
Aplikace matematiky

Karel Rektorys; Jana Danešová; Jiří Matyska; Čestmír Vitner
Solution of the first problem of plane elasticity for multiply connected regions by
the method of least squares on the boundary. I

Aplikace matematiky, Vol. 22 (1977), No. 5, 349–394

Persistent URL: http://dml.cz/dmlcz/103712

Terms of use:
© Institute of Mathematics AS CR, 1977

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103712
http://dml.cz


SVAZEK 22 (1977) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

SOLUTION OF THE FIRST PROBLEM OF PLANE ELASTICITY 
FOR MULTIPLY CONNECTED REGIONS BY THE METHOD 

OF LEAST SQUARES ON THE BOUNDARY (Part I) 

KAREL REKTORYS, JANA DANEŠOVÁ, J I Ř Í MATÝSKA, ČESTMÍR VITNER 

(Received Oc tober 14, 1976) 

I N T R O D U C T I O N 

For simply connected regions, the so-called first problem of plane elasticity is 
equivalent, roughly speaking (for details see p. 354), to the first biharmonic problem 

(0.1) A2u = 0 in G, 

(0.2) u = g0(s), — = gi(s) on F. 
dv 

Here G is the considered region with its boundary F, v the unit outward normal. 
To the solution of this problem, a scale of methods has been developed, each of them 
having its specific advantages and drawbacks. For example: The method of finite 
differences is very simple, but the approximation of components of the stress-tensor — 
which are the second order derivatives of the function u, see (1.5), p. 353 — by the 
corresponding second difference quotients may be very inaccurate. Variational 
methods — including the finite element method — are very often applied. However, 
they are applicable provided the solution u(x, y) belongs to the "energetic" space 
W2

2\G). The Muschelisvilli method based on the theory of functions of a complex 
variable (cf. [4]) has its main drawback in the requirement of a sufficiently smooth 
boundary (permitting no corners, for example). 

In the paper [ l ] by K. Rektorys and V. Zahradnik, an approximate method, 
the so-called method of least squares on the boundary, is developed, requiring only 
the boundary F to be Lipschitzian and gleL2(r), g0e W2

(1)(F). (Practically, this 
means a sufficiently general boundary and a very general loading, if the problem 
is interpreted as a stress-and-strain problem; for the notation see p. 354.) This method 
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is closely related to that presented in [4], Sec. 3.15 (where a sufficiently smooth 
boundary is assumed). Its idea is very simple: Let 

(0.3) Zt(x,y), z2(x,y), ... 

be the sequence of basic biharmonic polynomials1) (for details see [ l ] ; for every 

positive integer n = 2 there are precisely An — 2 of these polynomials of order ^ n) 

and let us look for an approximate solution in the form 

(0-4) Un(x, y) = E ani ZІ(X, y), 
4 n - 2 

I 
i = l 

where the coefficients ani are determined in such a way that 

(0.5) f (U„ - goy
 ds + f ( ~ ~ ™Yds + f (~f - *Y ds = min-

is satisfied on the linear set of functions of the form 

4«-2 

(0.6) V„(x, y)=li bni z;(x, y) . 
i = l 

(Thus, the approximate solution (0.4) fulfils the given biharmonic equation exactly, 

while the boundary conditions are fulfilled approximately in the sense of (0.5).) 

The condition (0.5) leads to the solution of a system of An — 2 linear equations 

for An — 2 unknowns ani (i = 1, . . . ,4n — 2). In [1], this system is shown to be 

uniquely solvable, and the convergence of the sequence {Un(x, y)} to the so-called 

very weak solution of the problem (0A), (0.2) is proved, provided that G is a bounded 

simply connected region with a Lipschitzian boundary F and that g0 e W2

l)(r), 

gx e L2(r). A numerical example is also given in [J] . 

In the present paper, the above method is extended to the case of multiply con­

nected regions. This case presents two difficulties: 

(i) The first problem of plane elasticity is equivalent to a biharmonic problem 

only if the latter is properly modified. This fact is to be seen from Ex. 1.1, p. 357. 

(ii) In [ l ] , when proving the convergence of the above mentioned method of least 

squares on the boundary, an approximation of holomorphic functions by poly­

nomials has been used. In the case of multiply connected regions, holomorphic 

functions cannot be approximated in general by polynomials only. Therefore, the 

functions g0, gx cannot be approximated (in the sense of (0.5)) only by functions of 

the type (0.4); also some other simple biharmonic functions should be used (Chap. 3). 

1) Thus fulfilling the equation (0.1). 
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In spite of this, the numerical treatment of the method considered remains also 
in the case of multiply connected regions relatively simple (cf. Exs. 3.1, 3.2). However, 
theoretical questions, especially those concerning the convergence of the method, are 
rather complicated. For this reason, the proof of convergence is postponed to Chap. 
4, in order that the reader who is not a professional mathematician be able to follow 
at least the text of the first three chapters, including numerical examples. This is also 
the reason why the paper is divided into two parts, Part I containing the first three 
chapters, Part II the chapters 4 and 5 (the "purely mathematical" part of the paper). 

In Chap. 1, the connection between the first problem of plane elasticity and the 
first biharmonic problem is discussed, first for simply connected regions, where the 
situation is simpler, then for multiply connected regions, where Ex. 1.1 demonstrates 
the characteristic difficulties. LTsing some properties of the so-called complex stress-
funstions, formulation of the problem in the real form is given in Chap. 2 and basic 
results on the solution are derived. In Chap. 3 (p. 374), the method of least squares 
on the boundary is presented and numerical examples are given. Chap. 4 is devoted 
to the proof of convergence of the method, Chap. 5 contains proofs of some theorems 
and of some auxiliary lemmas which were postponed to this chapter in order to make 
the ideas of the proofs of the main theorems of Chaps. 2 and 4 as clear as possible. 

R e m a r k 0.1. As said above, the structure of the paper is such that a "consumer" 
of mathematics be able to read the first three chapters. A reader who is not in­
terested in the application of the method in the theory of elasticity, can start just 
with the Formulation of the Problem on p. 367. In that formulation, gi0 e W^(T^9 

gn eL2(fj) , i = 0, 1, ..., k are given functions for him, regardless of whether they 
have something common with a "loading" on the boundary or not. In Def. 2.1, he 
should understand under an Airy function such a biharmonic function for which the 
function (2.9) is single-valued in G. Note that every function u(x, y) biharmonic 
in G produces three functions (2.4) to which there correspond, according to Lemma 
2.2, p. 361, functions <p(z), i/J(z) ( = x'(z)) appearing in (2.9). Whether the function 
(2.9) is single-valued or not, does not depend on the choice of the points zh i = 
= 1, ..., k from Lemma 2.2. (See the footnote 9 on p. 363.) Of course, it may happen 
that such a reader will not understand why the problem is formulated precisely as 
given on p. 36V because the first part of Chap. 2 — which he will omit — is devoted 
just to the motivation of this formulation. 

The "mathematical" reader will then be interested in the basic singular biharmonic 
functions ru(x, y) (p. 367) and in the existence theorem 2.1; in Chap .3 in the algorithm 
of the method and in Theorems 3.1 and 3.2. The essence of the paper lies in Chap. 4 
(proof of the convergence theorem 3.2). The auxiliary mathematical tools are 
collected in Chap. 5. It is possible that a reader will prefer to start with this last 
chapter. In this case, he should stop at the assertion (5.35), continue by the proof 
of Lemma 2.4 and by the text of Chap. 2 up to Theorem 2.V and then return to 
Chap. 5. 
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CHAPTER 1. THE FIRST PROBLEM OF PLANE ELASTICITY 

AND THE FIRST BIHARMONIC PROBLEM 

Convention 1.1. In this paper, under a region G we shall always understand 
a bounded region in E2 (multiply connected, in general) with the so-called Lipschitz-
ian boundary F.1) 

As usual, G = G u F. 
The classical formulation of the first problem of plane elasticity is the following: 

To find sufficiently smooth functions ox, oy, Txy (the so-called components of the 
stress-tensor) which fulfil in G the equations of static equilibrium 

(1.1) 8°x I dTxy = o , dTxy 1 dGy = 0 

dx dy dx dy 

and the equation of compatibility 

(1.2) A(ax + ay) = 0 

(A being the Laplace operator), and on F the boundary conditions 

(1.3) vxox + vyTxy = X(s), 

vxixy + vyoy = Y(s) , 

where vx(s), vy(s) are components of the unit outward normal and X(s), Y(s) are 
given functions on F (components of the loading acting on the boundary of the 
body G from its exterior). Moreover, if G is multiply connected, it is required that 
the displacement corresponding to the components ox, oy, Txy of the stress-tensor 
according to the Hooke law be a single-valued function.2) 

If G is a simply connected region, this problem can be easily reduced to a bihar-
monic problem. Actually, we have (see [4], Sec. 2.2, 2.3) 

Lemma 1.1. Let G be a simply connected region. Let the functions ox, oy, Txy 

be twice continuously differentiable in G and let they satisfy ( l . l ) and (1.2). Then 
there exists a function u(x, y) biharmonic in G (thus satisfying 

(1.4) A2u = 0 in G), 

x) The concept of the Lipschitzian boundary is treated in detail in [3], Chap. 28, or in [2]. It 
represents a slight generalization of the concept of a "piecewise smooth" boundary. 

2) In case of a simply connected region, this requirement is automatically fulfilled. See also 
Chap. 2, Lemma 2.1 and Eq. (2.9). 
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the so-called Airy function, the derivatives oj which are the functions ax, ay, Txy: 

,A . d2u d2u d2u 
(1.5) Ov = — r , av = dy2 y dx2 ' dx dy 

This function is uniquely determined by the functions ax, ay, Txy up to an expression 

of the form 

(1.6) ax + by + c . 

Conversely, if u(x, y) is a biharmonic function in G, then the functions (V5) are 

sufficiently smooth in G (they are even infinitely differentiable) and satisfy the 

conditions (VI), (V2). 

Thus every function biharmonic in a simply connected region G characterizes — 

through the functions (V5) — a state of stress in G. 

