but the approximation of components of the stress-tensor —
which are the second order derivatives of the function u, see (1.5), p. 353 — by the
corresponding second difference quotients may be very inaccurate. Variational
methods — including the finite element method — are very often applied. However,
they are applicable provided the solution u(x, y) belongs to the “‘energetic” space
W3*(G). The Muscheligvilli method based on the theory of functions of a complex
variable (cf. [4]) has its main drawback in the requirement of a sufficiently smooth
boundary (permitting no corners, for example).

In the paper [1] by K. Rektorys and V. Zahradnik, an approximate method,
the so-called method of least squares on the boundary, is developed, requiring only
the boundary I' to be Lipschitzian and g, € Ly(I'), go € Wi"(I'). (Practically, this
means a sufficiently general boundary and a very general loading, if the problem
isinterpreted as a stress-and-strain problem; for the notation see p. 354.) This method

349



is closely related to that presented in [4], Sec. 3.15 (where a sufficiently smooth
boundary is assumed). Its idea is very simple: Let

(0.3) zi(x, ¥), zo(x, p), ...

be the sequence of basic biharmonic polynomials') (for details see [1]; for every
positive integer n = 2 there are precisely 4n — 2 of these polynomials of order <n)
and let us look for an approximate solution in the form

4n—-2

(0‘4) Un(x’ y) = igl Ay Zi(x’ ,V) s

where the coefficients a,; are determined in such a way that

2 2
©05) [ (U, = go)rds + [ (P9 =99V 45 4 [ (Y2 g, ds = min.
r r\ 0s ds r\ ov

is satisfied on the linear set of functions of the form

4n—2

(0.6) Vilx3) = X buizi(x. 7).

(Thus, the approximate solution (0.4) fulfils the given biharmonic equation exactly,
while the boundary conditions are fulfilled approximately in the sense of (0.5).)

The condition (0.5) leads to the solution of a system of 4n — 2 linear equations
for 4n — 2 unknowns a,; (i = 1,...,4n — 2). In [1], this system is shown to be
uniquely solvable, and the convergence of the sequence {U,(x, y)} to the so-called
very weak solution of the problem (0.1), (0.2) is proved, provided that G is a bounded
simply connected region with a Lipschitzian boundary I' and that g, e Wi'(I),
g1 € Ly(I'). A numerical example is also given in [1].

In the present paper, the above method is extended to the case of multiply con-
nected regions. This case presents two difficulties:

(i) The first problem of plane elasticity is equivalent to a biharmonic problem
only if the latter is properly modified. This fact is to be seen from Ex. 1.1, p. 357.

(ii) In [1], when proving the convergence of the above mentioned method of least
squares on the boundary, an approximation of holomorphic functions by poly-
nomials has been used. In the case of multiply connected regions, holomorphic
functions cannot be approximated in general by polynomiials only. Therefore, the
functions go, g1 cannot be approximated (in the sense of (0.5)) only by functions of
the type (0.4); also some other simple biharmonic functions should be used (Chap. 3).

1y Thus fulfilling the equation (0.1).
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In spite of this, the numerical treatment of the method considered remains also
in the case of multiply connected regions relatively simple (cf. Exs. 3.1,3.2). However,
theoretical questions, especially those concerning the convergence of the method, are
rather complicated. For this reason, the proof of convergence is postponed to Chap.
4, in order that the reader who is not a professional mathematician be able to follow
at least the text of the first three chapters, including numerical examples. This is also
the reason why the paper is divided into two parts, Part I containing the first three
chapters, Part 11 the chapters 4 and 5 (the “purely mathematical” part of the paper).

In Chap. 1, the connection between the first problem of plane elasticity and the
first biharmonic problem is discussed, first for simply connected regions, where the
situation is simpler, then for multiply connected regions, where Ex. 1.1 demonstrates
the characteristic difficulties. Using some properties of the so-called complex stress-
funstions, formulation of the problem in the real form is given in Chap. 2 and basic
results on the solution are derived. In Chap. 3 (p. 374), the method of least squares
on the boundary is presented and numerical examples are given. Chap. 4 is devoted
to the proof of convergence of the method, Chap. 5 contains proofs of some theorems
and of some auxiliary lemmas which were postponed to this chapter in order to make
the ideas of the proofs of the main theorems of Chaps. 2 and 4 as clear as possible.

Remark 0.1. As said above, the structure of the paper is such that a “consumer”
of mathematics be able to read the first three chapters. A reader who is not in-
terested in the application of the method in the theory of elasticity, can start just
with the Formulation of the Problem on p. 367. In that formulation, g,, € W{(I,),
gir€ Ly(I}), i = 0,1, ..., k are given functions for him, regardless of whether they
have something common with a “loading” on the boundary or not. In Def. 2.1, he
should understand under an Airy function such a biharmonic function for which the
function (2.9) is single-valued in G. Note that every function u(x, y) biharmonic
in G produces three functions (2.4) to which there correspond, according to Lemma
2.2, p. 361, functions ¢(z), ¥(z) (=x'(z)) appearing in (2.9). Whether the function
(2.9) is single-valued or not, does not depend on the choice of the points z;, i =
=1, ..., k from Lemma 2.2. (See the footnote 9 on p. 363.) Of course, it may happen
that such a reader will not understand why the problem is formulated precisely as
given on p. 361, because the first part of Chap. 2 — which he will omit — is devoted
just to the motivation of this formulation.

The “mathematical” reader will then be interested in the basic singular biharmonic
functions r;}(x, y)(p. 367) and in the existence theorem 2.1;in Chap .3 in the algorithm
of the method and in Theorems 3.1 and 3.2. The essence of the paper lies in Chap. 4
(proof of the convergence theorem 3.2). The auxiliary mathematical tools are
collected in Chap. 5. It is possible that a reader will prefer to start with this last
chapter. In this case, he should stop at the assertion (5.35), continue by the proof
of Lemma 2.4 and by the text of Chap. 2 up to Theorem 2.1, and then return to
Chap. 5.
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CHAPTER 1. THE FIRST PROBLEM OF PLANE ELASTICITY
AND THE FIRST BIHARMONIC PROBLEM

Convention 1.1. In this paper, under a region G we shall always understand
a bounded region in E, (multiply connected, in general) with the so-called Lipschitz-
ian boundary I'.")

Asusual, G = GuUTT.
The classical formulation of the first problem of plane elasticity is the following:

To find sufficiently smooth functions o, o, T,, (the so-called components of the
stress-tensor) which fulfil in G the equations of static equilibrium

doy | Oty Oty | 00

(1.1) + =0, +—2=0
Ox dy Ox dy

and the equation of compatibility
(1.2) Alo, + 6,) =0
(A being the Laplace operator), and on I' the boundary conditions

(1‘3) VO, + VT, = X(S‘) .
VT + 1,0, = Y(s),

where v,(s), v(s) are components of the unit outward normal and X(s), Y(s) are
given functions on I' (components of the loading acting on the boundary of the
body G from its exterior). Moreover, if G is multiply connected, it is required that
the displacement corresponding to the components o, g,, 7, of the stress-tensor
according to the Hooke law be a single-valued function.?)

If G is a simply connected region, this problem can be easily reduced to a bihar-
monic problem. Actually, we have (see [4], Sec. 2.2, 2.3)

Lemma 1.1. Let G be a simply connected region. Let the functions o,, 0, T,
be twice continuously differentiable in G and let they satisfy (1.1) and (1.2). Then
there exists a function u(x, y) biharmonic in G (thus satisfying

(1.4) Au=0 in G),

1y The concept of the Lipschitzian boundary is treated in detail in [3], Chap. 28, or in [2]. It
represents a slight generalization of the concept of a ‘“‘piecewise smooth” boundary.

2) In case of a simply connected region, this requirement is automatically fulfilled. See also
Chap. 2, Lemma 2.1 and Eq. (2.9).
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the so-called Airy function, the derivatives of which are the functions o, 0,, T,

0%u 0%u 0%u
_ T, = —

(1.5) o, =1 g
. s , 0y )

oy? ox? Ox Oy
This function is uniquely determined by the functions o, 6,, ., up to an expression
of the form

(1.6) ax + by + c.

Conversely, if u(x, y) is a biharmonic function in G, then the functions (1.5) are
sufficiently smooth in G (they are even infinitely differentiable) and satisfy the
conditions (1.1), (1.2).

Thus every function biharmonic in a simply connected region G characterizes —
through the functions (1.5) — a state of stress in G.

The problem (1.1)—(1.3) being given, it remains to convert the boundary conditions
(1.3) for the functions o, 6,, 7,, into boundary conditions for the biharmonic function
u(x, y). This can be carried out in the following way (see e.g. [4], Sec. 2.7):

First, let the loading of I' be sufficiently smooth. Let | be the length of I', s the
parameter of arc on I' (0 < s < [) with s = 0 at a chosen point A eI Let s be
increasing if we run along I' in the positive sense of its orientation (thus leaving G
to the left-hand side). If we put du/0x and du/dy equal to zero at the point A, then
we have on I’

(17) %@z—fmm,@@= X(1)di )
0x 0 ay 0

Now, 5u/6x, 011/6)’ being known on I', we compute

(1.8) _‘T = — — v +—

and, putting u = 0 at the point A4,

(1.9) u(s) = j g‘i (1) dr.

3 . L .
) Conversely, if the functions du/dx, du[éy are given on I' and are sufficiently smooth, then
obviously

d Ju 0
X() =Yy = 1M
ds dy ds 0x
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Denoting u(s) = go(s), (u/dv) (s) = g,(s) and taking (1.4) into account, the problem
(1.1)—(1.3) is converted in this way into the biharmonic problem

(1.10) A*u=0 in G,

ou

111 w=g,. M
( ) 9o Py

=g, on I.

Let us note that the formulae (1.7) permit to take certain singularities of the loading
into account. If, for example, at a certain point B € I a single load (an isolated force)
with components F,, F, is acting, then the integrals in (1.7) are to be replaced by the
corresponding Stieltjes integrals. At the point B, the function du/0x or ou/dy then
has a jump — F, or F,, respectively.

In the following text, we shall assume that g, € Wi(I'), g, € L,(I') only. We shall
briefly say that the functions go, g, belong to the space W'(I') x Ly(I') and we
shall write (go, g;) € Wi(I') x Ly(I'). Let us recall that g, € L,(I') means that the
function g,(s) is square integrable in the interval (0, I), while g, € W5"(I') means
that g, € L,(I') and dg,/ds € L,(I'). The spaces L,(I') and W{"(I') are Hilbert spaces
with the norms given by

112 [ = pr@ds and [ = L’ﬁ(s)dw ﬂf’z(s,)dsa

respectively.*)

The assumption (go, g;) € Wi"(I') x L,(I') is sufficiently general to include a wide
class of loadings appearing in applications of the plane eclasticity.) In particular,
if the loading contains a finite number of single loads and is piecewise continuous
elsewhere on the boundary I', then we have (go, g,) € Wi'(I') x Ly(I'). But the
loading can be considerably more general to get this result.