The problem (VI) —(V3) being given, it remains to convert the boundary conditions 

(V3) for the functions ax, ay, Txy into boundary conditions for the biharmonic function 

u(x, y). This can be carried out in the following way (see e.g. [4], Sec. 2.7): 

First, let the loading of F be sufficiently smooth. Let / be the length of F, s the 

parameter of arc on F (0 = s < I) with s = 0 at a chosen point A e F. Let s be 

increasing if we run along F in the positive sense of its orientation (thus leaving G 

to the left-hand side). If we put dujdx and dujdy equal to zero at the point A, then 

we have on F 

(i.7) ? ( * ) - - f y ( f ) d ' ' ^(s)=f*(0d t. 3) 
dx Jo oy Jo 

Now, du\dx, dujdy being known on F, we compute 

n 0x du du du du du du 
(V8) — = vy + — vx, — = — vx + — vv 

ds dx dy dv dx dy 

and, putting u = 0 at the point A, 

d.9) u(S)=rdJL(t)dt. 
J o os 

) Conversely, if the functions du/dx, r9u/ay are given on Land are sufficiently smooth, then 
obviously 

x(,)-±Џ, П,) = -d-ð" 
ds dy ds dx 
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Denoting u(s) = g0(s), (dujdv) (s) = gt(s) and taking (1.4) into account, the problem 

(.1.1) —(1.3) is converted in this way into the biharmonic problem 

(1.10) A2u = 0 in G, 

,H 4<\ du „ 
(1.11) u = g0, — = gi on F. 

ov 

Let us note that the formulae (1.7) permit to take certain singularities of the loading 

into account. If, for example, at a certain point B e F a single load (an isolated force) 

with components Fx, Fy is acting, then the integrals in (1.7) are to be replaced by the 

corresponding Stieltjes integrals. At the point B, the function dujdx or dujdy then 

has a jump — Fy or Fx9 respectively. 

In the following text, we shall assume that g0 e W^(r), g{ e L2(F) only. We shall 

briefly say that the functions g0,g\ belong to the space W2

{1)(F) x L2(F) and we 

shall write (g0, gt) e W^l)(F) x L2(F). Let us recall that gt e L2(F) means that the 

function gt(s) is square integrable in the interval (0, /), while g0 e PV2

(1)(F) means 

that g0 e L2(F) and d#0/ds e L2(F). The spaces L2(F) and TV2

(1)(F) are Hilbert spaces 

with the norms given by 

(1.12) | | / | | i 2 ( r ) = f W ) d s and \\f\\2

W2oKr) = f '/2(s)ds + f j ' 2 ( S ) ds , 
Jo Jo Jo 

respectively.4) 

The assumption (g0, gx) e W2

(1)(F) x L2(F) is sufficiently general to include a wide 

class of loadings appearing in applications of the plane elasticity.5) In particular, 

if the loading contains a finite number of single loads and is piecewise continuous 

elsewhere on the boundary F, then we have (g0, gi)e W^1}(F) x L2(F). But the 

loading can be considerably more general to get this result. 

Cf. also the paper [5] by I. Hlavacek and J. Naumann, where the conditions 

go G JV2 3 / 2 )(0' gi e JV2

(1/2)(F) are discussed, which make it possible to work in the 

space W{

2

2\G). 

4 ) The spaces L2(T) and W2

(fc)(T) are defined in [3l, Chaps 28 and 30. In the present case, 
where Tis the Lipschitzian boundary of a region in E2 and k — 1, it is possible to introduce the 
norms by (1.12). 

In this notation, the condition (0.5), p. 350 can be written in the form 

(1-13) ||м - go||W2O>(г) + 
дu 
Ôv 

2 

= min 
L2(T) 

5) Naturally, it is interesting also from the purely mathematical point of view. 
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In what follows we always assume that the point A with s = 0 is chosen in such 
a way that the loading has no singularity at that point — more precisely, that it is 
continuous at the point A. Then it is easy to show that the functions du/dx, dujdy 
are continuous at this point, i.e. 

(1.14) hm — (s) = — (0) , hm — (s) = — (0) , 
s-+i- ox ox s-*i- dy dy 

if and only if the loading satisfies the condition of static equilibrium in forces, 
i.e. if and only if 

1 X(s) ás = 0 , Y(s) ás = 0 . 

The function u(s) is then continuous at that point if and only if the loading satisfies 
the condition of equilibrium in moments. 

\ íx Y(s) - y x(s)]ás = ° • 

Let us return to the problem (1A0), (1.11). Let there exist such a function we 
G W2

(2)(G) that we have 

(1.15) w = g0 , — == gi on F 
dv 

(in the sense of traces). This case occurs, for example, if the loading as well as the 
boundary F are sufficiently smooth; then it is possible to apply e.g. Theorem 2.5.8 
from [2]. See also the paper [5]. As is well known, in this case there exists precisely 
one weak solution U(x, y) of the problem (1.10), (1.11). The equation (1.10) having 
constant coefficients, this solution has derivatives of all orders in G 6) and satisfies 
(1.10) in the classical sense. The functions (1.5) then satisfy the conditions ( l . l ) , 
(1.2) and describe a certain state of stress in G. We shall briefly say that the function U 
produces this state of stress in G. The boundary conditions (1.3) are fulfilled by 
virtue of the boundary conditions ( l . l l) (in a generalized sense, in general).We shall 
briefly say that U(x, y) is the weak Airy function corresponding to the given loading. 

If no function w e W{
2
2)(G) exists satisfying (1.15), then the problem (1.10), ( l . l l ) 

has no weak solution. But we have (g 0 ? g i ) e W2
l)(T) x L2(F). In this case, the 

functions g0, gt can be approximated in W2
l)(r) x L2(F) by a sequence of functions 

go/ngin which are traces of functions wne W2
2)(G) in the sense of (1.15), and the 

sequence {Un(x, y)} of the corresponding weak solutions of (1.10), ( l . l l ) with 
g0, gx replaced by g0n, gln converges in the space L2(G) to the so-called very weak 
solution U(x, y) of the problem (1.10), ( l . l l ) . (See [2], Th. 5.4.2, p. 274; the function 

6) The reader who is not familiar with this result, see Lemma 5.3. 
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U(x, y) is uniquely determined by the functions g0, gi-) Also this solution has deriva­
tives of all orders in G and the functions (.1.5) give the state of stress in G, correspond­
ing, in this very weak sense, to the given boundary conditions (1.3). In this way we 
come to the concept of the very weak Airy function corresponding to the given 
loading. The weak or very weak solution U(x, y) can then be sought approximately 
by the method of least squares on the boundary, as described and discussed in [1]. 

Let us turn to the case of a multiply connected region. (Convention 1.1 (p. 352) 
concerning the boundedness of the region G and the Lipschitzian boundary F 
remains always valid.) Let 

(1.16) F = F0uFtu...uFfc, 

where F0 is the outer boundary curve and Fl5 ...,Fk are inner boundary curves 
oriented as shown in Fig. 1. On each of the curves Ft (i = 0 , 1 , . . . , k) let the para­
meter of arc s be chosen, 0 :g s < li9 where lt is the length of the curve Ft and s = 0 
is chosen at such a point At e Ft where the loading on the boundary, given by the 
components Xh Yt in this case, has no singularity. Let us construct the functions 
g,0(s), gnOO on Fj (i = 0, 1, ..., k) in a quite similar way as in (1.7) —(1.9). 

Fig. 1. 

Convention 1.2. In what follows, we shall assume that on every curve F, (i = 
= 0, 1, ..., k), the loading fulfils the condition of static equilibrium both in forces 
and moments.1) The functions gl0, gn (i = 0, 1, ..., k) will always be assumed to 
belong to the space W2

(1)(^.) x L2(Fi). 

) From the mathematical point of view, this requirement ensures the continuity of the func­
tions u(s), (dujdx) (s), (du/dy) (s) at the above mentioned points At e Ft (in the sense of (1.14)) 

du du 
which makes it possible to work only with single-valued functions u(x, y), — (x, y), — (x,y) on G. 

dx dy 
Problems in which this requirement is not fulfilled can be easily reduced to the problem con­

sidered by using a proper particular solution. It is clear from Example 3.3, p. 390 how such prob­
lems should be treated. 

356 



Similarly as in (1.10), ( l . l l ) let us solve the biharmonic problem 

(1.17) A2u = 0 in G, 

(1.18) u = gi0, ~=-gn on F,, / = 0, 1, ..., k. 
dv 

If the functions gi0, git are traces of a function w e W2
2)(G) in the sense of (1,15), 

then there exists precisely one weak solution u(x, y) of the problem (1.17), (VI8). 
In the opposite case, the functions gi0, git belonging to the space 1V2

(1)(F;) x 
x L2(Fj) (i = 0, V ..., k), there exists precisely one very weak solution u(x, y) of 

this problem.8) In both cases, the function u(x, y) is a classical solution of the equa­
tion (1.17) in G and the functions (1.5) satisfy in G conditions (VI) and (V2). But 
in contrast to the case of a simply connected region, these functions need not des­
cribe a state of stress in G, corresponding (through the functions gi0,gn) to the 
given loading on the boundary, as is clear from the following example: 

Example 1.1. Let G be a ring with its center at the origin, with the outer circle F0 

of radius 2 and the inner circle Ft of radius 1. Let the following biharmonic problem 
be given: 

(1.19) A2u = 0 in G, 

(1.20) u = 0 , — = 0 on F0 , 
dv 

c)u 
(1.21) u = 1 , — = 0 on F! . 

dv 

The (unique) solution of this problem is9) 

1 
(1.22) u = - (3 + 8 ln 2) (x2 + y2) + 3(x2 + y2) In (x2 + y2) + 

9 - 1 6 In2 2 ^ 

+ 8 In 2 . In (x2 + y2) + (12 + 8 ln 2 - 16 In2 2) 

8) Its construction is quite similar to that of the problem (1.10), (1.11). 
9) One transforms the equation (1.19) into polar coordinates r, co; taking into account that the 

solution does not depend on co in our case, one gets an ordinary differential equation with the 
general integral (cf. [3], Chap. 26) 

u = Cxr
2 + C2r

2 ln r + C3 ln r + C4 ; 

then it is sufficient to apply conditions (1.20), (1.21) and to write ln r = \ In r2 = \ In (x2 + y2). 

357 



The equations (1.5) then formally yield 

(1.23) ax = — = — — {-(3 + 8 In 2) + 3 T 
V ' dy2 9 - 1 6 In2 2 1 V ' x2 + y2 

+ ln (X2 + 

+ У2) + 1 

õ2u 

+ 8 1 n 2 . %1 - y l 

°У ôx2 9 - 1 6 1 

(X2+У2)2)' 

{ - ( 3 + 8 ln 2) + 3 Г + ^ — + ln (x2 + y2) + l l + 
n 2 2 ( \_x2 + y2 

v2 

+ 8 ln 2 . " 
(x2 + y2) 

д2u 4xy ' Г 3 _ 81n2 "1 

n 2 2 [ x 2 + y2 (x2 + y2)2] ' dxdy 9 - 1 6 1 

We have received a paradoxical result: The function u "produces" (at least 

formally) an evidently nonzero stress-tensor (ox, oy, xxy) in G, while in accordance 

with the footnote 3, p. 353 and according to (1.20), (1.21) the loading on the boundary 

is equal to zero. 1 0) 

This "perpetuum mobile" cannot correspond to the reality, of course. In fact, 

the functions (1.23) satisfy the conditions of static equilibrium (l . l) and the equation 

of compatibility (1.2); however, as will be shown in the next chapter, no single-valued 

displacement corresponds to these functions. To be able to understand well the whole 

problem (and also to avoid the concept of a multi-valued real function), let us remind 

at the beginning of the next chapter the connection between the "real" and the 

"complex" theory of plane elasticity. This will make it easier to formulate the problem 

for multiply connected regions in a proper real form and then to give the basic 

results concerning its solution. 

CHAPTER 2. FORMULATION OF THE PROBLEM FOR MULTIPLY 
CONNECTED REGIONS. EXISTENCE THEOREM 

In Chap. 1, we have discussed the relation between the first problem of plane 

elasticity and the first biharmonic problem. In the first part of the present chapter, 

we give a short survey concerning the connection between the components ox, oy, xxy 

of the stress-tensor, the corresponding biharmonic function and the so-called complex 

1 0 ) Let us note that the first conditions in (1.20), (1.21) imply dujds = 0 on F which together 
with the remaining conditions gives dujdx = 0, du/dy = 0 on Fand according to the footnote 3, 
p. 353 we have X(s) = 0, Y(s) = 0. 

The result can be obtain* 
rxy on T0, F! and use (1.3). 
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stress-functions.1) Then we give a formulation of the problem in the real form and 
present the basic existence theorem. 

a) Simply connected regions2) 

In Lemma 1.1, p. 352, the existence of the so-called Airy function corresponding 
to the stress-tensor with components ox, oy, Txy was shown for a simply connected 
region G. The functions ox, oy, Txy being sufficiently smooth in G and fulfilling the 
equations of static equilibrium 

(2.1) ^ + i T - = 0 , ^ a + ^ r = o 

dx dy dx dy 

and the equation of compatibility 

(2.2) A(ox + oy) == 0 , 

there exists a biharmonic function u(x, y), uniquely determined by the functions 
ox, oy, Txy up to an expression of the form 

(2.3) ax + by + c 

(a, b, c arbitrary real constants), and satisfying in G the relations 

/- .x d2u d2u d2u 

(2.4) ox = . oy = , Txy = . 
dy2 dx2 dx dy 

Conversely, if u(x, y) is an arbitrary biharmonic function in G, then the functions 
(2.4) satisfy equations (2+) and (2.2). 

Using this lemma and relations (1.7) —(1.9), p. 353 we have shown in Chapter 1 
how to transform the first problem of plane elasticity into a biharmonic problem. 

Now, we give another lemma which enables us to express the components of the 
stress-tensor ox, oy, Txy in terms of some holomorphic functions of the complex 
variable z = x + iy and which yields a very simple expression for the vector 
(dt(x, y), d2(x, y)) of displacement corresponding to this stress-tensor: 

*) The reader is referred especially to the book [4], Chap. 2, Sections 2.1 — 2.10, where he can 
find the results given below — possibly in a slightly different form. Especially, we use a rather 
different notation here. For example, we write ox, a , T instead of Xx, Y , X for the components 
of the stress-tensor, dx, d2 instead of u, v for the components of the vector of displacement, etc. 

2) According to Convention IT, bounded regions with Lipschitzian boundaries are always 
considered throughout this paper. 
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Lemma 2.1. ([4], Sec. 2.4). In a simply connected region G, every biharmonic 
function u(x, y) can be expressed in the form 

(2.5) u(x, y) = Re (z cp(z) + X(z)) ,3) 

where cp(z), x(z) are holomorphic functions in G. By the function u(x, y), the func­
tions cp(z) and x(z) are determined uniquely up to an expression of the form 

(2.6) \C\z + C2 + iC3 or -(C2 - iC3) z + iC4 , 

respectively, where Cx, ..., C4 are real constants. 

On the other hand, if <p(z) and x(z) are arbitrary functions holomorphic in G, then 
the function u(x, y) given by (2.5) is biharmonic in G. 

R e m a r k 2.1. It follows from Lemmas 1.1 and 2.1 that to every sufficiently smooth 
functions ox, oy, Txy which fulfil (2.1) and (2.2) there correspond holomorphic func­
tions (p(z), x(z) in G so that we have (2.5) and (2.4). An easy computation (cf. [4], 
Sec. 2.8) yields the following relations between these functions and the original 
functions ox, oy, Txy: 

(2.7) ox + oy = 4 Re (cp'), 

(2.8) * , - * , + 2kxy = 2(z<p" + f) -

For the components dx(x, y), d2(x, y) of the vector of displacement corresponding 
to the stress-tensor (ox, oy, Txy) according to the Hooke law one gets the expression 
([4], Sec. 2.6 and 2.8; pi and % are positive constants depending on the material 
considered) 

(2.9) dt + \d2 = — (xcp - zip' - x) 
2/i 

which will be of particular significance in the following text.4) 

The functions cp(z), x(z) (connected with the functions ox, oy, Txy by the relations 
(2.7), (2.8)) are called the stress-functions (corresponding to the functions ox, oy, 

3) By the symbols Re (f(z)), Im (f(z)) we denote respectively the real and imaginary parts of 
the function f(z(. Byf(z( we denote the complex conjugate tof(z(. In Particular we have Re (z( = 
= x, Im (z) = y, z = x — iy. 

4) To get this simple expression for the displacement was one of the reasons why we introduced 
the.complex stress functions cp(z) and ^(z). Note that it is possible to avoid this "complex theory" 
here, but in the case of multiply connected regions this means to meet difficulties — although 
of formal character — consisting in the necessity of working with multi-valued real functions. 

5) In the following text, it will be often useful to consider the pair of functions (p(z), \JJ(Z) — 
= x'(z) instead of the pair of functions <p(z), ^(z). Also these functions <p(z), y/(z) will be called 
the stress-functions. 
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Remark 2.2. It follows from (2.3) and (2.6) that to the functions ax, ay, Txy there 
exist a set of the corresponding Airy functions and a set of the corresponding stress-
functions. Nevertheless, in every case (i.e. when chosing the constants a, b, c or 
Cl9 ..., C4 arbitrarily) (2.4) or (2.7), (2.8) yield precisely the original functions ax, 
ay, Txy. As to the components d1, d2 of the vector of displacement, they may differ 
by certain linear functions, the physical meaning of which is a "small displacement" 
or a "small rotation" of G as of a rigid body. For details see [44], Sec. 2.6. 

b) Multiply connected regions 

Let us consider a (k + 1) — tuply connected region G with the boundary 

r = F0 u rt u ... u rk 

as discussed in Chap. 1, p. 356.6) Let ax, ay, Txy be sufficiently smooth functions 
fulfilling (2.1) and (2.2). In this case it is again possible to construct a biharmonic 
function u(x, y) such that in G the relations (2.4) hold. But in contrast to the case of 
a simply connected region, this function need not be a single-valued function. We are 
not going to introduce here the concept of a multi-valued function and of its 
derivatives. Instead we give directly a lemma concerning the form of the correspond­
ing complex stress-functions.7) These functions will also appear to be multi-valued, 
but this multi-validity is of a very simple — namely of logarithmic — character: 

Lemma 2.2. ([4], Sec. 2.10). Let G be a bounded (k + l) — tuply connected 
region with inner boundary curves Fl9 ..., rk. Let zf = xt + iyf (i = l, ..., k) 
be arbitrary (but fixed) points lying inside Ff (and, consequently, outside G; cf. 
Fig. l). Let ax, ay, Txy be continuously differentiable functions in G 8) fulfilling 
(2.1) and (2.2). Then the stress-functions cp(z), \jj(z) (cf. the footnote 5, p. 360) con­
nected with the functions ax, ay, Txy by the relations (2.7), (2.8) exist and can be 
written in the form 

k k 

(2.10) cp(z) = z £ At In (z - z) + £ Bt In (z - z.) + q>0(z), 
t = 1 i = l 

(2.U) Hz) = X'(z) = t c t In (z - zf) + </,0(z), 
i= 1 

6) Fl5 ..., Tk are inner boundary curves, oriented as shown in Fig. 1, p. 356. 
7) We could have chosen this way also in the case of simply connected regions, of course. But 

there was no need to do it there. 

) In [4], the proof is carried out under supplementary assumptions on the smoothness of the 
boundary Eand of the functions crx, cryyTxy up to the boundary. Then it is shown that these as­
sumptions are superfluous. The sketch of the proof (from which this fact is also clear) is given in 
Chap. 5, 
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where At are real constants, Bh Ci are complex constants and (p0(z), \j/0(z) are 
holomorphic functions in G. 

Moreover, the constants Ai are independent of the choice of the points z{ inside 
of F,. SO are the constants B{ and Ct in the case that all the A{ are zeros. 

R e m a r k 2.3. The functions ox, oy, Txy being given and the points z{ being chosen 
fixed, the functions (2.10), (2.11) are uniquely determined up to some linear functions 
of z (cf. (2.6)). In particular, the coefficients Ah Bv, Ct are uniquely determined. 

Remark 2.4. On the other hand, the functions (2.10), (2.11) being given, the 
functions ox, oy, Txy computed by (2.7), (2.8) fulfil equations (2.1), (2.2). These 
functions can be obtained also in such a way that we construct the function (2.5) 
biharmonic in G, and then use (2.4). However, the function (2.5) need not be single-
valued, and, as said above, the concept of a multi-valued real function and its 
derivatives will not be introduced here. Thus we shall speak of the function (2.5) 
(and of relations (2.4)) only if it is a single-valued function. 