Cf. also the paper [5] by I. Hlavd¢ek and J. Naumann, where the conditions
go € WS¥A(I), g, € Wi'?(I') are discussed, which make it possible to work in the

4) The spaces L,(I') and Wz(k)(F) are defined in [3], Chaps 28 and 30. In the present case,
where I"is the Lipschitzian boundary of a region in E, and k = 1, it is possible to introduce the
norms by (1.12).

In this notation, the condition (0.5), p. 350 can be written in the form '

2

ﬁvu_g
ov !

(113) Hu — g()”a/lu)(r) =+ = min .

|L2(D)

5) Naturally, it is interesting also from the purely mathematical point of view.
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In what follows we always assume that the point 4 with s = 0 is chosen in such
a way that the loading has no singularity at that point — more precisely, that it is
continuous at the point A. Then it is easy to show that the functions du/ox, du[dy
are continuous at this point, i.e.

. Ou .
(1.14) lim —=(s) = (0) *( ) = *( )

s—1— 0X
if and only if the loading satisfies the condition of static equilibrium in forces,
i.e. if and only if

ﬂx(s) ds =0, L'y(s) ds=0.

The function u(s) is then continuous at that point if and only if the loading satisfies
the condition of equilibrium in moments,

f Ol[x Y(s) — v X(s)] ds = 0.

Let us return to the problem (1.10), (1.11). Let there exist such a function w e
€ W5?(G) that we have

(1.15) w =g, QY:gI on T
ov

(in the sense of traces). This case occurs, for example, if the loading as well as the
boundary I' are sufficiently smooth; then it is possible to apply e.g. Theorem 2.5.8
from [2]. See also the paper [5]. As is well known, in this case there exists precisely
one weak solution U(x, y) of the problem (1.10), (1.11). The equation (1.10) having
constant coefficients, this solution has derivatives of all orders in G ") and satisfies
(1.10) in the classical sense. The functions (1.5) then satisfy the conditions (1.1),
(1.2) and describe a certain state of stress in G. We shall briefly say that the function U
produces this state of stress in G. The boundary conditions (].3) are fulfilled by
virtue of the boundary conditions (1.11) (in a generalized sense, in general).We shall
briefly say that U(x, y) is the weak Airy function corresponding to the given loading.

If no function w e Wi*(G) exists satisfying (1.15), then the problem (1.10), (1.11)
has no weak solution. But we have (go, g;) e Wi'(I') x Ly(I'). In this case, the
functions go, g can be approximated in W' ’(F) X LZ(F) by a sequence of functions
Jom 91n Which are traces of functions w, € Wi*(G) in the sense of (1.15), and the
sequence {U,(x, y)} of the corresponding weak solutions of (1.10), (1.11) with
do» g1 replaced by go,, g1, converges in the space LZ(G) to the so-called very weak
solution U(x y) of the problem (1.10), (1.11). (See [2], Th. 5.4.2, p. 274; the function

) The reader who is not familiar with this result, see Lemma 5.3.
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U(x, y) is uniquely determined by the functions go, ¢;-) Also this solution has deriva-
tives of all orders in G and the functions (1.5) give the state of stress in G, correspond-
ing, in this very weak sense, to the given boundary conditions (1.3). In this way we
come to the concept of the very weak Airy function corresponding to the given
loading. The weak or very weak solution U(x, y) can then be sought approximately
by the method of least squares on the boundary, as described and discussed in [1].

Let us turn to the case of a multiply connected region. (Convention 1.1 (p. 352)
concerning the boundedness of the region G and the Lipschitzian boundary I’
remains always valid.) Let

(1.16) I'=Tqul;u..uTly,

where I’y is the outer boundary curve and I'y,..., I, are inner boundary curves
oriented as shown in Fig. 1. On each of the curves I'; (i = 0, 1, ..., k) let the para-
meter of arc s be chosen, 0 < s < I;, where [; is the length of the curve I';and s = 0
is chosen at such a point 4; € I'; where the loading on the boundary, given by the
components X;, Y; in this case, has no singularity. Let us construct the functions
gios), gis(s)on I'; (i = 0, 1,..., k) in a quite similar way as in (1.7)—(1.9).

Fig. 1.

Convention 1.2. In what follows, we shall assume that on every curve I'; (i =
=0,1,..., k), the loading fulfils the condition of static equilibrium both in forces
and moments.”) The functions gio, giy (i = 0, 1, ..., k) will always be assumed to
belong to the space Wi'(T';) x L,(T")).

7) From the mathematical point of view, this requirement ensures the continuity of the func-
tions u(s), (8u[ox) (s), (9u/dy) (s) at the above mentioned points 4; € I'; (in the sense of (1.14))

u ou
which makes it possible to work only with single-valued functions u(x, y), a—(x, y),a—(x,y) onG.
X y

Problems in which this requirement is not fulfilled can be easily reduced to the problem con-
sidered by using a proper particular solution. It is clear from Example 3.3, p. 390 how such prob-
lems should be treated.
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Similarly as in (1.10), (1.11) let us solve the biharmonic problem
(1.17) A'u=0 in G,

,
(1.18) u=gp, gfl—:g“ on I;, i=01..k.
,

If the functions g;o, g;; are traces of a function we W3*(G) in the sense of (1,15),
then there exists precisely one weak solution u(x, y) of the problem (1.17), (1,18).
In the opposite case, the functions g0, g;; belonging to the space Wi"(I';) x
x L,(I';) (i = 0,1,..., k), there exists precisely one very weak solution u(x, y) of
this problem.®) In both cases, the function u(x, y) is a classical solution of the equa-
tion (1.17) in G and the functions (1.5) satisfy in G conditions (1.1) and (1.2). But
in contrast to the case of a simply connected region, these functions need not des-
cribe a state of stress in G, corresponding (through the functions g0, g;() to the
given loading on the boundary, as is clear from the following example:

Example 1.1. Let G be a ring with its center at the origin, with the outer circle I'y,
of radius 2 and the inner circle I'y of radius 1. Let the following biharmonic problem

be given:

(1.19) A =0 in G,

(1.20) u=20, 0—u=0 on I,
av

(1.21) u=1. %—0 on I,.
v

The (unique) solution of this problem is®)
(122) u=-———— [— (3 + 8In2)(x* + y?) + 3(x* + y*) In(x* + y?) +

+8m2. In(x*+ p*)+ (12 + 82— 16ln22)].

8y Its construction is quite similar to that of the problem (1.10), (1.11).

%) One transforms the equation (1 .19) into polar coordinates r, w; taking into account that the
solution does not depend on @ in our case, one gets an ordinary differential equation with the

general integral (cf. [3], Chap. 26)
u= Cirt+ Cyr?Inr+ Cylnr+ Cy;

then it is sufficient to apply conditions (1.20), (1.21) and to write In r = 4 In P2 = 4 1n (x2+ ).
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The equations (1.5) then formally yield

2 2
(123) oo=2% 2 ) 3y8m2) 43| -2 fin( 4
oy* 9—161In%2 x2 + y?
xz_yz
+y)+1|+8In2. =——— L,
) ] (x2+y2)2
0%u 2 2x?
6,= — = — " J—3+8In2)+ 3| " +In(x*+y)+1]|+
boox? 9—161n22{( ) I:x2+y2 ( )
2 2
+8m2. L~ U
(x2+y2)2
o Pu 4y [ 3 8In2
i ax dy 9-16In22 x> + 3> (x> +y?)? ]

We have received a paradoxical result: The function u “produces” (at least
formally) an evidently nonzero stress-tensor (o, 6,, 7,,) in G, while in accordance
with the footnote 3, p. 353 and according to (1.20), (1.21) the loading on the boundary
is equal to zero.'?)

This “perpetuum mobile” cannot correspond to the reality, of course. In fact,
the functions (1.23) satisfy the conditions of static equilibrium (1.1) and the equation
of compatibility (1.2); however, as will be shown in the next chapter, no single-valued
displacement corresponds to these functions. To be able to understand well the whole
problem (and also to avoid the concept of a multi-valued real function), let us remind
at the beginning of the next chapter the connection between the ‘“real” and the
“‘complex’ theory of plane elasticity. This will make it easier to formulate the problem
for multiply connected regions in a proper real form and then to give the basic
results concerning its solution.

CHAPTER 2. FORMULATION OF THE PROBLEM FOR MULTIPLY
CONNECTED REGIONS. EXISTENCE THEOREM

In Chap. 1, we have discussed the relation between the first problem of plane
elasticity and the first biharmonic problem. In the first part of the present chapter,
we give a short survey concerning the connection between the components o, 0, 7.,
of the stress-tensor, the corresponding biharmonic function and the so-called complex

10) Let us note that the first conditions in (1.20), (1.21) imply du/@s = 0 on I" which together
with the remaining conditions gives du/dx = 0, du/dy = 0 on I"and according to the footnote 3,
p. 353 we have X(s) = 0, Y(s) = 0.

The result can be obtained, of course, also by direct computation, if we evaluate o, a, and
T,y on I, I'y and use (1.3).

358



stress-functions.') Then we give a formulation of the problem in the real form and
present the basic existence theorem.

a) Simply connected regionsz)

In Lemma 1.1, p. 352, the existence of the so-called Airy function corresponding
to the stress-tensor with components ¢, ¢,, 7, was shown for a simply connected
region G. The functions ¢,, 0,, 7,, being sufficiently smooth in G and fulfilling the
equations of static equilibrium

ao-{_l_é}’i!’:(), %4__8?_":()

(2.1) e
0x oy 0x ay
and the equation of compatibility

(2.2) Ao, + 0,) =0,

there exists a biharmonic function u(x, y), uniquely determined by the functions
0., 0y, T,, Up to an expression of the form

(2.3) ax + by + ¢

(a, b, ¢ arbitrary real constants), and satisfying in G the relations

D

2u %u

.0, =—), T
X y ) xy
2 ox?

%u

2.4 e
(24) Ox dy

Q
Il
|

(o3

Conversely, if u(x, y) is an arbitrary biharmonic function in G, then the functions
(2.4) satisfy equations (2.1) and (2.2).

Using this lemma and relations (1.7)—(1.9), p. 353 we have shown in Chapter 1
how to transform the first problem of plane elasticity into a biharmonic problem.