Note that the function (2.5) may be single-valued even when the stress-functions 
(p(z), x(z) are multi-valued: For example, if we take in Ex. 1.1 (p. 357) 

(p(z) = - T6z In z - (3 + 8 In 2) z] , 
V ; 9 - 1 6 In2 2 L V J J 

x(z) = [16 In 2 . In z + (12 + 8 In 2 - 16 In2 2)] , 
V 9 - 1 6 In2 2 L V U 

we get by (2.5) precisely the function (1.22), and this is a single-valued function. (The 
reader may easily check also the validity of (2.7), (2.8) with ox, oy, Txy given by (1.23).) 

Let us show that the corresponding displacement (2.9) is not a single-valued 
function in this case. To this purpuse it is sufficient to examine only the functions 
(p(z) = z In z, x(z) — 0, because the function (3 + 8 In 2) z as well as the function 
X'(z) appearing in (2.9) are single-valued functions. But we have (writing In z in the 
usual form ln r + ico) 

X(p — z{f>' — x' = z\kx m r ~ In r— 1) + i(x + 1) co] , 

and this function is not single-valued in G because of the multi-validity of the func­
tion CO. 

Thus in the case of multiply connected regions it may happen that a single-valued 
biharmonic function u(x, y) "produces" (by virtue of (2.4)) the functions ox, oy, Txy 

which fulfil the equations of static equilibrium and of compatibility, while the cor­
responding components of the vector of displacement are not singb-valued functions. 
Such a biharmonic function thus cannot describe a real stress-and-strain state in G. 
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Definition 2.1. A (single-valued) biharmonic function to which there correspond 
single-valued components of the vector of displacement in the just discussed sense is 
called an Airy function.9) In the opposite case we call it a singular biharmonic 
function. 

An example of an Airy function is every function biharmonic in a simply connected 
region G. An example of a singular biharmonic function is the function (1.22) from 
Ex. 1.1. 

In Chap. 1 we have shown how to transform the first problem of plane elasticity 
in a simply connected region into a biharmonic problem 

(2.12) A2u = 0 in G, 

(2.13) u = g0(s), — = gt(s) on F . 
6v 

Here the functions g0(^), gi(s) are constructed from the given loading on the bounda­
ry by (1.7) —(1.9) (using if necessary the correspoding Stieltjes integrals, etc.). As­
suming (g0, gi) e W2

vl)(F) x L2(F), we have shown the existence (and uniqueness) 
of the so-called very weak solution u(x, y) (or of a weak solution, as a special case) 
of the problem (2.12), (2.13). The function u(x, y) is biharmonic in G in the classical 
sense, the functions ox, oy, Txy given by (2.4) fulfil equations (2.1), (2.2) of static 
equilibrium and of compatibility and the corresponding displacement (2.9) is 
a single-valued function, because (p(z) and \jj(z) are holomorphic in G. Thus the 
functions ax, ay, xxy characterize actually a state of stress in G. The boundary con­
ditions are fulfilled in a generalized sense. 

In the case of a multiply connected region, we have proceeded similarly. We have 
shown the existence and uniqueness of a very weak (or weak) solution u(x, y) of the 
problem 

(2.14) A2u = 0 in G, 

(2.15) u=gi0(s), ^ = gn(s) on F,, i = 0, \,...,k, 
dv 

provided (gi0, gn) e W2
(1)(F;) x L2(FI). The functions gi0, gn have been constructed 

similarly as the functions g0, gt by (1.7)-(1.9). The functions ax, oy, Txy given by 

9( Thus this function describes a real stress-and-strain state in G. 
Note that the concept of the Airy function does not depend on the choice of the points z-

appearing in Lemma 2.2, in spite of the fact that in general the coefficients B-, C{ of the logarithmic 
terms in (2.10, (2.11) depend on this choice. In fact, if at least one on the coefficients A- (i = 
= 1, . . . , k) is different from zero, the function (2.9) cannot be single-valued. This fact follows from 
an easy computation similar to that carried out in the preceding footnote. (See also (2.43) in the 
following text, which implies this fact immediately.) If all At (i -= 1, ..., k) are equal to zero, then 
Bt and Ct are independent of the choice of the points z-. 
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(2.4) satisfy again equations (2A), (2.2). But in contrast to the previous case, the 

corresponding displacement need not be a single-valued function, as mentioned 

before (see especially Example l.l). Then the functions ax, oy, Txy do not describe 

a real stress-and-strain state in G and cannot be taken as components of a real stress-

tensor. At the same time, if a body is in a static and moment equilibrium, it is to be 

expected that a real stress-tensor (to which a single-valued displacement corresponds) 

should exist. 

What is the cause of such a discrepancy? 

Let us consider first the case of a simply connected region. The functions g0(s), 

gi(s) are constructed from the given loading with components X(s), Y(s) by (1.7) to 

(l.9): We start with the construction of the functions 

(2.16) Џ 
CX 

'\r/ ч л дu 
Y(t)åt, — 

o oy 

X(t) dř , 

putting s = 0 at a chosen point A e F, at which we then have dujdx = 0, dujdy = 
= 0.1 0) If we had chosen s = 0 at another point B e F, then the new functions — 
denote them by dujdx, dujdy — would be equal to zero at that point B, and each 
of them would differ on F from the original functions dujdx and dujdy by a con­
stant. It is easy to compute from (1.8), (1.9) that, if we put s = 0 at a point B, the 
functions 

(2A7) u = g0(s), — = 3t(s) on F 
ÕV 

differ from the original functions 

du 
(2.18) u=g0(s), — = øi(s) on Г 

õv 

by expressions of the form 

/-*. ^ \ r , 1 7 Sx , dy dl 
(2A9) I = ax + by + c and avx + bvy = a h b —• = — , 

dv dv dv 

10) Thus 

0) 8^(sc)=-YAC, ~(sc)=XAC. 
ox cy 

Here AC is an arc on T(its end-point C having the coordinate sc) with the same orientation as F, 
and XAC or YAC is the x- or y-component of the main vector, respectivey (i.e. of the total force, 
acting on AC). While the form (1.7) is suitable for a "regular" loading, the form (i) is suitable for 
a "general" loading (containing various singularities, e.g. single loads). 
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respectively, where a, b, c are real constants depending on the choice of the point B; 
vx, vy are components of the unit outward normal.11) Now, let u(x, y) be a (weak or 
very weak) solution of the biharmonic problem (2A4), (2A8). Then obviously the 
function 

u(x, y) = u(x, y) + ax + by + c 

is a solution of the problem (2A4), (2.17). By the uniqueness of the weak or very 
weak solution, it is its only solution. From (2.4) it is clear that the same stress-tensor 
corresponds to both the functions u(x, y) and u(x, y). 

Thus in the case of a simply connected region the change of the "starting" point A 
on F does not cause any difficulties: The functions (2.17), (2.18) which correspond 
to the same loading lead to the same stress-tensor in G. 

If the region G is (k + 1) — tuply connected (k > 0), then replacing the "starting" 
points Ai on F, (i = 0, 1, ..., k) by new points Bt we get new functions 

(2.20) u = gi0 + J,, -U = gn + - - on F 
Ov Ov 

31) Conversely, the same loading of r corresponds to the functions (2A8) and (2.17) with 

0 0 go = go + ax + by + c , gi = gi. + avx + bvy , 

where a, b, c are arbitrary (real) constants. In fact, using the well-known formulae 

du du du du du du 
= Vy H Vx, = Vx + — Vy, 

dx ds dv dy ds dv 

we get 

du dg0 du dg0 
— = - — vy + 9LVX > v~ = ~7~Vx + 9lVy' ox as cy as 

du du , j ox du du du ,, 2 ?, du 
— = — + a(vl + v;) = — + a , — - — + b(v2

x + v?) = — + b . 
ox ox ox cy cy cy 

Consequently, for an arc PQ on F with the same orientation as F we have 

f(Q)-f(P) = f(Q)-f(P) and 
OX Ox Ox Ox 

f(Q)-f(P)-f(Q)-f(P) 
dy cy cy cy 

so that (see the preceding footnote) the main vectors acting on PQ are the same. The arc PQ 
being arbitrary, the same loading of F corresponds to the functions (2.17), (2A8) fulfilling (ii). 
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instead of the original functions 

(2.21) u = gi0, — = gn on F ; 
ov 

here 

(2.22) lt = atx + bty + c, , i = 0, 1 , . . . , k , 

where at, b,, c, are constants depending on the choice of the points Bt on F,. However, 
in this case the function u(x, y) which is the solution of (2.14), (2.20) need not differ 
from the solution u(x, y) of (2.14), (2.21) only by a linear function all over G, 
because in general the constants ah bh ct are not the same on every F,. The difference 
of such two solutions may be a singular biharmonic function of the character shown 
in Ex. VI, thus producing a "false" stress-tensor (with a non single-valued dis­
placement). 

From the heuristic point of view it is to be expected that if we replace on F, (i = 
= 1, . . . , k) the functions (2.21) by properly chosen functions 

(2.23) gi0 + atx + bty + c , , gn + — (atx + bty + ct) , i = 1 , . . . , k 
ov 

(which thus correspond to the same loading) then the (weak or very weak) solution 
of the problem 

(2.24) A2u = 0 in G, 

du 
(2.25) u = g00 , — = goi on F0 , 

ov 

(2.26) u = gt0 + atx + bty + c, , 

dw d / , x _, 
— = g/i + ~ {atx + bty + c,) on F,, i = 1, ..., k , 
dv dv 

will be an Airy function. 

Definition 2.2. An Airy function U(x, y) which is the solution of (2.24) —(2.26) is 
called the Airy function corresponding to the given loading (characterized by the 
functions gi0, gn, i = 0, 1 , . . . , k). 

In more detail, we shall speak of the weak or very weak Airy function correspond­
ing to the given loading, according to whether the function U(x, y) is a weak or 
very weak solution of (2.24) —(2.26), respectively. 