Now, we give another lemma which enables us to express the components of the
stress-tensor o, 0,, 7,, in terms of some holomorphic functions of the complex
variable z = x + iy and which yields a very simple expression for the vector
(dy(x, ¥), dy(x, y)) of displacement corresponding to this stress-tensor:

1) The reader is referred especially to the book [4], Chap. 2, Sections 2.1—2.10, where he can
find the results given below — possibly in a slightly different form. Especially, we use a rather
different notation here. For example, we write o,, Oy Tay instead of X, Y, X, for the components
of the stress-tensor, dy, d, instead of «, v for the components of the vector of displacement, etc.

2) According to Convention 1.1, bounded regions with Lipschitzian boundaries are always
considered throughout this paper.
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Lemma 2.1. ([4], Sec. 2.4). In a simply connected region G, every biharmonic
Sunction u(x, y) can be expressed in the form

(2.5) u(x, y) = Re (Z o(2) + x(2)).%)

where ¢(z), 7(z) are holomorphic functions in G. By the function u(x, y), the func-
tions (p(z) and }((z) are determined uniquely up to an expression of the form

(2.6) iCiz + C, +iC; or —(C, —iC3)z +iCy,

respectively, where C,, ..., C4 are real constants.

On the other hand, if <p(z) and X(z) are arbitrary functions holomorphic in G, then
the function u(x, y) given by (2.5) is biharmonic in G.

Remark 2.1. It follows from Lemmas 1.1 and 2.1 that to every sufficiently smooth
functions o, 0, t,, which fulfil (2.1) and (2.2) there correspond holomorphic func-
tions ¢(z), x(z) in G so that we have (2.5) and (2.4). An easy computation (cf. [4],
Sec. 2.8) yields the following relations between these functions and the original
functions a,, g, 7,,:

(2.7) o, +0,=4Re(p),
(2.8) o, — 0, + 2it,, = 2Zo" + 1) .

For the components d,(x, y), d,(x, y) of the vector of displacement corresponding
to the stress-tensor (a,, 0,, 7,,) according to the Hooke law one gets the expression
([4], Sec. 2.6 and 2.8; u and x are positive constants depending on the material
considered)

. 1 o
(2.9) dy +idy = —(xp — z¢" — 7')
2u

which will be of particular significance in the following text.*)

The functions ¢(z), x(z) (connected with the functions o, 6,, 7,, by the relations
(2.7), (2.8)) are called the stress-functions (corresponding to the functions o, g,
Tyy):

3) By the symbols Re (f(z2)), Im (f(z)) we denote respectively the real and imaginary parts of
the function f(z). Byffar)?we denote the complex conjugate to f(z). In Particular we have Re (z) =
=x,Im() =y z= x— iy

4) To get this simple expression for the displacement was one of the reasons why we introduced
the.complex stress functions ¢(z) and x(z). Note that it is possible to avoid this ““complex theory”
here, but in the case of multiply connected regions this means to meet difficulties — although
of formal character — consisting in the necessity of working with multi-valued real functions.

3) In the following text, it will be often useful to consider the pair of functions ¢(z), w(z) =
= x'(z) instead of the pair of functions ¢(z), x(z). Also these functions ¢(z), w(z) will be called
the stress-functions.
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Remark 2.2. It follows from (2.3) and (2.6) that to the functions o, g, 7, there
exist a set of the corresponding Airy functions and a set of the corresponding stress-
functions. Nevertheless, in every case (i.e. when chosing the constants a, b, ¢ or
Cy, ..., C, arbitrarily) (2.4) or (2.7), (2.8) yield precisely the original functions o,
Gy, Ty, As to the components dy, d, of the vector of displacement, they may differ
by certain linear functions, the physical meaning of which is a “small displacement”
or a “small rotation” of G as of a rigid body. For details see [44], Sec. 2.6.

b) Multiply connected regions

Let us consider a (k + 1) — tuply connected region G with the boundary
I'r=ryurl,u...uly

as discussed in Chap. 1, p. 356.°) Let o, 0, 7,, be sufficiently smooth functions
fulfilling (2.1) and (2.2). In this case it is again possible to construct a biharmonic
function u(x, y) such that in G the relations (2.4) hold. But in contrast to the case of
a simply connected region, this function need not be a single-valued function. We are
not going to introduce here the concept of a multi-valued function and of its
derivatives. Instead we give directly a lemma concerning the form of the correspond-
ing complex stress-functions.”) These functions will also appear to be multi-valued,
but this multi-validity is of a very simple — namely of logarithmic — character:

Lemma 2.2. ([4], Sec. 2.10). Let G be a bounded (k + 1) — tuply connected
region with inner boundary curves I'y, ..., Let z; = x; +1iy; (i=1,..., k)
be arbitrary (but fixed) points lying inside I'; (and, consequently, outside G; cf.
Fig. 1). Let o,,0,,1,, be continuously differentiable functions in G ®) fulfilling
(2.1) and (2.2). Then the stress-functions ¢(z), y(z) (cf. the footnote 5, p. 360) con-
nected with the functions oy, 0,, 7,, by the relations (2.7), (2.8) exist and can be
written in the form

(2.10) o(z) = ziiA,- In(z — z;) +é:lB,< In(z — z;) + @o(z) .
(2.11) Y(z) = 1(z) = i(,- In(z = z;) + Yo(2).

i=1

6) I'y, ..., I are inner boundary curves, oriented as shown in Fig. 1, p. 356.

7) We could have chosen this way also in the case of simply connected regions, of course. But
there was no need to do it there.

8) In [4], the proof is carried out under supplementary assumptions on the smoothness of the
boundary I” and of the functions a,, 0Oy, Tyy UP tO the boundary. Then it is shown that these as-
sumptions are superfluous. The sketch of the proof (from which this fact is also clear) is given in
Chap. 5,
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where A; are real constants, B;, C; are complex constants and ¢o(z), Y(z) are
holomorphic functions in G.

Moreover, the constants A; are independent of the choice of the points z; inside
of I';. So are the constants B; and C; in the case that all the A; are zeros.

Remark 2.3. The functions o,, 0, 7,, being given and the points z; being chosen
fixed, the functions (2.10), (2.11) are uniquely determined up to some linear functions
of z (cf. (2.6)). In particular, the coefficients A4;, B;, C; are uniquely determined.

Remark 2.4. On the other hand, the functions (2.10), (2.11) being given, the
functions o, 0,, 7,, computed by (2.7), (2.8) fulfil equations (2.1), (2.2). These
functions can be obtained also in such a way that we construct the function (2.5)
biharmonic in G, and then use (2.4). However, the function (2.5) need not be single-
valued, and, as said above, the concept of a multi-valued real function and its
derivatives will not be introduced here. Thus we shall speak of the function (2.5)
(and of relations (2.4)) only if it is a single-valued function.

Note that the function (2.5) may be single-valued even when the stress-functions
@(z), 7(z) are multi-valued: For example, if we take in Ex. 1.1 (p. 357)

i
e 6 l z—(3 + 81 2 s
o(5) = g e p L7 7~ ( "2z

xz) = PN [16In2.Inz + (12 + 81n2— 161n*2)],
we get by (2.5) precisely the function (1.22), and this is a single-valued function. (The
reader may easily check also the validity of (2.7), (2.8) with o, 7, 7,, given by (1.23).)
Let us show that the corresponding displacement (2.9) is not a single-valued
function in this case. To this purpuse it is sufficient to examine only the functions
@#(z) = zln z, §(z) = 0, because the function (3 + 81n2) z as well as the function
%'(z) appearing in (2.9) are single-valued functions. But we have (writing In z in the
usual form In r + iw)

%G — zp — F =z|:(x1nr~— Inr— 1)+i(% + l)w],

and this function is not single-valued in G because of the multi-validity of the func-
tion w.

Thus in the case of multiply connected regions it may happen that a single-valued
biharmonic function u(x, y) “produces” (by virtue of (2.4)) the functions o, 0, 7,
which fulfil the equations of static equilibrium and of compatibility, while the cor-
responding components of the vector of displacement are not singlz-valued functions.
Such a biharmonic function thus cannot describe a real stress-and-strain state in G.
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Definition 2.1. A (single-valued) biharmonic function to which there correspond
single-valued components of the vector of displacement in the just discussed sense is
called an Airy function.®) In the opposite case we call it a singular biharmonic
Sfunction.

An example of an Airy function is every function biharmonic in a simply connected
region G. An example of a singular biharmonic function is the function (1.22) from
Ex. 1.1.

In Chap. 1 we have shown how to transform the first problem of plane elasticity
in a simply connected region into a biharmonic problem

(2.12) ANu=0 in G,

(2.13) u = gols), g—'f =g,s) on TI.
v

Here the functions go(a), g,(s) are constructed from the given loading on the bounda-
ry by (1.7)—(1.9) (using if necessary the correspoding Stieltjes integrals, etc.). As-
suming (go, g) € Ws"(I') x Ly(I'), we have shown the existence (and uniqueness)
of the so-called very weak solution u(x, y) (or of a weak solution, as a special case)
of the problem (2.12), (2.13). The function u(x, y) is biharmonic in G in the classical
sense, the functions o, 0,, 7,, given by (2.4) fulfil equations (2.1), (2.2) of static
equilibrium and of compatibility and the corresponding displacement (2.9) is
a single-valued function, because ¢(z) and y(z) are holomorphic in G. Thus the
functions o, 6, 7, characterize actually a state of stress in G. The boundary con-
ditions are fulfilled in a generalized sense.

In the case of a multiply connected region, we have proceeded similarly. We have
shown the existence and uniqueness of a very weak (or weak ) solution u(x, y) of the
problem

(2.14) ANu=0 in G,

(2.15) u=gpols), — =gu(s) on Iy, i=01..k,

provided (g, g:1) € Ws'(I';) X Ly(I';). The functions g;o, 9;; have been constructed
similarly as the functions go, g; by (1.7)—(1.9). The functions o, o,, 7, given by

) Thus this function describes a real stress-and-strain state in G.

Note that the concept of the Airy function does not depend on the choice of the points z;
appearing in Lemma 2.2, in spite of the fact that in general the coefficients B;, C; of the logarithmic
terms in (2.10, (2.11) depend on this choice. In fact, if at least one on the coefficients 4; (i =
=1, ..., k) is different from zero, the function (2.9) cannot be single-valued. This fact follows from
an easy computation similar to that carried out in the preceding footnote. (See also (2.43) in the
following text, which implies this fact immediately.) If all 4; (/ = 1, ..., k) are equal to zero, then
B; and C; are independent of the choice of the points z;.
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(2.4) satisfy again equations (2.1), (2.2). But in contrast to the previous case, the
corresponding displacement need not be a single-valued function, as mentioned
before (see especially Example 1.1). Then the functions o, o, 7, do not describe
areal stress-and-strain state in G and cannot be taken as components of a real stress-
tensor. At the same time, if a body is in a static and moment equilibrium, it is to be
expected that a real stress-tensor (to which a single-valued displacement corresponds)
should exist.

What is the cause of such a discrepancy?

Let us consider first the case of a simply connected region. The functions g(,(s),
gi(s) are constructed from the given loading with components X(s), Y(s) by (1.7) to
(].9): We start with the construction of the functions

(2.16) L JSY(t)dt, ii =Jsx(z) dt,

ox 0 o

putting s = 0 at a chosen point 4 e I', at which we then have du/ox = 0, du/dy =
= 0.'°) If we had chosen s = 0 at another point Be T, then the new functions —
denote them by di/dx, 0ii/dy — would be equal to zero at that point B, and each
of them would differ on I' from the original functions du/0x and du/dy by a con-
stant. It is easy to compute from (1.8), (1.9) that, if we put s = 0 at a point B, the
functions

PN on_

(2.17) i = gols), P gi(s) on I
differ from the original functions

Ou
(2.18) u = gols), == gi(s) on I

ov
by expressions of the form
(2.19) I =ax + by + ¢ and avx+bvy=afa§+b—al=ﬂ,

av dv  Ov
10y Thus

. ou du
(i) a—x(sc) = —Yc, a(sc) =X c-

Here AC is an arc on I (its end-point C having the coordinate s¢) with the same orientation as I,
and X 4 or Y 4¢ is the x- or y-component of the main vector, respectivey (i.e. of the total force.
acting on AC). While the form (1.7) is suitable for a “‘regular’ Joading, the form (i) is suitable for
a “‘general” loading (containing various singularities, e.g. single loads).
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respectively, where a, b, ¢ are real constants depending on the choice of the point B;
v,, v, are components of the unit outward normal.'") Now, let u(x, y) be a (weak or
very weak) solution of the biharmonic problem (2.14), (2.18). Then obviously the
function

a(x,y) = u(x, y) + ax + by + ¢

is a solution of the problem (2.14), (2.17). By the uniqueness of the weak or very
weak solution, it is its only solution. From (2.4) it is clear that the same stress-tensor
corresponds to both the functions u(x, y) and #(x, y).

Thus in the case of a simply connected region the change of the “starting” point A
on I' does not cause any difficulties: The functions (2.17), (2.18) which correspond
to the same loading lead to the same stress-tensor in G.

If the region G is (k + 1) — tuply connected (k > 0), then replacing the “‘starting”

points 4; on I'; (i =0, 1, ..., k) by new points B; we get new functions
o ol.

(2'20) =g+ 1, Jfzgil +— on T
av av

“) Conversely, the same loading of I" corresponds to the functions (2.18) and (2.17) with
(if) do=4go+ax +by+c, g;=g;+av,+ by,
where a, b, ¢ are arbitrary (real) constants. In fact, using the well-known formulae

0_14 ou ou ou ou ou

=——V it =V, —=_—V.+ v,
O0x Js ov dy Os v
we get

ou dg, ou dg,

= TV gV, = = Vet gy

0x ds 7 ' dy ds b
%=?E+a(v§+vf)=?ﬁ+a, %=—6—li+b(v§+v§)=a—q+b.
ox Ox Ox oy 0y dy

Consequently, for an arc PQ on I” with the same orientation as I" we have
o o ou ou
20 -2 = (@ - (P and
Ox 0x ox 0x

ou ou du du
a—};(Q) - 5(1’) = @(Q) - 5;(P)

so that (see the preceding footnote) the main vectors acting on PQ are the same. The arc PQ
being arbitrary, the same loading of I" corresponds to the functions (2.17), (2.18) fulfilling (ii).
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instead of the original functions

(2.21) U =gy, ou _ gy on I;
ov
here
(2.22) LL=ax+by+c, i=01,..k,

where a;, b;, c; are constants depending on the choice of the points B; on I';. However,
in this case the function #(x, y) which is the solution of (2.14), (2.20) need not differ
from the solution u(x, y) of (2.14), (2.21) only by a linear function all over G,
because in general the constants a;, b;, ¢; are not the same on every I';. The difference
of such two solutions may be a singular biharmonic function of the character shown
in Ex. 1.1, thus producing a “false” stress-tensor (with a non single-valued dis-
placement).

From the heuristic point of view it is to be expected that if we replace on I'; (i =
= 1, ..., k) the functions (2.21) by properly chosen functions

(223) g tax+by+c, gi +(—j~(a,-x+b,-y+c,-), i=1,...,k
v

(which thus correspond to the same loading) then the (weak or very weak) solution
of the problem

(2.24) A*u=0 in G,
du
(2.25) U =4goo, ——=4go1r Oon Iy,
ov
(2.26) u=g;+ax+by+c,
ou

—=g,~1+~a-(aix+b,~y+ci) on Fis I.=1,....,k,
av ov

will be an Airy function.

Definition 2.2. An Airy function U(x, y) which is the solution of (2.24)—(2.26) is
called the Airy function corresponding to the given loading (characterized by the
functions g;9, g1, i = 0,1, ..., k).

In more detail, we shall speak of the weak or very weak Airy function correspond-
ing to the given loading, according to whether the function U(x, y) is a weak or
very weak solution of (2.24)—(2.26), respectively.

Now, we are prepared to give
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Formulation of the problem: To find an Airy function corresponding to the
given loading.

In more detail: The functions g;o, g1 (i =0,1,..., k) being given, find such
constants a;, by, ¢; (i = 1,..., k) that the solution of (2.24)—(2.26) be an Airy
function (and find this function, of course).

Remark 2.5. Some heuristic considerations lie in the background of the formula-
tion of our problem. However we show that this formulation is “reasonable” also
from the purely mathematical point of view. Namely, we show that:

(i) If the functions g;o, g;1 belong to the space Wi(I';) x Ly(I';), i =0, 1,..., k,
there exists precisely one Airy function corresponding to the given loading. In
particular, if goo = 0, go; = 0 and g;, g;; are respectively of the form

0
A;x + By + C; or é—(Aix+Biy+Ci) on I':, i=1,..,k
v .

(A;, B;, C; constants), then U(x, y) = 0. '2)

(ii) If we replace the functions go0, 9o also on I'y by some functions
0
doo + aoX + boy + ¢, goy + 5 (aox + by + co),
v

then the new Airy function U(x, y) corresponding to the given loading will differ
from the original one precisely by the linear function aox + byy + ¢, all over G.

To start with, we introduce the so-called elementary singular biharmonic func-
tions:'?)

Let i be a fixed integer, 1 < i < k. Let r;(x, y), ria(x, ¥), ris(x, ) be the weak
solutions of the problems

(2.27) Au =0 in G,
(2.28) u=1, —a—u=0 on T,
ov
(2.29) u=20, Z—u=0 on I, j#i“’)
v

12) Thus the only Airy function corresponding to the given loading in Ex. 1.1 is the zero
function.

13y Note that these functions are of auxiliary character, though they play an essential role in
the theoretical considerations. As will be seen in the next chapter, they are completely eliminated
from the numerical process when constructing effectively the required Airy function.

14) Including Iy, ie.j=0,1,...,i—1,i+ 1,..., k.
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(2.30) Au=0 in G,
ou Ox
5 =x, __=-—=1Y on F,
(2.31) ! & o
(2.32) u=20, g‘i=0 on I';, j#*i
V
or
(2.33) Ay =0 in G,
du Oy
2.34 u=y, —=--—=v, on I
( ) Y ov y g
(2.35) u=20, gﬁ=0 on I'y, j=#i,
v

respectively.

Remark 2.6. If we denote

(236) Ll y) =1, ls(xy)

x, ln(x, )=y, i=1,..,k,

then the functions r;(x, y), rip(x, ), ris(x, y) assume on I'; the values of the
functions I;;(x, ), l;2(x, y), lis(x, y), and their derivatives with respect to the out-
ward normal assume on I'; the values of the outward normal derivatives of these
functions. Let u(x, y) be the (weak or very weak) solution of (2.14), (2.15). Then the
function

(2.37) U(x, y) = u(x, y) —é} é‘;xij rix, ),

where «;; are arbitrary (real) constants, is a solution of the biharmonic equation with
boundary conditions of the form (2.25), (2.26). Consequently, if we succeed in finding
the coefficients a;; in such a way that U(x, y) is an Airy function, then this function
will be an Airy function, corresponding to the given loading, and thus it will be the
required solution.

Remark 2.7. Note that the weak solution of each of the above three problems
exists (uniquely, of course). Actually, each of the functions (2.36) is very smooth
in G so that it is sufficient to multiply it by a function also sufficiently smooth in G
and equal to one in a neighbourhood of I'; and to zero in the neighbourhoods of the
remaining boundary curves, to get a function from the space W{*(G) which satisfies
the given boundary conditions (and thus ensures the existence of the weak solution).
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Lemma 2.3. Each of the functions r;j(x, y) (i = 1, ..., k,j = 1,2, 3) is a singular
biharmonic function (thus producing a multi-valued displacement).

This lemma is a special case of the following one:

Lemma 2.4. An arbitrary linear combination
ko3
(2.38) 2 2 aiyri(x,y)
i=1 j=1
of the functions r;{(x, y) is a singular biharmonic function provided that at least
one of the coefficients a;; is different from zero.

The proof of this lemma is not trivial and is postponed to Chap. 5. ')
Definition 2.3. The functions r;;(x, y) will be called basic singular biharmonic
functions.

As said above, these functions will be used to obtain the desired Airy function
corresponding to the given loading.

Thus, let the problem (2.14), (2.15), i.e. the problem

(2.39) A’y =0 in G,

0
(2.40) U =g, Ezz-g“ on I';, i=01..,k
v

with (g0, 911) € W(I')) x Ly(T';) be given and let u(x, y) be its very weak solu-
tion.'®) Since this function is biharmonic in G, the functions

(2.41) O, =—, O, =—1, Tg,z,=— ——

are sufficiently smooth in G and fulfil the relations (2.1), (2.2). According to Lemma
2.2 it is possible to construct the corresponding stress-functions of the form (2.10),

15y If the boundary I is sufficiently smooth, then the functions rij(x, ») can be shown to be
sufficiently smooth in ¢, and the proof is relatively simple — it is possible to apply the idea of
the proof of the classical Kirchhofl theorem 2.12.1 from [4]. If I" is only Lipschitzian, this is
not the case because then it is not possible to ensure the necessary smoothness of the functions
appearing in the proof up to the boundary, so that we have to proceed in another way.