Now, we are prepared to give 
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F o r m u l a t i o n of the p r o b l e m : To find an Airy function corresponding to the 

given loading. 
In more detail: The functions gi0ign (i = 0, 1, ..., k) being given, find such 

constants ahbhCi (i = 1, ...,k) that the solution of (2.24)-(2.26) be an Airy 
function (and find this function, of course). 

R e m a r k 2.5. Some heuristic considerations lie in the background of the formula­
tion of our problem. However we show that this formulation is "reasonable" also 
from the purely mathematical point of view. Namely, we show that: 

(i) If the functions gi0, gn belong to the space JV2
1}(Vi) x L2(rt), i = 0, 1 , . . . , ky 

there exists precisely one Airy function corresponding to the given loading. In 
particular, if g00 = 0, g0i = 0 and gl0, git are respectively of the form 

Atx + Bty + Ct or — (Ape + Bty + C-) on F,, i = 1, ..., k 
dv 

(Ah Bh Ct constants), then U(x, y) = 0. 12) 

(ii) If we replace the functions g00, g01 also on F0 by some functions 

goo + <3o* + froy + CQ - goi + (a0x + b0y + c0) , 
dv 

then the new Airy function U(x, y) corresponding to the given loading will differ 
from the original one precisely by the linear function a0x + b0y + c0 all over G. 

To start with, we introduce the so-called elementary singular biharmonic func­
tions:13) 

Let i be a fixed integer, 1 = i — k. Let rn(x, y), ri2(x, y), ri3(x, y) be the weak 
solutions of the problems 

(2.27) A2w = 0 in G, 

(2.28) u = 1, — = 0 on F£, 
dv 

(2.29) u =0, — = 0 on F,-, j * i14) 
dv 

12 ) Thus the only Airy function corresponding to the given loading in Ex. IT is the zero 
function. 

13) Note that these functions are of auxiliary character, though they play an essential role in 
the theoretical considerations. As will be seen in the next chapter, they are completely eliminated 
from the numerical process when constructing effectively the required Airy function. 

14) Including Fo, i.e. j= 0 , 1 , . . . , / — l , i + l , . . . ,k . 
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or 

(2.30) A2u = 0 in G , 

дu õx 
(2.31) u = x, ._= — == VІ on Г,.. 

iЗv Ov 

(2.32) u = 0 , — = 0 on Fy , j ф i 
v y ðv 

(2.33) A2u = 0 in G, 

x du dv 
(2.34) u = y , — = — = vy on r , , 

Ov Ov 

(2.35) u = 0 , — = 0 on Fy, j 4= i, 
dv 

respectively. 

R e m a r k 2.6. If we denote 

(2.36) ln(x, y) = l , li2(x,y) = x, li3(x, y) = y , i = 1, . . . , fc , 

then the functions r n (x , y), ri2(x, y), ri3(x, y) assume on Ff the values of the 
functions ln(x, y), li2(x, y), li3(x, y), and their derivatives with respect to the out­
ward normal assume on Ff the values of the outward normal derivatives of these 
functions. Let u(x, y) be the (weak or very weak) solution of (2.14), (2.15). Then the 
function 

k 3 

(2.37) U(x, y) = u(x, J>) - £ Z octj ru(x, y) , 
i=l j = l 

where atj are arbitrary (real) constants, is a solution of the biharmonic equation with 
boundary conditions of the form (2.25), (2.26). Consequently, if we succeed in finding 
the coefficients al7 in such a way that U(x, y) is an Airy function, then this function 
will be an Airy function, corresponding to the given loading, and thus it will be the 
required solution. 

R e m a r k 2.7. Note that the weak solution of each of the above three problems 
exists (uniquely, of course). Actually, each of the functions (2.36) is very smooth 
in G so that it is sufficient to multiply it by a function also sufficiently smooth in G 
and equal to one in a neighbourhood of Ff and to zero in the neighbourhoods of the 
remaining boundary curves, to get a function from the space W2

2)(G) which satisfies 
the given boundary conditions (and thus ensures the existence of the weak solution). 
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Lemma 2.3. Each of the functions rtj(x, y) (i = 1, ..., k, j = 1, 2, 3) is a singular 
hiharmonic function (thus producing a multi-valued displacement). 

This lemma is a special case of the following one: 

Lemma 2.4. An arbitrary linear combination 

(2-38) i iaijrij(x,y) 
i = i / = i 

Of the functions rfj(x, y) is a singular biharmonic function provided that at least 
one of the coefficients atJ is different from zero. 

The proof of this lemma is not trivial and is postponed to Chap. 5. i5) 

Definition 2.3. The functions rtj(x, y) will be called basic singular biharmonic 
functions. 

As said above, these functions will be used to obtain the desired Airy function 

corresponding to the given loading. 

Thus, let the problem (2.14), (2.15), i.e. the problem 

(2.39) A2u = 0 in G , 

uu 
(2.40) u=gi0, — = gn on Ff, i = 0, 1, ..., fc 

dv 

with (gi0,gn)e JV2
1}(Ff) x L2(Ff) be given and let u(x, y) be its very weak solu­

tion.16) Since this function is biharmonic in G, the functions 

,. .,x d2u d2u d2u 
(2.41) ox = , av = , TYV = — v ' o 2 ' > n 2 ' xy no cyz ex ex oy 

are sufficiently smooth in G and fulfil the relations (2.1), (2.2). According to Lemma 
2.2 it is possible to construct the corresponding stress-functions of the form (2.10), 

1 5) If the boundary T is sufficiently smooth, then the functions r^ix, y) can be shown to be 
sufficiently smooth in (7, and the proof is relatively simple — it is possible to apply the idea of 
the proof of the classical Kirchhoff theorem 2.12.1 from [4l. If T is only Lipschitzian, this is 
not the case because then it is not possible to ensure the necessary smoothness of the functions 
appearing in the proof up to the boundary, so that we have to proceed in another way. 

16) The functions gi0,gn belonging to the space W^U(T.) X L2(F,) for 1 = 0, l , . . . ,k , 
the existence (and uniqueness) of the very weak solution is ensured. This very weak solution may 
turn into a weak one (if there exists such a function w e W^2)(G) that we have w = gi0, dwjdv — 
— gn on T- in the sense of trances). We are not going to draw always attention to this fact, and 
we shall speak mostly of the very weak solution only, tacitly admitting the possibility that it may 
be a weak solution. Only when the concept of the weak solution plays an important role in our 
considerations, we shall point out this fact. 
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(2.11) so that the relations (2.7), (2.8), (2.9) hold. In particular, according to Remark 
2.3, keeping the points zt fixed, the coefficients AhBh Ct (i = 1, . . . , k) in (2.10), 
(2.11) are uniquely determined by the functions (2.41), and thus also by the functions 
(2.40). 

Let G' be a (k + l)-tuply connected region lying inside G (G' c G), with a smooth 
boundary F' = F0 u Fi u . . . u T'k (Fig. 2), and let zh i = 1, 2 , . . . , k be points 
contained in the interior of the curves Ff as well as in the interior of FJ. Choose one 
of the curves Fj, . . . , T'k, say T'p, and on this curve choose an arbitrary point z. 
Putting (2A0), (2.11) into (2.9), it is possible to compute the "complex" displacement 

(2.42) d! + \d2 

Fig. 2. 

at this point, Now, let us run along this curve in the positive sense of its orientation 
and return back to the same point z. All the terms in (2.10), (2.11) remain unchanged, 
with the exception of the terms containg In (z — zp). From (2.9) we get by an easy 
computation that, when running along the curve T'p, the complex displacement (2.42) 
will change by the value 

- - i [ (%+ í)Apz + ҡBp + C/J. 
Џ 

; i O v z + lpi + i/ps) 

(2.43) 

We write it in a simpler form 

(2.44) 

putting 

(2.45) (x + 1) A, = 7,i , Re {xBp + Cp) = yp2, Im (xBp + C„) = yp3 . 

(Thus the numbers 7pi> 7P2> 7P3 are real.) 
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It follows from (2.44) that the vector of displacement corresponding to the functions 
(2.41), i.e. to the solution u(x, y) of the problem (2.39), (2.40), will be a single-valued 
function in G if and only if 

(2.46) ypt = 0, yp2 = 0, yp3 = 0 for every p = 1, ..., k . 

Precisely in this case the solution u(x, y) of (2.39), (2.40) will be an Airy function. 

In general, this is not the case. This means that the function u(x, y) will ' 'produce" 
3k (real) numbers 

(2.47) yn, yi2, yi3 , 

at least one of them being different from zero. A question arises whether it is possible 
to find such numbers au that the function (2.37), i.e. the function 

k 3 

(2.48) U(x, y) = u(x, y) - £ £ au ru(x, y) 
i = i j = 1 

be an Airy function. 

Similarly as the function u(x, y) produces the numbers (2.47), each of the functions 
ru(x, y) (i = 1, ..., k, j = 1, 2, 3), being biharmonic in G, produces 3k numbers — 
let us denote them by PUpq (p = I, ..., k, q = 1, 2, 3). As said above, we try to find 
such a linear combination 

k 3 

(2.49) v(x, j) = H au ru(x, y) 

of the functions ru(x, y) that the function 

(2.50) U(x, y) = u(x, y) - v(x, y) 

be an Airy function, i.e. (see (2.46)) that all the 3k numbers corresponding to it be 
equal to zero. This condition leads to the system of 3k equations 

k 3 

(2.51) x E « i A M = yM> P = V...,k, g = l , 2 , 3 
i = l y = l 

for 3k unknowns au, i = 1, ..., k, j = 1, 2, 3. 

Lemma 2.5. The determinant D of the system (2.51) is different from zero; 
consequently, this system is uniquely solvable. 