16) The functions g;9,g;; belonging to the space W3'(I) X Ly(I') for i=0,1,...,k,
the existence (and uniqueness) of the very weak solution is ensured. This very weak solution may
turn into a weak one (if there exists such a function w € WZ(Z)(G) that we have w = g;, Ow/[0v =
= g;; on I'; in the sense of trances). We are not going to draw always attention to this fact, and
we shall speak mostly of the very weak solution only, tacitly admitting the possibility that it may
be a weak solution. Only when the concept of the weak solution plays an important role in our
considerations, we shall point out this fact.
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(2-11) so that the relations (2.7), (2.8), (2.9) hold. In particular, according to Remark
2.3, keeping the points z; fixed, the coefficients A4;, B;, C; (i = 1, ..., k) in (2.10),
(2.11) are uniquely determined by the functions (2.41), and thus also by the functions
(2.40).

Let G’ be a (k + 1)-tuply connected region lying inside G (G’ = G), with a smooth
boundary I =T uTju...uT; (Fig. 2), and let z;, i = 1,2, ...,k be points
contained in the interior of the curves I'; as well as in the interior of I';. Choose one
of the curves I'y, ..., I';, say I'p, and on this curve choose an arbitrary point z.
Putting (2.10), (2.11) into (2.9), it is possible to compute the “complex™ displacement

(2.42) dy + id,

Fig. 2.

at this point, Now, let us run along this curve in the positive sense of its orientation
and return back to the same point z. All the terms in (2.10), (2.11) remain unchanged,
with the exception of the terms containg In (z — z,). From (2.9) we get by an easy
computation that, when running along the curve I',, the complex displacement (2.42)
will change by the value

(2.43) - Tl—zi[(% + 1) A,z + xB, + C,].
We write it in a simpler form

T, .
(244) - ;1('}’?12 + '}’pz + l'yp3) N
putting
(245) (x+1)A, =7, Re(xB, + C,)=17,,, Im(xB, + C,) = 7,3

(Thus the numbers 7p1» ¥p2» ¥p3 are real.)

370



It follows from (2.44) that the vector of displacement corresponding to the functions
(2.41), i.e. to the solution u(x, y) of the problem (2.39), (2.40), will be a single-valued
function in G if and only if

(2.46) Vo1 =0, ¥, =0, 9,5 =0 forevery p=1,... k.

Precisely in this case the solution u(x, y) of (2.39), (2.40) will be an Airy function.

In general, this is not the case. This means that the function u(x, y) will “‘produce™
3k (real) numbers

(2-47) Vit Vizs> Yiz»

at least one of them being different from zero. A question arises whether it is possible
to find such numbers o;; that the function (2.37), i.e. the function

k

(2.48) U(x, y) = u(x, y) = 3. ilau rii(%: ¥)

=1 =
be an Airy function. _

Similarly as the function u(x, y) produces the numbers (2.47), each of the functions
ri(x,») (i =1, ..., k, j = 1,2, 3), being biharmonic in G, produces 3k numbers —
let us denote them by B;;,, (p=1,...,k g = 1,2, 3). As said above, we try to find
such a linear combination

k 3

(2.49) o(x, y) = -21 Zla,-j rif(x, )
i=1j=

of the functions r,»,-(x, y) that the function

(2.50) U(x, y) = ulx, y) = v(x, y)

be an Airy function, i.e. (see (2.46)) that all the 3k numbers corresponding to it be
equal to zero. This condition leads to the system of 3k equations

k3
(2.5]) Z Zaijﬂ[qu ='qu, p = 1,..‘,k, q = 1, 2,3
i=1 j=1
for 3k unknowns o;;, i = 1,..., k, j = 1,2, 3.
Lemma 2.5. The determinant D of the system (2.51) is different from zero;
consequently, this system is uniquely solvable.

The proofis easy: If we had D = 0, then the corresponding homogeneous system
would have also a nonzero solution; but then the function u(x, y) and according to
(2.50) also the function v(x, y) would be Airy functions, while at the same time at
least one of the a;; would be different from zero. This is contradiction to Lemma2.4.
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Remark 2.8. (Uniqueness.) In this way, the a; (i=1,...k j=123)
satisfying (2.51) are found and thus (cf. Remark 2.6) the existence of a very weak
Airy function of the form

(2.52) U(x, y) = u(x, y) “él j:ila” rijf(% ¥)

corresponding to the given loading, i.e. of an Airy function which solves the problem
(2.24)—(2.26) is proved. Before formulating the corresponding existence theorem,
let us clarify the question of uniqueness. In fact, it is not a priori clear whether the
function (2.52) with «;; computed from (2.51) is the only Airy function corresponding
to the given loading, because

(i) the numbers B;, C; in (2.10), (2.11) depend on the choice of the points z;
(i = 1, ..., k). Thus also the right-hand sides y,, in (2.51) may depend on the choice
of these points, as well as the numbers f;;,, in (2.51). Consequently, also the numbers
o;; may depend on the choice of the points z;;

(i) it is not a priori evident that there exist no other very weak Airy functions
corresponding to the given loading, with other a;, b;, ¢; in (2.26) than are those
corresponding to the function (2.52).

We shall show that (2.52) with o;; computed from (2.51) is the only Airy function
corresponding to the given loading (independently of the choice of the points z; in
(2.10), (2.11)).

Thus let U(x, y) be another Airy function satisfying (in the very weak sense)
(2.24)—(2.26), possibly with other constants d,, b;, &; in (2.26). Denoting U(x, y) —
—U(x,y) = U(x,y) and d; — a; = a;, b; — b; = b;, & — ¢; = ¢, the function
U(x, ) is the solution of the problem

(2.53) Au=0 in G,
(2.54) u=0, M _0 on Iy,
ov
(255) u=ax+ by + ¢, ?zf(ﬁﬁ%—ﬁy—i—@J on Iy, i=1,...k.
v v

In virtue of the definition of the functions r;(x, y) (see (2.27)—(2.35)), the solution
of the problem (2.53)—(2.55) can be written in the form

k k k
(2.56) Zlc_z,- rio(x, y) + ZlEi ris(x,y) + Y Erulx, ).
i= i= i=1

Due to the uniqueness of the very weak solution of this problem, we have

k k k
(2.57) U(x, y) =.216—’i ria(X, ¥) + 3 biris(x, y) + Y cirulx, y).
i= i=1 i

i=1
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The function (2.57), being the difference of two Airy functions, is also an Airy
function. According to Lemma 2.4, this is possible only if all the coefficients a;, b;, ¢;
are equal to zero, so that U(x, y) = 0.

Thus we have

Theorem 2.1. Let G be a bounded (k + 1) — tuply connected region with a Lip-
schitzian boundary. Let

(2.58) G e WS, guely(ry), i=0,1,...k.

Then there exists precisely one very weak Airy function U(x, y) corresponding to
the given loading, i.e. solving the problem (2.24)—(2.26). This function can be
written in the form

k 3
(259) UG 2) = ue) = X Yyl ),

= =
where u(x, y) is the very weak solution of the problem (2.39), (2.40), r,{(x, y), i =
=1,...,k j=1,2,3 are the basic singular biharmonic functions defined as
solutions of the problems (2.27)—(2.35) and o;;, | = 1,..., k,j = 1,2, 3 are uniquely
determined from the system (2.51) (independently of the choice of the points z;
(i=1,..., k) in (2.10), (2.11)).

Remark 2.9. If we replace the original ““starting points” A;on I'; (i = 0, 1, ..., k)
by new starting points B;, then, as mentioned above, the functions

(2.60) Gio» g on T

turn into functions of the form

0
(2.61)  Gip =gio + ax + by +¢;5 Fu =g + E(Gix + by +c).
v

Let first B, = A, so that the starting point on I'y remains the same and thus a, =
= by = ¢y = 0. According to the result just obtained, there exists precisely one
(very weak) Airy function corresponding to the loading (2.61) with a, = by = ¢, =
= 0. It follows immediately that this function will be equal precisely to the Airy
function (2.59) from Theorem 2.1. In fact, the difference of these two functions
should be an Airy function fulfilling conditions of the form (2.54)—(2.55), and such
a function is identically zero as shown in Remark 2.8.
If we change the starting point also on I'; so that

_ _ 0
Joo = Joo + aoX + by 4+ ¢, Jo1 = go1 + E(aox + boy + ¢o)
v
then we can look for the Airy function corresponding to the loading (2.61) in the
form

Uo(x, J’) = apx + by + ¢ + U(x, )’)
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and transform this problem in this way into the previous one. The function U(x, y)
will then differ from the function from Theorem 2.1 by the expression agx + boy +
+ ¢, all over G.

Thus we can summarize:

If the points A; (i = 1,..., k) with s = 0 on I'; are replaced by new points B;,
then the Airy function corresponding to the given loading remains unchanged.
If also Ay is replaced by By, then the Airy function differs from the original one
by an expression of the form agx + by + ¢o all over G.

CHAPTER 3. THE METHOD OF LEAST SQUARES ON THE BOUNDARY

For the case of a simply connected region,') the method of least squares on the
boundary is described in detail in [1]: Consider the first biharmonic problem

(3.1) A’u=0 in G,
(3.2) u=go, M=y, onr
ov

with (go, g1) € Ws(I') x Ly(T'). Let the system of basic biharmonic polynomials
be given. (For details see [1]; we have

(x,y) =1,
(x, ) =x, z(x, ) =y,
za(x, p) = x* = y*, zs(x,p) = 2xy, ze(x, p) = —»7,

z5(x, y) = x> = 3xp%, zg(x, ) = 3x%y — »*,
zo(x, ¥) = =3xp%, zio(x, ) = )7,

etc.; for every fixed n = 2 there are precisely 4n — 2 polynomials of degrees gn.)
The approximate solution of (3.1), (3.2) is assumed in the form

4n—2

(3'3) un(x’ y) = izl Api Zi(x, Y) , hz2 ,2)

1) Bounded regions with Lipschitzian boundaries are always considered.

2) The assumption n = 2 is introduced for formal reasons only: For example, there are three
polynomials of degree =1, namely z,(x, »), z,(x, ), z3(x, ), while putting n = 1 into (3.3) we
obtain only two terms. Of course, in principle it is possible to consider linear terms only. But it
is of no particular use, because these terms yield only the zero stress in G, cf. (1.5), p. 353.
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where the coefficients a,; are determined from the condition of least squares on the
boundary, i.e. from the condition that

2 2
(3.4) Fu, = | (u, — go)*ds + uy _ 490 ds + Oy _ g ) ds = min.
r r\0s ds r \0v

among all the expressions of the form

‘ 2 2
(3.5)  Fu,= | (v, — 90)*ds + %oy _ 490 ds + %o _ g, ) ds,
r r\ 0s ds r \ov

where

4n—2

(3.6) U,.(X, y) = igl b; Zi(x’ J’)

and v is the outward normal to the boundary. (Thus the functional (3.5) has to assume
its minimal value on the set of functions (3.6) precisely for the function (3.3)). The
condition (3.4) leads to a system of linear algebraic equations for the unknowns a,;.
In [1], the unique solvability of this system is proved as well as the convergence,
in L,(G), of the sequence {u,(x, y)} to the very weak solution u(x, y) of (3.1), (3.2).

In the case of a multiply connected region, the situation is more complicated. The
first difficulty lies in the fact that the very weak®) solution u(x, y) of (3.1), (3.2)*)
need not be the required Airy function U(x, y); according to Theorem 2.1 we know
that we have

(3.7) U(x, ) = u(x, ) —ii j_i‘xu rif(x ),

where r;,(x, y) are the basic singular biharmonic functions introduced on p. 367
and o;; are constants uniquely determined by the function u.?)

The second difficulty is the following: In [1], i.e. for a simply connected region,
we were able to prove by means of the well-known relation

(3.8) u(x, y) = Re (Zg + )

that every biharmonic function in G sufficiently smooth in G, can be approximated
in W$(G) with an arbitrary accuracy by biharmonic polynomials. This is not the
case if G is multiply connected. The reason is that the corresponding holomorphic
functions cannot be approximated only by polynomials, but that also rational

3) Cf. the footnote 16, p. 369.
#) We write here briefly go or g4 on I'instead of go;, or g ; on I';, i = 0, 1, ..., k, respectively.

5) The functions rij(x, y) need not be very simple in general, as functions considered in G;
but our method uses only their values on the boundary in the computation, and these values
are eminently simple — cf. the definition of these functions.
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functions in z are to be taken into account; moreover, the proof of Lemma 4.6 on
density (in Part IT of the present paper) shows that some simple logarithmic functions
should be considered. For these reasons, we assume the approximate solution in
the form

k 3
(39) ol 3) = Ul ) + 5 3 iy 75, ).
i=1j=
where
4s—2
(3.10) Us(x, ) = Z agp Z,(x, ) + Z Zbuzq vy(x. ¥) +
i=1qg=1

+,Z'1cm]n [(x = x> + (v — »)*].9)

Here s, t are positive integers, s = 2, z,(x, y) are basic biharmonic polynomials,
(s y,-) are arbitrarily chosen but fixed points lying in the interior of I';, i =1, ...,
k (thus outside G)7) and v,,(x, y) are rational biharmonic functions corresponding
(<f. (3.8)), to the above mentioned rational functions in z:

viare1(x, ¥) = Re [E;’izf!iﬁf]’ Viar+2(X, ) = Im [( )1+1]

G11) viaa(xy) = Re[( ~)H—l] v arsalx, y)—Im[ ),“]

i=1,..,k, 1=0,1,2,..., z;=x; +iy;.

For example, if G is an annulus with its centre at the origin, then we have k = 1
and we can choose z; = 0. The functions (3.11) then become

2 2

x“ -y 2xy X y

Uyp = 55> Uia = — 5o Vi3 = o, Vi = T o

x° + X° + xX° + x? +

y
— 3xy? P = 3x%y _oxP =yt _ 2xy
Uis = 20 6= oy o VT oy oy Vs s T o
(x +y) (x* + »?) (x* + »?) (x +y)

etc. There is only one logarithmic function in this case, In (x*> + »?).

The second term in (3.9) corresponds to the second term in (3.7) and represents
the ““singular part” of the approximation, while the first term in (3.9) represents its
“Airy part”.

%) In general, ¢ is different for different i (i = 1, ..., k). From the mathematical point of view
this presents no difficulties. (See the proof of the convergence theorem in the next chapter.)

7) x; and y; are the real and the imaginary parts of the points z; considered in the preceding
chapter.
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Thus, let the problem (3.1), (3.2) be given for a (k + 1)-tupply connected region G,
where g = gpand g, =g,y onl;,i=0,1,...,k,

(3.12) g€ WiD(Ty), gi €Ly(T))

(cf. the footnote 4 on p. 375). As said before, we are going to look for an approximate
solution uy(x, y) in the form (3.9), where the coefficients oij» dsip» Dyrigs Cori are to
be determined from the condition of least squares on the boundary, analogous to the
condition (3.4):

2
(3.13) Fug, = J (ug — go)* ds + f <‘2‘f§5 - d_g_0> ds +
r r

Js ds

a 2
+ J (Ou“ — g1> ds = min. %)
r\ ov

among all expressions of the form

~ 2 a“' 2
(3.14) Fiiy, = | (i, — go)?ds + Jitsi _ dg0\" 0 ¢ Yt g.) ds,
r r\ 0Os ds r\ 0v

where

4s5—2

k 4t
(3.15) 1, = Zl gy 2,(x, y) + .Zl lei.,iq vi(x, y) +
p= i=1 4=

X Gt~ 6 + (= 0]+ % Y )

i=1j=

with dp, Dyyigs Corir %eij arbitrary.

Obviously, (3.14) is a quadratic functional on the set M of all functions of the
form (3.15). Substituting (3.15) for d,,, it becomes a quadratic function in the variables
y1py byrigr Coris Gsrijo Necessary (and obviously also sufficient) conditions for (3.13)
to be fulfilled are then

3
(316) 5;1:“ (astw bstiq9 Cstis astij) =0 ’
stl

oF

gy

(astp’ bstiq! Csti> astij) =0.
For example, we have

0

6astl

j (s — go) ds = 2 j (s = go) 71 s,
r r

8) Here the index s in ug, has nothing common with the length of arc in ds and ds, of course.
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etc. If we define, for every pair of functions u, ve M

(3.17) (u, o) = u,,dH 5_“5% u v 4
ro r 0v v

(for every such pair (3.17) has sense) and denote briefly

(3.18) (o) = [ gouds + [ 990 % g5 4 [ 4, s,
r r d r 5v

s 0§

the equations (3.16) become (after dividing them by the factor 2)

(3~19) (usts ZI)F = (g’ Z1)r s

(“sn "ka)r = (g, rks)r -9)

Substituting (3.9) with (3.10) for u,, into (3.1‘9), we get the following system of
linear algebraic equations for the unknowns dag.,, byigs Coris %srij:

4s—2

(3'20) Z (Zp’ Zm)l‘ agp + Z Z(qus m)r stig T
+ Z(ln [(x = x)* + (v = »)*] zw)r i +

3
Z( Fijs Zm)r Ostij = (95 Zm)r>, M= 1,...,4s — 2,

HM* \

4s—2

Z (Zp7 Uln)f a?!p + Z Z(vlq’ vln)r an

£ 300 = %)+ (= )] vl +
k 3

+‘ZI 'Zl(rij’ vln)l'“stij = (g’ vln)[‘s l = 17-~-;k’ n = la--'a 4t~
=1j=

9) Of course, these equations have their individual character according to functions appearing
in them. For example, z;(x, y) = 1 so that according to (3.17), (3.18), the first equation in (3.19)

Justds=fgods;
r r

further, the boundary values of the function ry3 are equal to y, 8y/8s =V, ay/av =v,on I}
and vanish elsewhere on I';, i = 0, 1, ..., k — 1. Thus the last of the equations (3.19) reads

0
f ugy ds + Ust . ds f —q—~v ds =J. goy ds + “v ds +'[ giv,ds,
I r 0s r. Ov I I«

etc.

becomes
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Ej(zp, In[(x = x,)? + (¥ = ¥0)*Dr agp +

t

(Vi In [(x — x,)2 + (v — V) Dr barig +

1

IN

-+

i

q

Y (0 [(x = x) + (v = v B In [l =) + (0 = 90 Dr o

A ”Mw “M::- iMx— tl’l
I\Mw

( i In [(X - Xl)z + (,V - ."I)ZJr Xseij =

[(x —x)2+ (=)D, =1k,

- k 4t

Z ( p’ rlh) srp + Z Zl(viqs rlh)l" bstiq +
p= i=1 g=

k

Z( [(x = xf* + (6 = ¥ L rr o +

+ 2 Z(rij’ rlh)l‘ astij = (g’ rlh)l" I = l’ [ERE] ka h = 13 2a 3.
i=1j=1

The system (3.20) represents a system of linear algebraic equations (with a sym-
metric matrix) for the unknowns dg1, - --» Oua- For example, if G is a doubly con-
nected region and if we choose s = 3, ¢ = 1, we get 18 equations for 18 unknowns

A3215 -+ 325100 D321 15 -0 D321y €3215 X32115 X32125 A3213-

Theorem 3.1. The system (3.20) is uniquely solvable.
For the proof see Chap. 5.

Theorem 3.2. For s — o0, t — 00, the functions us,(x, y) With g, bgrigs Coris Orij
determined by (3.20) converge in Ly(G) to the very weak solution u(x, y) of the
problem (3.1), (3.2).'°) At the same time, the functions Ug(x, y) converge in L,(G)
to the “Airy part” U(x, y) of u(x, y) (see (3.7)). Moreover, this convergence, and
even the convergence of the corresponding derivatives of arbitrary order, is locally
uniform on G:If G' is an arbitrary region such that G' = G’ = G, then Uy(x, y)—
-> U(x, y) uniformly on G', and the same holds for the convergence of partial
derivative of Ug(x, y) of an arbitrary order to the corresponding derivative of
U(x, y)."")

10) More precisely: To every ¢ > 0 there exist such positive integers 5o and £, that

§>589, t>1y=> “Ll - usfl!Lz(G) <e.

11) Particularly, we have

Oyt = Oy, O,y — 0 -1

xst yst y > Txysr xy
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The proof of this theorem is the subject of the next chapter.

In the conclusion of the present chapter, we give three examples showing the
application of our method. The first example is very simple and has an illustrative
character only. In the third example we show how to proceed if the convention is not
fulfilled concerning the requirement of static and moment equilibriums of the loading
on every I'; separately.

Example 3.1. Consider an annulus G with its centre at the origin and with the
inner radius r; = 1 and the outer radius r, = 2, loaded as shown in Fig. 3.

Y

Fig. 3.

As mentioned above, the example is only illustrative. With the aid of the theory
based on the use of functions of a complex variable (see ¢.g. [4]) one easily finds
that the required Airy function is of the form

U(x,y) =In(x* + y*) + ax + by + ¢,

where a, b, ¢ are arbitrary constants.

uniformly on G’, where

2*U,, o*U,, 0*U,,
Oxst = 5 Oyst = 2 0 xyst — T Sk
day 0x Ox Oy
and
o*U 02U o*U
o'x:*._z_, o'yz,_—z_, Ty = — —
dy Ox 0x dy

are the components of the stress-tensor corresponding to the given loading.
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On the inner and outer boundary curves I'y and I', we choose the parameter s of
the length of arc with s = 0 at the point B(1, 0) and A(2, 0), respectively. Thus we

have
0s<2mtonrl;, 0<s<d4monT,.