The p roo f is easy: If we had D = 0, then the corresponding homogeneous system 
would have also a nonzero solution; but then the function u(x, y) and according to 
(2.50) also the function v(x, y) would be Airy functions, while at the same time at 
least one of the au would be different from zero. This is contradiction to Lemma2.4. 
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R e m a r k 2.8. (Uniqueness . ) In this way, the atj (i = V...,k, j = i, 2, 3) 
satisfying (2.51) are found and thus (cf. Remark 2.6) the existence of a very weak 
Airy function of the form 

k 3 

(2.52) U(x, y) = u(x, y) - £ £ atj rtj(x, y) 
i = i j = i 

corresponding to the given loading, i.e. of an Airy function which solves the problem 
(2.24) —(2.26) is proved. Before formulating the corresponding existence theorem, 
let us clarify the question of uniqueness. In fact, it is not a priori clear whether the 
function (2.52) with atj computed from (2.51) is the only Airy function corresponding 
to the given loading, because 

(i) the numbers Bh Cx in (2.10), (2.11) depend on the choice of the points zt 

(i = 1, ..., k). Thus also the right-hand sides ypq in (2.51) may depend on the choice 
of these points, as well as the numbers f}iJpq in (2.51). Consequently, also the numbers 
atj may depend on the choice of the points zh 

(ii) it is not a priori evident that there exist no other very weak Airy functions 
corresponding to the given loading, with other ah bh ct in (2.26) than are those 
corresponding to the function (2.52). 

We shall show that (2.52) with atj computed from (2.51) is the only Airy function 
corresponding to the given loading (independently of the choice of the points zt in 
(2.10), (2.11)). 

Thus let 0(x, y) be another Airy function satisfying (in the very weak sense) 
(2.24)-(2.26), possibly with other constants dh hh tt in (2.26). Denoting U(x, y) -
- U(x, y) = U(x, y) and dt - at = ah b{ - bt = bh ct - ct = ch the function 
U(x, y) is the solution of the problem 

(2.53) A2u = 0 in G, 

(2.54) u = 0 , — = 0 on F0 , 
dv 

(2.55) u = atx + bj + c{, — = — (atx + bty + c{) on Ff , i = 1, ..., k . 
dv dv 

In virtue of the definition of the functions r{j(x, y) (see (2.27) —(2.35)), the solution 
of the problem (2.53) —(2.55) can be written in the form 

k k k 

(2.56) Y Vi ri2(x, y) + X bt ri3(x, y) + £ ct rn(x, y). 
i = l i= 1 i = l 

Due to the uniqueness of the very weak solution of this problem, we have 

(2.57) U(x, y) = i a i ri2(x, y) + £ bi ri3(x, y) + £ ct rn(x, y). 
i=l i=l j = l 
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The function (2.57), being the difference of two Airy functions, is also an Airy 
function. According to Lemma 2.4, this is possible only if all the coefficients ah bt, ci 

are equal to zero, so that U(x, y) = 0. 
Thus we have 

Theorem 2.1. Let G be a bounded (k + 1) — tuply connected region with a Lip-
schitzian boundary. Let 

(2.58) QioeW^r,), gneL2(T^, i = 0,l,...,k. 

Then there exists precisely one very weak Airy function U(x, y) corresponding to 
the given loading, i.e. solving the problem (2.24) —(2.26). This function can be 
written in the form 

(2.59) U(x, y) = u(x, y) - £ £ atj r , /x , y) , 
i=i j = i 

where u(x, y) is the very weak solution of the problem (2.39), (2.40), rtj(x, y), i = 
= 1, . . . ,k , j = 1,2,3 are the basic singular biharmonic functions defined as 
solutions of the problems (2.27) — (2.35) and oê -, / = 1, ...,k,j = 1, 2, 3 are uniquely 
determined from the system (2.51) (independently of the choice of the points zt 

(i = 1, . . . ,k) in (2.10), (2.11)). 

R e m a r k 2.9. If we replace the original "starting points" At on Tt (i = 0, 1, ..., k) 
by new starting points Bt, then, as mentioned above, the functions 

(2.60) gi0, gn on Tt 

turn into functions of the form 

(2.61) gi0 = gi0 + atx + bty + ct, gn = gn + - - (atx + bty + cf) . 
Ov 

Let first B0 = A0 so that the starting point on F0 remains the same and thus a0 = 
= b0 = c0 = 0. According to the result just obtained, there exists precisely one 
(very weak) Airy function corresponding to the loading (2.61) with a0 = b0 = c0 = 
= 0. It follows immediately that this function will be equal precisely to the Airy 
function (2.59) from Theorem 2.1. In fact, the difference of these two functions 
should be an Airy function fulfilling conditions of the form (2.54) —(2.55), and such 
a function is identically zero as shown in Remark 2.8. 

If we change the starting point also on F0 so that 

goo = goo + «o* + hy + co * goi = goi + — (ao* + b0y + c0) , 
Ov 

then we can look for the Airy function corresponding to the loading (2.61) in the 
form 

^ov*, y) = ^o* + b0>' + c0 + U(x, y) 
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and transform this problem in this way into the previous one. The function U0(x, y) 

will then differ from the function from Theorem 2A by the expression a0x + b0y + 
+ c0 all over G. 

Thus we can summarize: 

If the points At (i = 1, ..., k) with s = 0 on F£ are replaced by new points Bh 

then the Airy function corresponding to the given loading remains unchanged. 
If also A0 is replaced by B0, then the Airy function differs from the original one 
by an expression of the form a0x + b0y + c0 all over G. 

CHAPTER 3. THE METHOD OF LEAST SQUARES ON THE BOUNDARY 

For the case of a simply connected region,1) the method of least squares on the 
boundary is described in detail in [1]: Consider the first biharmonic problem 

(3.1) A2u = 0 in G, 

(3.2) u = g0, — = gi on F 
dv 

with (g0, gL) e W2
l)(r) x L2(f). Let the system of basic biharmonic polynomials 

be given. (For details see [1]; we have 

zx(x, y) = 1 , 

z2(x, y) = X , z3(x, y) = y , 

z4(x, y) = x2 - y2 , z5(x, y) = 2xy , zb(x, y) = - y 2 , 

z7(x, y) = x3 - 3xy2 , z8(x, y) = 3x2j; - y3 , 

z9v*> y) = - 3 x y 2 , z10(x, y) = - y 3 , 

etc.; for every fixed n = 2 there are precisely An — 2 polynomials of degrees ^n.) 
The approximate solution of (3.1), (3.2) is assumed in the form 

4«-2 
(3.3) u„(x, y) = £ ani zt(x, y) , n = 2 ,2) 

-1) Bounded regions with Lipschitzian boundaries are always considered. 
2) The assumption n ^ 2 is introduced for formal reasons only: For example, there are three 

polynomials of degree <; 1, namely zt(x, y), z2(x, y), z3(x, y), while putting n -= 1 into (3.3) we 
obtain only two terms. Of course, in principle it is possible to consider linear terms only. But it 
is of no particular use, because these terms yield only the zero stress in G, cf. (1.5), p. 353. 
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where the coefficients ani are determined from the condition of least squares on the 
boundary, i.e. from the condition that 

(3.4) Fun = f («„ - goy ds + f ( | = - ^ Y d s + f ( ^ " ffi)2d- = min . 

among all the expressions of the form 

2 

(3,) ^-Jh-^a, •£(£-&) *•£(£-..)., 
where 

4 n - 2 

(3.6) v„(x, y) = £ b,„. z£(x, y) 
i = i 

and v is the outward normal to the boundary. (Thus the functional (3.5) has to assume 
its minimal value on the set of functions (3.6) precisely for the function (3.3)). The 
condition (3.4) leads to a system of linear algebraic equations for the unknowns ani. 
In [ i ] , the unique solvability of this system is proved as well as the convergence, 
in L2(G), of the sequence {un(x, y)} to the very weak solution u(x, y) of (3.1), (3.2). 

In the case of a multiply connected region, the situation is more complicated. The 
first difficulty lies in the fact that the very weak3) solution u(x, y) of (3.1), (3.2)4) 
need not be the required Airy function U(x, y); according to Theorem 2.1 we know 
that we have 

k 3 

(3.7) U(x, y) = u(x, y) - E Z au ru(x> y) > 
t=i i = i 

where r^x, y) are the basic singular biharmonic functions introduced on p. 367 
and a}j are constants uniquely determined by the function u.5) 

The second difficulty is the following: In [1], i.e. for a simply connected region, 
we were able to prove by means of the well-known relation 

(3.8) u(x, y) = Re (zcp + %) 

that every biharmonic function in G sufficiently smooth in G, can be approximated 
in W2

2)(G) with an arbitrary accuracy by biharmonic polynomials. This is not the 
case if G is multiply connected. The reason is that the corresponding holomorphic 
functions cannot be approximated only by polynomials, but that also rational 

3) Cf. the footnote 16, p. 369. 
4) We write here briefly g0 or gt on Finstead of g0i, or gt • on Ff, i — 0, 1, ..., k, respectively. 
5) The functions rtj(x, y) need not be very simple in general, as functions considered in G; 

but our method uses only their values on the boundary in the computation, and these values 
are eminently simple — cf. the definition of these functions. 
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functions in z are to be taken into account; moreover, the proof of Lemma 4.6 on 
density (in Part II of the present paper) shows that some simple logarithmic functions 
should be considered. For these reasons, we assume the approximate solution in 
the form 

k 3 

ust(x, v) = Ust(x, y) + £ £ astij rtj(x, y), (3.9) 

where 

(3.10) 

í = l j = l 

4s-2 k Art 

Ust(x, y) = £ astp zp(x, y) + £ £ bstiq viq(x, y) + 
P = I i - i q = i 

+ Yjcstiln[(x-xif+(y-yif]ý) 

Here s, t are positive integers, s ^ 2, zp(x, y) are basic biharmonic polynomials, 
(xh yt) are arbitrarily chosen but fixed points lying in the interior of rt, i = 1, .. . , 
k (thus outside G)7) and viq(x, y) are rational biharmonic functions corresponding 
(cf. (3.8)), to the above mentioned rational functions in z: 

^/,4/+i(^y) = Re 

(3.H) viAl + 3(x,y) = Re 

: - z r \ 
1 

» »i,4i+2(^ ľ ) = Im 

» t>ř>4(+4(x,.у) = Im — г , 

L(z - zo _ L(- - z - ) ' + 1 J 
1,...,k, l = 0,1,2, ... 9 zt = x ř + ìyi. 

For example, if G is an annulus with its centre at the origin, then we have k 

and we can choose zt = 0. The functions (3.11.) then become 

x2 -y2 

x2 + y2 

2xу 

vt.- = 
x 3 — Зxy2 

~~? 7 ' 1 3 

x2 + y2 

y3 — Зx2y 

(x2 + y2)2 ' 

x2 + У 2 ' 

x2 — У2 

V,A = -

(x2 + j^ 2 ) 2 (x2 + y2) 242 ' 
f l « = 

x2 + y2 

2xy 

(x2 + y2f ' 

etc. There is only one logarithmic function in this case, In (x2 + y2). 