The orientation of I'y, I'y is clear from Fig. 3. For the components of the unit out-

ward normal v we have

s .S
cos—, v, =sin—on I,
2

=
Il

vV, = —coss, v,=sins on I'.

First we construct the functions g,, g; on I', in more detail the functions
9oos Jor on I'os gio, g1 On I'y,

according to (1.7)—(1.9), p. 353. On I';, we have

1 s 1 s
X(s) = —~cos—, Y(s)= -sin -
()= Seost. ¥() = s’

and according to (1.7)

Y s s
M_ Y(t)dt:cosi—l, = = X(t)dt:sini.
6x 0 2 0 2

It follows (cf. (1.8), (1.9))

| yar=[ (= %y, + % Var= [ sinfar=2(1 - cost).
Jo Os 0 O0x dy o 2 2

ou Ju ou

v ox oy

u =

Similarly, on I'; we get (we have to pay attention to its orientation)

X(s) = —2coss, Y(s)=2sins,

a~u= ~JY(t)dt=2(coss -1, gﬂ=JX(t)dt= —2sins,
y

0x 0 0
u :J‘ a—u(l)dt=J (__ _(a_uvy_l_gl_fvx)dt:J\zSintdtZ(l “'COSS)s
o0 0s o 0x dy 0
a_“=alvx+a_uvy= -2(1 —coss).
dv  Ox dy
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Thus, the problem (3.1), (3.2) reads in our case

(3.21) A’u=0in G,

(3.22) u=g00=2<1—cos%)=2-—xon1“0,
ou s X

3.23 — = =1—-cos-=1—=on1Tl,,

( ) PY 9o1 ’ 5 0

(3.29) u=g=21-coss)=2(1—x)onI'y,

(3.25) %= g1 = —2(1 —coss) = —2(1 —x) on T .

Obviously, the loading is in the static and moment equilibriums on both curves
and (g, g1) € WiP(I') x Ly(I') — the functions are actually much smoother.

Using the method of least squares on the boundary, let us choose in this illus-
trative example s = 1, t = 1, x; = y; = 0in (3.9) so that we have

x? — y? —2xy

ugg(x, ¥) = aip - 1+ dyox + agazy + bian R + bxnzT: p
x y X y

-y
+ bii1s + b“l“T_z + e In (3% 4 p?) + o e p) +
X y

x4+ y?
+ og112 Fia(X ¥) + pg13 ria(x, ¥)

Let us remind that we have

0 d a
(326) ry=1, T o0, rp=x, T2y py=y, T8 =y on 1y
Ov ov v
and
oryy Ory, Orys
327) ryy=0, —=0, r,=0, —=0, r3=0, —=0onT,.
( ) 11 Py 12 o 13 Py 0

To obtain the values of a@yyy,---» %1113, W€ use the system (3.20) (see Tab. 3‘1)
which represents 11 equations for 11 unknowns. Constructing this system, we have

for example

dz,\? 0z \2
(z0 24)r =J zi ds +f (—Zi) ds +f (—21—) ds +f zids +
I'o I'o Os Io ov r
2 2 4n 4n 4n
+f <%>ds+ (%>ds=f 1st+f 02d5+f 0% ds +
r,\ 0s r\0v o o .

2n 2n 2n
= 12ds+J 02d5+J 0%2ds = 6n
0 0 0
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|
|
i ayyy |@y12( @113 | brgae [Proaz [BProas |brraa| ciin ([ %yaann | %rn2 (%1113
| J R
(1) 61 0 0 0 0 0 0 4 in 4 2n 0 0 127
2) 0 157, O 0 0 3n 0 0 0 In 0 — 8%
A3) 0 0 | 15%n 0 0 0 —3n 0 0 0 3r 0
“4) 0 0 0 67 0 0 0 0 0 0 0 0
) 0 0 0 0 6 0 0 0 0 0 0 0
(6) 0 3n 0 0 0 67 0 0 0 —7 0 —A4r
@) 0 0 | —3z 0 0 0 67 0 0 0 T 0
47 1n? 4 87 1n 4
@8)|4nlnd4| O 0 0 0 0 0 +12z 0 0 0 +127
(©)] 2n 0 0 0 0 0 0 0 2n 0 4
(10) 0 k¥4 0 0 0 —7 0 0 0 3n 0 —6n
(1) 0 0 3n 0 0 0 T 0 0 0 3r 0
since z,(x, y) = 1 so that 9z,[ds = 0, dz,/dv = 0,
(z,,zz)r=J‘ z,z,ds + %&ds 921 %ds 4
To ro0s 0s ro 0V 0v
+jzlzzds+ %-a—z-gds+f ?ﬁﬁ_z_z___
I r, 0s Os r, Ov 0v

4n s 4n s 4n s
= 1.2cos—ds + 0. —sin—)ds+ 0.cos —ds +
o 2 o 2 o 2

2n 2n 2n

+I 1.c03sds+j 0_(fsins)ds+f 0.(—coss)ds =0,

0 0 0

because

/2cos§ on Iy,
Zz(x,Y)§x=/ 2

coss on I'y;

0z, Oryy  0zy Oryy
b = +
(20 i) fro<21r11 ds Os + dv  ov ds +

0z1 Oryy 0zy Oryy
Zyr ===y — —)ds=
+Jr,( e ds 0s o o

further

2n
=0+J (1.1 + 0.0 +0.0)ds = 2=
0

because of (3.27) and (3.26), etc.
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From Tab. 3.1 it is evident that the solution of the given system reduces to the
solution of four very simple systems. From (4) it follows by;;; = 0, from (3), (7).
(11) we get a3 =0, byiya =0, 01415 = 0; similarly we get bygp =0, ¢iqq = 1,
aypp =Ind, a5 =2~1Ind, ay, = —1, %, = —1, byyy3 =0

Thus the result is

(328)  wuy(x,¥) =In(x? + ) — x +2 = Ind + ry(x, y)Ind = rip(x, ).
Hence the required approximation Uy,(x, y) of the Airy function is
Ui(x,y) =In(x* + y*) —x +2 —In4.

In our case it represents the exact solution.

The reader can check immediately that the function (3.28) fulfils all the boundary
conditions (3.22)—(3.25) (exactly, in our case).
The components of the corresponding stress-tensor are

0*U 4 _ g(xz - %)
(?yl (x2 + yz)z ’

x

o = PV 2 =)
y x? (xz + yz)z’
4dxy

Txy = (xz + y2)2 '
If we introduce polar coordinates by

X=rcosw, y=rsinw,

we get
2 . 2
o, = —(cos® w — sin® ) == cos 2w,
2 2
r r
2
o, = —0, = — = cos 2w,

T

4 . 2 .
= S Sinwcosw = —sin2w.
7’2

’

Example 3.2. Let us investigate a rectangular wall-beam with a circular hole,
loaded as shown in Fig. 4. The parameter s of the length of arc is chosen so that on Iy
we have s = 0 at the point B(a, —b) and 0 < s < 4a + 4b, on I'; we have s = 0
at the point (r, 0) and 0 < s < 2mr. The orientation of the curves Iy, I'y is evident
from Fig. 4.

First, let us determine the functions gg, g;-
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On I';, we have (taking the orientation of this curve into account)
s . s .S
X = rcos -, = —rsin-, vy, = —cos-, Vv, =sin-.

Further,

‘)’
T Y I
l |
Dt-a,b) i Cla,b)
r, r,
P 6% X
\\
a a
E(-5,-b) F(E,—b)
Al-a,-b) Bla,-b)
P=agq P=aq
Fig. 4.

so that according to (1.7),

wu_ Y(t)dt = pr 1 —cos’).
Ox 0 r

u_ X(r)dt = pr sin®
Jdy 0 r

and by (1.8), (1.9),

(3.29) u=g,,=pr (cosE - l) = pr(x — r),
r
ou =g, = pr|l ——cosf)=p(r—x)‘
ov r
On I’y we have first X(s) = 0 so that
glf‘ = 0-
ay
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Further by (1.7),

u_ J.SY(t) dt =0

0x 0
q(s — 2b)
2qa
2qa
qa
0

Using (1.8), (1.9), we get

(3‘30) U = goo =
0

(3.31) M gor =
dv

for 0 <s <2b, ie. on BC,
for 2b <s<2b+ 2a,
for 2a +2b <s<2a+4b,
for 4b + 2a < s < 4b + 3a,
for 4b+%a§s<4b+%a,
for 4b+%a§s<4b+4a,
0 on
q 2

— =(s — 2b on
2 - )

—2qa? on

—2qa® + 2qa(s — 2a — 4b) on

— qa* + qa(s — 4b — 3a) on
0 on
0 on
0 on

—2qa on
0 on

In our numerical example, let us choose

Thus we solve the problem
(3.32)
(3.33) U = goo
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A’u=0 in G,

0 on BC,
—(2 —x)* on CD,
—16 on DA,

8x on AE,

—4 +4x on EF,
0 on FB on T,

ie. on CD,
i.e. on DA,
i.e. on AE,
i.e. on EF,
i.e. on FB.

BC,

CD,

DA,
AE
EF,
FB,

BC,
CD,

DA,
AB.



ou

(3.34) 5y~ Jor = 0 on BC,

= 0 on CD,

= -8 on DA,

= 0 on AB on Iy,
(3.35) U=g=x—1, on Iy,
(3.36) ?ﬂ=g”=l-—x, on Iy.

Evidently, the loading on both the curves I'y and I’ is in the static and moment
equilibriums and (go, g1) € WY'(T') x Ly(I).