The second term in (3.9) corresponds to the second term in (3.7) and represents 
the "singular part" of the approximation, while the first term in (3.9) represents its 
"Airy part". 

) In general, t is different for different i (i = 1, ..., k). From the mathematical point of view 
this presents no difficulties. (See the proof of the convergence theorem in the next chapter.) 

7 ) X; and y{ are the real and the imaginary parts of the points zt considered in the preceding 
chapter. 
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Thus, let the problem (3.1), (3.2) be given for a (k + l)-tupply connected region G, 

where g0 = gi0 and gL = gn on Ff, i == 0, 1, ..., k, 

(3.12) 0,0 6 ^ ' ( T ) . 0.1 6 I-2(r;) 

(cf. the footnote 4 on p. 375). As said before, we are going to look for an approximate 
solution ust(x, y) in the form (3.9), where the coefficients astij, astp, bstiq, csti are to 
be determined from the condition of least squares on the boundary, analogous to the 
condition (3.4): 

(3.13) Fu„ - Г („„ - „„f ás + f (ђ* - ^ Y d 

+ Ш f - 9 0 í d s = m ' - - , ) 

s + 

(йst ~ go)2 ds + 
г Jг\дs 

důst dg0\
2 . f fdú 

ds 
ds + 

ôv 
gi ds , 

among all expressions of the form 

(3.14) Fi7 s ,= 

where 
4 s - 2 k 4 t 

(3.15) ust = X astp zp(x, y) + Z Z bstiq viq(x, y) + 
P = 1 i = 1 q = 1 

fc fc 3 

+ I £sr. In [(x - x,)2 + (y - y;)
2] + I S «„„ riy(x- y) 

i = 1 i = 1 j = 1 

with asrp, 5s r^, csri, a5r/j. arbitrary. 

Obviously, (3.14) is a quadratic functional on the set M of all functions of the 
form (3.15). Substituting (3.15) for ust, it becomes a quadratic function in the variables 
astp, bstiq, csti, astij. Necessary (and obviously also sufficient) conditions for (3.13) 
to be fulfilled are then 

dF 
C3-16) — " K t P , bstiq9 csti, Gcstij) = 0 , 

oastl 

ÔF 

дdĽ 
\astp> ®stiqr> Csti> ^stij) ~ ^ * 

For example, we have 

d 

^&stl . 
(Щt - go)2 ds = 2 (wsř - g0) zx ds , 

) Here the index s in u&t has nothing common with the length of arc in ds and ds, of course. 
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etc. If we define, for every pair of functions u,veM 

(3.17) ( u , v ) r = f u v d s + f ^ d s + f ^ d s 
JT Jrds ds Jrdv dv 

(for every such pair (3A7) has sense) and denote briefly 

(3.18) ( g , u ) r = [g0uds+ [ ^ ^ d s + f g ^ d s 
JT JT ds ds Jr dv 

the equations (3A6) become (after dividing them by the factor 2) 

(3.19) (ust, zt)r = (g, Zi)T, 

(ust, rkъ)г = (g,rк3)г.
9) 

Substituting (3.9) with (3.10) for ust into (3A9), we get the following system of 

linear algebraic equations for the unknowns astp, bstiq, csth ocstiJ: 

4s-2 k 4t 

( 3-20) £ (zp, zm)r astp + £ £ (viq, Zm)T bstiq + 
p=l i=lq=l 

k 

+ £ ( l n [ (* - Xi)2 + (y - yi)2]> Zm)T Csti + 
i=l 

k 3 

+ £ £ (ru> zm)r <*stij = (g, zm)r , rn = 1, . . . , 4s - 2 , 
i = i j = i 

4s-2 k 4t 

£ (Z
P, Vln)r astp + £ £ (Viq, Vln)r Ktiq + 

p = l i = l q=l 

k 

+ £ ( l n l(x - *i)2 + (y ~ y,)2], vm)r csti + 
i = l 

k 3 

+ £ £ (rir vin)r *stij = (g, vin)r , / = 1, . •., k , n = 1, . . . , 4 t , 
i = l j=l 

) Of course, these equations have their individual character according to functions appearing 
in them. For example, zt(x, y) = 1 so that according to (3.17), (3.18), the first equation in (3.19) 
becomes 

Jr""ds-J; gods ; 

further, the boundary values of the function rk3 are equal to y, dyjds = v^, dy/dv = vy on Tfc 

and vanish elsewhere on F-, i = 0, 1, ..., k — 1. Thus the last of the equations (3A9) reads 

I ustyás + i ^ ' v ^ d s + f ^ v , d s = f g0yás + \ ~ v, 
Jrk Jrkds Jrk8v J Fh Jrkds 

. ds + giy«ds, 
T/c 

etc. 
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£ (z„, In [(x - x,)2 + (y - yfDr <>stp + 
p = l 

+ Z Z O v in K* - *02 + (y - y>)2J)r K,iq + 
i = 1 q = 1 

+ Z ( ^ [(* - **)2 + (.v - v.)2]- In [(x - x,)2 + (>> - y,f])r c.« + 
1=1 

+ Z Z ('.J. In [(x - x,)2 + (y - 3',)2]r «ulJ = 
• = i ; = i 

= (g, In [(x - x,)2 +(y- y,f])r , l=l,...,k, 

4 s - 2 k At 

£ fo- r/*)r astp + £ £ (t>,q, rw)r ^ + 
p = l i = 1 q= 1 

fc 

+ £ (In [(x - x,)2 + (y - y,)2], r^T csri + 
i= 1 

fc 3 

+ £ £ (rir rih)r «stij = (g, rih)r - / = 1, . . . , fc , fc = 1, 2, 3 . 
» = i j=i 

The system (3.20) represents a system of linear algebraic equations (with a sym­
metric matrix) for the unknowns astl9 ..., ocstk3. For example, if G is a doubly con­
nected region and if we choose s = 3, t = 1, we get 18 equations for 18 unknowns 

a32i, ..., a32,l0, b32il, ..., b3214> C321> a3211> a3212> a3213' 

Theorem 3.1. The system (3.20) is uniquely solvable. 

For the p r o o f see Chap. 5. 

Theorem 3.2. For s -> oo, t -> co, the functions ust(x, y) with astp, bstiq, csti, ocstij 

determined by (3.20) converge in L2(G) to the very weak solution u(x, y) of the 
problem (3A), (3.2).10) At the same time, the functions Ust(x, y) converge in L2(G) 
to the "Airy part" U(x, y) of u(x, y) (see (3.7)). Moreover, this convergence, and 
even the convergence of the corresponding derivatives of arbitrary order, is locally 
uniform on G: If G' is an arbitrary region such that G' c G' c G, then Ust(x, y) -> 
~> U(x, y) uniformly on G', and the same holds for the convergence of partial 
derivative of Ust(x, y) of an arbitrary order to the corresponding derivative of 
U(x,y).") 

10) More precisely: To every e > 0 there exist such positive integers s0 and t0 that 

s > s0 , t > t0=>\\u - ust\\L2(G) < e . 

l x ) Particularly, we have 

^xst ~* &x •> Gyst ~> Gy , TXyst ~* Txy 
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The p r o o f of this theorem is the subject of the next chapter. 

In the conclusion of the present chapter, we give three examples showing the 

application of our method. The first example is very simple and has an illustrative 

character only. In the third example we show how to proceed if the convention is not 

fulfilled concerning the requirement of static and moment equilibriums of the loading 

on every Ft separately. 

E x a m p l e 3.L Consider an annulus G with its centre at the origin and with the 

inner radius r1 = 1 and the outer radius r0 = 2, loaded as shown in Fig. 3. 

Fig. 3. 

As mentioned above, the example is only illustrative. With the aid of the theory 

based on the use of functions of a complex variable (see e.g. [4]) one easily finds 

that the required Airy function is of the form 

U(x, y) = In (x2 + y2) + ax + by + c , 

where a, b, c are arbitrary constants. 

uniformly on G', where 

Gxst 

and 

д2Us, 

дy2 

õ2U 

д2Usl 

Õx2 

д2U 

д2Ust 

õx дy 

ð2U 

dy2 dx2 dx dy 

are the components of the stress-tensor corresponding to the given loading. 
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On the inner and outer boundary curves Ft and F0 we choose the parameter s of 
the length of arc with s = 0 at the point B(l, 0) and A(2, 0), respectively. Thus we 
have 

0 = s < 2TC on F! , 0 = s < 4TC on F0 . 

The orientation of F0, Fi is clear from Fig. 3. For the components of the unit out­
ward normal v we have 

s s 
v,, = cos - , vv = sin - on F0 , 

2 2 

vx = —cos s , vy = sin s on Fx . 

First we construct the functions O0, gt on F, in more detail the functions 

goo> goi. o n Io > gio> git. o n r i » 

according to (1.7) —(1.9), p. 353. On F0, we have 

X(s) = - cos - , Y(s) = - sin 
2 2 2 2 

and according to (1.7) 

ôu 

дx 

\r( \ 1 s . du 
Y(t) át = cos - - 1 , — 

2 dy 

X(t) át = sin -
o 2 

It follows (cf. (1.8), (1.9)) 

u = — (0 dt = 

Jo 3s Jo 

дu дu 
T v * + т - ^ ] d t = 
Ox Oy 

sin - df = 2 ( 1 — cos -
, 2 \ 2 

дu дu дu s 
— = — vx H vу = 1 -- cos - . 
őv дx Oy 2 

Similarly, on Ft we get (we have to pay attention to its orientation) 

X(s) = — 2 cos s , Y(s) = 2 sin s , 

^ = ~ (SY(t) dt = 2(cos s - 1), — = f X(l) dt = - 2 sin s , 
Sx Jo ^y Jo 

P ^ / x ^ f V du 8u \ , f* . A ^ , 
u = \ — (t) dt = - — vv + — vx dl = 2 sin t dt 2(1 -* cos s) , 

J 0 35 J o \ ^ ^V / J 0 

дu дu õu „,. ч 

— = T v* + — Ь = --(1 - c o s 5 ) • 
õv дx õy 
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Thus, the problem (3.1), (3.2) reads in our case 

A 2 u = 0 in G , (3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

u = goo ~~ 2 ( 1 — cos - ) = 2 — x on F0 , 

дu s x 
— = goi = 1 ~~ c o s ~ = 1 on F0 , 
дv 2 2 

u = glO = ^( l — COS 5) = 2(1 — x) OП F! , 

— = gu = —2(1 — cos S) = —2(1 — x) on FA . 
дv 

Obviously, the loading is in the static and m o m e n t equilibriums on both curves 
and (g0, gi) e JV2

1}(F) x L2(F) — the functions are actually much smoother . 