To solve approximately this problem by the method of least squares on the bound-
ary, putin (3.9) s = 3,t = 1. Choosing x = y; = 0, we get

(3-37) uy(x,y) = aziq . 1+ aspox + a3y + azq(x* — yz) +
+ ayps.2xy + azie(—p?) + aser(x¥® = 3xy?) + a35(3x%y — y?) +

+ ‘1319(‘“3)0’2) + ‘13110(‘,"3) +

2 _ 2 —2x
X y y X
+ b3114 <5 2 + b3i12 > T b3113 TS
x> 4y x“+y x4y

+ b3114 —2*_% + C3111 ]n(x2 + y2) +
x“ +y

+ oygqrer(X ¥) + aginara(6 ) + %31 03ry3(x, ¥) -

The system (3.20) for the unknowns ast1>++> %3112 Is gjven in Tab. 3.2. We have
for example

(‘)ZS 624 02 P
= + — =2 5 02
(zs, Z4)r Jro (2524 ds Os + 8\ ——4) ds +

v oy

625624 6256
+ Zszg + —— 4 T =34 o
fr1<54 ds 0Os ov 6">d5’

2 2 2 2
252, ds ='[ 4y(4 — y*)dy +J 4x(x* — 4) dx — — v dy
L . | ) , + _2( 4y) (4 — y?)dy +

+f2 (—4x) (x> — 4 dx N0,
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Tab. 3.2

a311 a312 a313 a314 a31s 316 azy7 a318 a319
(1) | 22-2832 0 0 0 0 —45-8083 0 0 0
2) 0 68-:0914 0 0 0 0 —102-4000 0 ’ —395-7810
Q) 0 0 68-:0914 0 0 0 0 102-4000 | 0
4) 0 0 0 506-1410, 0 274:3638 0 0 0
(5)} 0 0 0 0 r 710-9410 0 0 0 0
(6) —45-8083) 0 0 2743638 0 3391892 | 0 0 0
(7| 0 —102-4000 0 0 0 0 [ 5764-8331 0 6291-1677
(8) 0 0 102-4000 0 0 0 0 5764-8331 0
) 0 | —395-7810 0 0 0 0 | 6291:1677 0 6965-0143
(10) 0 ‘ 0 —293-3810 0 0 0 l 0 391-3384 0
(11) 0 0 0 % 71-6387 j 0 41-3171 1 0 0 0
(12) 0 0 0 i 0 | —178-3806, 0 ] 0 0 0
(13) 0 11-1416 0 0 0 0 i 78-5251 0 —21-7501
(14) 0 0 —11-1416 0 0 0 \ 0 —5-4750 0
(15)| 26-4038 0 0 0 I 0 —181-0217 0 0 0
(16) 0 9-4248 0 0 | 0 0 ‘ 0 0 —11-7810
an 0 0 9-4248 o | 0 0 4 0 0 0
(18) 6-2832 0 0 0 0 0 1 0 0 0
2 2
J 925 024 5=J %5y, )52“(2 y)dy+f [—%(x,z)][~?i‘-(x 2):|dx+
ro 0s 0s _, Oy s Ox

J.

925 924

2
o
-2
2
%(x, -2) ?(x, -2)dx = f
X

2
o
_, Ox

dv Ov

-
[

aﬁ(_z

ay

A

-2

2 0z 0z
szj 65(2 ) 4(2(\;)dy+
-2

+J[ % (-2 )H =1e 2y)]dy+f

0z,

, (-2, y)] dy +

2
4.2ydy+f (-4).2xdx =0,
-2

4.(-2y)dy +Ji (=4).(-2x)dx +

f %25 (x,2) 94 (x, 2) dx +
—2 (3y 5

e

[ az4( )]dx _ Lzy_my +j_22x.(—4)dx + L(—zy) 4dy +

388

+ r (=2x). (=4)dx = 0,




a3110 bay11 b3112 b3i13 b3i14 €311 %3111 %3112 | %3113
i | 7 | I
0 0 ‘ 0 I‘ 0 | 0 26-4038 \ 0 0 6-2832 — 111-6165
0 0 I 0 | 11-1416 0 0 ! 9-4248 0 0 244-0914
—293-38100 O ! 0 " 0 —11-1416 0 0 9-4248 0 — 2:6667
0 71- 6387i 0 r 0 0 0 0 | 0 0 — 245-4667
0 0 —178-3806! 0 0 0 0 0 0 0
0 ‘41‘3171; 0 i 0 0 —181-0217 0 0 0 260-0914
0 0 ! 0 ‘ 78-5251 0 0 0 0 0 — 409-6000
391-3384 0 l 0 1 0 — 54750 0 0 0 0 17-8667
0 0 0 —21-7501 0 0 —11-7810 0 0 — 1547-7810
1990-7120 0 ‘f 0 0 11-5627 0 0 —11-78101 0O 10-6667
0 28-8584| 0 0 0 0 0 0 0 —  37-6865
0 0 | 290295 0 0 0 0 0 0 0
0 0 i 0 11-8883 0 0 3-1416 0 0 35-1416
11-5627 0 ‘ 0 0 11-8883 0 0 —3-1416 0 1-3982
0 0 0 0 0 47-1715 0 0 0 — 218-8012
0 0 i 0 I 3-1416 0 0 9-4248 0 0 9-4248
—11-7810 0 } 0 0 —3-1416 0 0 9:4248 0 0
0 0 } 0 0 0 0 0 0 6-2832) — 6:2832
|
2n
j 2524ds=J (—2cos ssins)(cos’ s — sin*s)ds = 0,
Iy 0
J‘%a—zids=f (—%vy+éz—5vx>( 624 +%x>ds=
r, 0s 0s r 0x dy 0x dy
2n
=8J. (—sin® scos s + sinscos®s)ds = 0,
Q
J 025 024 ds = f <E Ve + — 9z y> ((_351 Ve + %24 vy) ds =
dv Ov r, \0x dy 0x Jdy
2n
=8j (—cos® ssins + cos ssin’® s)ds = 0
0
so that

(Zs, 24)r =0.

(A little routine yields this result more rapidly, if the simple form of the functions
z4 = x* — y?, z5 = 2xy is considered.)
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The matrix of the system is obviously symmetric. Similarly as in Example 3.1,
the system ‘‘degenerates’ into simpler systems containing no more than 6 unknowns

in our case. The result is

uyy = —43600 + 4-000x — 0-0732y —
— 0:6745(x*> — y*) + 0-0000 . 2xy + 0-4046 . (—y?) + 0-0000(x*> — 3xy?) +
+ 0-0049(3x*y — y*) — 0-0000 . (—3xy*) — 0:0063 . (—*) —

2 2
- ~2
~ 02108~ —" 4 00000. — = —0:0000. —— +
x2+y x2+y2 x2+y2
+0:0820. — 2 — 0-6455 In (x? + y*) — 3-0000r((x, y) +
x? + y?

+ 0:0926r,(x, y) + 3:3599r,5(x, y)
so that the required Airy function is
Uj; = — 43600 + 4-000x — 0-0732y —

— 0:6745x* + 0:2699y* + 0-0147x%y + 0-0014)° —
2 2

X =Yy y 2 2
— 0-2108 .° — 00820 . —~— — 0:6455In (x* + .
PR X+ y? ( »?)

In figs. 5—7, the components

_®Us Uy PUy
X b b X
oy? g ox? g 0x dy
of the (approximate) stress-tensor are sketched in the cross-section y = —1-5,

-2 sx=22.

In the following example we show how to proceed if the requirement of equilibrium
of the loading on each of the boundary curves separately is not fulfilled.

Example 3.3. For illustration, let us consider the same annulus G as in Ex. 3.1,
with its centre at the origin and with the inner and outer radius r; = 1, ry = 2,
respectively, loaded as shown in Fig. 8. The orientation of the boundary curves I'y, I'y
as well as the choice of the points A€ Iy, Be I'y with s = 0 is also obvious from
the figure.

We have
s .S s
x =2cos —, y=2smi, Ve, =COS—, V,=
2

.S
,,—smi on Iy,

X =coss, y= —sins, v,= —coss, v,=sinson [(.

I
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Fig. 5.

Fig. 6.
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A simple computation yields

ou s 0 for 0=s<3m,
on I'y: ;:—J)’(r)dt=//

X 0 —P for 3n<s<d4mn,
0
H_o,
oy

Y
P

P

Fig. 8.
0 for 0=s < 3m,
(3.38) g—”= 7
v —Pcos% for 3n <s <d4n;

0 for 0<s = 3m,

/s

u =
\—2Pcos% for 3t <s<4n;

Similarly, on I'{ we get

0 for 0 s =

s

N3

(3.39) ?ﬁ=<
Y "—Pcoss for g<s<2ﬂ:,

0 for 0=s=
/ =5 =

u =

Pcoss for ;E<S<27t.
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The loading on I'y as well as on I'y is not in a static equilibrium (as evident from
Fig.8). It follows that, for example, the function u(s) is continuous neither at the
point A on I'y nor at the point B on I'y. From (3.38), (3.39) we easily compute

(3.40) lim u(s) — u(0) = —2P on Iy,
s~4n—

lim u(s) — u(0) =P on I;.
so2n—

Similar relations can be derived for 5u/8v.
To be able to apply the method of least squares on the boundary in its original
form, we can use the well-known result from [4], Sec. 2.10:'") The functions

(3.41) o) = — z‘n(ﬁ“;) n(z - z,),
L AX—in)
o) = e - =)

produce a state of stress in G (with a single-valued displacement) with the main vector
(X, Y) and a zero moment on I';. Here z{ is an arbitrary point lying in the interior
of I'y, » = (4 + 3u)/(A2 + p), where A and p are the Lamé constants. In our example
we can choose for example z; = 0 and then put (see Fig. 8)

X=0, Y=-P
so that
P

iP
(P(Z)zi;t(vl.—:;)lnz, 1/()—2 (l +,c) z.

To get the Airy function corresponding to these functions by

(3.42) u = Re(Zp + %)

we compute
ixP
X(Z) = — z(ln z—1)

2n(1 + )
and writing In z = In r + iw, we get by (3.42)

|
(3.43 u=-————Re[ZiPInz + ixPz(lnz — 1)] =
34 " on(l + %) [ ( ]

2-(1£+—)[ (1 +%)xw +xy + (1 —3) ylnr].

11y Actually we try to find a “‘particular solution” which will produce the same static inequi-
librium as is the given one, not changing the given moment which is equal to zero in our case.
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From (3.43) it follows easily — by putting x =2, y =0 or x = 1, y = 0 (the
coordinates of the points 4 or B), respectively, and taking into account that @
increases or decreases by 21 or — 27 when we run along I'y or I'; in the positive sense
of its orientation — that the function (3.43) fulfils (3.40). Similarly, it is possible to
verify analogous relations for 6u/6v. Thus we can take the function (3.43) as a “‘parti-
cular solution” of our problem and perform the algorithm of our least squares method
with the function

3
ust(x’ y) = upar!.(x, _V) + Usr(x’ y) + _Zlastljrlj(x9 _V) >
j=

where u,, (x, y) is the function (3.43) and U(x, y) and ryj(x, y) are the functions
(3.]0) and the singular functions introduced above, respectively. Note that the values
of the function (3.43) on I', as well as on I'y can be easily computed which is of
importance for further numerical calculations.

From Ex. 3.3 it is easy to see how to proceed in a general case. The idea is to
“remove” the inequilibrium on the inner boundary curves by finding a proper
“particular solution”. Most frequently, it is convenient to use functions of the type
(3.41), with suitably chosen points z;.'?) In other problems it may appear that
another type of a particular solution is more convenient.

In the next issue of this journal, Part II of the present paper will appear, containing
proofs of Theorems 3.1 and 3.2 from p. 379 as well as of Lemma 2.4, p. 369.
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