Using the m e t h o d of least squares on the boundary, let us choose in this illus­
trative example s = 1, t = 1, xt = yt = 0 in (3.9) so that we have 

иц(*> y) = flui • 1 + tfii2* + a113y + bi 
x 2 — y2 — 2xy 

+ blll2~ 4 x2 + y2 x2 + y2 

+ 61112 
x2 + y2 + Ь ц 

- y 
Í 4 

x2 + y2 
+ cltl ìn(x2 + y2) + a n l l r n ( x , y) + 

+ « n 12 r12(x, y) + a n l 3 r 1 3 (x , y) , 

Let us remind that we have 

(3.26) r n = l , ^ = 0 , r12=x, - ^ = vx, r ] 3 = y, v = ^ o n / i 
Ov Ov Ov 

and 

(3.27) r u = 0 , ^ ± = 0 , r12 = 0 , ^ = 0 , r1 3 = 0 , ^ = 0 on E0. 
Ov Ov Ov 

To obtain the values of a m , • ••, ai.113, we use the system (3.20) (see Tab. 3.1) 
which represents 11 equations for 11 unknowns. Constructing this system, we have 
for example 

^-L:i<'+\Mis+\Mi'+L:iis+ 

Jn£Mn(S^-J> 
-\/ůs+L 

+ 
/»4т 

Jo 
(*4-n /»4~ 

02 ds + | 02 ds -f 
0 

l 2 ds + 02 ds + 0 2 d.s = 6ҡ 
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T a b . 3.1 

ai\\ a\\2 ű п з 
b\\\\ b\\\2 bшз b\\\4 <Til a i ì п a l l l 2 a l 11 3 

(1) вn 0 0 0 0 0 0 47r ln 4 2тr 0 0 12тr 

(2) 0 15тr 0 0 0 Зтr 0 0 0 Ъn 0 - 1 8 т r 

(3) 0 0 15тr 0 0 0 ~37Г 0 0 0 Зтr 0 

(4) 0 0 0 67Г 0 0 0 0 0 0 0 0 

(5) 0 0 0 0 67Г 0 0 0 0 0 0 0 

(6) 0 Зтr 0 0 0 67Г 0 0 0 — 7Г 0 - 4 т r 

(7) 0 0 - З т r 0 0 0 67Г 0 

4 т r l n 2 4 

0 0 тr 0 

8 т r l n 4 

(8) 47r ln 4 0 0 0 0 0 0 + 12.7Г 0 0 0 + 12тr 

(9) 2тr 0 0 0 0 0 0 0 2тr 0 0 47Г 

(10) 0 Зтr 0 0 0 — 7Г 0 0 0 37Г 0 — бтr 

OD 0 0 Ъn 0 0 0 7Г 0 0 0 Зтr 0 

since zt(x, y) = 1 so that dz1jds = 0, dz^jdv = 0, 

dz 
ás + 

/ \ f f dz, ôz2 , r dzx dz: 

( z l s z 2 ) r = z x z 2 d s f — ^ d s + — - - ^ 
JTo JTo^ s ds Jrodv dv 

Ç r dzí dz2 A [ dz1 

+ Z i Z 2 d s + — - — ^ d s + —-
JTt Jnds ds Jr^v 

rAn s r4n ( s \ rl 

= 1 . 2 cos - ds + 0 . ( - sin - ds + 
Jo 2 J0 V V J0 

/•27T /*2JX /»27t 

1. cos s ds + 0 . ( -s in s) ds + 0 . (-cos s) ds = 0 
Jo Jo Jo 

дz2 

дv 

0 . cos - ds + 
2 

because 

further 

z2(x, y) x = 

, 2 cos - on F0 , 
2 

cos s on F! ; 

ds ds dv dv 

< z " r " ) r - L ( s ' 
f / dZí drW dz\ dríi\A 

+}rXírii+^Tí+^^r 
p2n 

= 0 + (i J + 0 . 0 + 0 .0) ds = 2TT 

because of (3.27) and (3.26), etc. 
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From Tab. 3.1 it is evident that the solution of the given system reduces to the 

solution of four very simple systems. From (4) it follows bun = 0? from (3), (7), 

(11) we get a_ 1 3 = 0, b1114 = 0, a 1 1 1 3 = 0; similarly we get bm2 = 0, c___ = 1, 

« i t i i = l n 4 > ; «it i = 2 - In 4, a112 = - 1 , a 1 1 1 2 = - 1 , b1113 = 0. 

Thus the result is 

(3.28) uu(x, y) = In (x2 + y2) - x + 2 - In 4 + rtl(x, y) In 4 - rl2(x, y) . 

Hence the required approximation Uit(x, y) of the Airy function is 

Uu(x, y) = In (x2 + y2) - x + 2 - In 4 . 

In our case it represents the exact solution. 

The reader can check immediately that the function (3.28) fulfils all the boundary 

conditions (3.22) —(3.25) (exactly, in our case). 

The components of the corresponding stress-tensor are 

a - d 2 U t i - . 2 ( * 2 - > ' 2 ) 
dy2 (x2 + y2)2 ' 

_ d2Uti _ 2(x2 - y2) 
UУ ' 

ôx2 (x2 + 

4xy 

y2)2' 
UУ ' 

Txy ~ (x 2 + y2y • 

If we introduce polar coo rdinates by 

x • = r cos (ú , y = r SІП (O , 

we get 

°~x 
2 

~V2 (cos2 æ — sin2 (ú) = 
2 
— cos 
r2 

cтy = -°x = 
2 

cos 
r 2 

2cD , 

4 . 2 . 
T_.y = — sin cD cos cO = — sin 2cO . 

r 2 r 2 

E x a m p l e 3.2. Let us investigate a rectangular wall-beam with a circular hole, 

loaded as shown in Fig. 4. The parameter s of the length of arc is chosen so that on F0 

we have s = 0 at the point B(a, - b) and 0 _g s < 4a + 4b, on F_ we have 5 = 0 

at the point (r, 0) and 0 = s < 2nr. The orientation of the curves F0, J \ is evident 

from Fig. 4. 

First, let us determine the functions g0, gt. 
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On F1? we have (taking the orientation of this curve into account) 

s s s s 
x = r cos - , y = — r sin - , vx = —cos - , vy = sin- , 

r r r r 

Further, 

5 S 
X(s) = p cos - , У(S) = — p sin - , 

r r 

У 

1 1 7 

D(-a,b) 

ŕ 
-— ^ ч 

т 
Cïcr.fcf 

l"0 

У 
0 

\ 
; 

X 

E(-%,-Ь) 
-— ̂  nş.-ы 

A(-a,-b) 
P=aq P=aq 

fa.-ЬJ 

Fig. 4. 

so that according to (1.7), 

дu 

ôx -í/< t) dt = pr í 1 — cos 

— = I X(t) át = pr sin-
dy j o 

and by (1.8), (1.9), 

(3.29) u = gl0 = Pr2 (cos - - 1 J = pr(x - r) , 

~ = gii = pr(l - cos ^J = p(r - x) . 

On F0 we have first X(s) = 0 so that 

?.-o'. 
dy 
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Further by (1.7), 

дu 

ôx 
Y(t) át = 0 for 0 = s < 2b , i.e. on BC , 

q(s - 2b) for 2b = s < 2b + 2a , 

2aa 

2aa 

aa 

0 

Using (1.8), (1.9), we get 

for 2a + 2b = s < 2a + 4b . 

for 4b + 2a = s < 4b + | a . 

for 4b + fa = s < 4b + \a 

for 4b + ~ a = s < 4b + 4a 

i.e. on CD , 

i.e. on DA , 

i.e. on AE , 

i.e. on EE , 

i.e. on FB . 

(3.30) " = goo = 

- Џs - 2bУ 

on BC, 

on CD, 

= — 2aa2 on DA , 

= — 2aa2 + 2aa(s — 2a — 4b) on AE , 

= — aa2 + aa(s — 4b — | a ) on EF , 

(3.31) õu 
дv 

= 0 

= 4701= ° 

= 0 

= —2qa 

= 0 

In our numerical example, let us choose 

a=2, b = 2 , r = l 

Thus we solve the problem 

(3.32) 

(3.33) u = g00 

P = 1 

on FB, 

on BC, 

on CD, 

on DA , 

on AB. 

я = 2 . 

А2u = 0 in G, 

= 0 on BC, 

= - ( 2 - x) 2 on CD, 

= - 1 6 on DA; 

= 8x on AE, 

= - 4 + 4x on EF, 

= 0 on FB on ro 
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(3.34) ~ = goi = 0 on BC, 

= 0 on CD, 

= - 8 on DA, 

= 0 on AB on F0 , 

(3.35) u = g10 = x - 1 , on Fi , 

(3.36) — = gu = 1 - x , on Fx. 
Oy 

Evidently, the loading on both the curves F0 and F_ is in the static and moment 
equilibriums and (g0, gi) e PV_1}(r) x L2(F). 

To solve approximately this problem by the method of least squares on the bound­
ary, put in (3.9) 5 = 3, t = 1. Choosing x_ = y! = 0, we get 

(3.37) u31(x, y) = a3ii • 1 + <*3i2* + «3i3y + a314(x
2 - y2) + 

+ a3l5 . 2xy + fl316(-y
2) + a3il(x

3 - 3xy2) + a318(3x2y - y3) 

+ a3i9(-3xy2) + «3 i io ( -y 3 ) + 

x2 — v2 — 2xy _x 

+ 

x 2 + / J x' + y2 ° "V+y 2 

+ 63114 - ^ - _ + c 3 i n m (x 2
 + y2\ + 

x2 + y2 y 

+ a 3 1 1 1 r u (x , j;) + a 3 l i 2^ (x , y) + ff3U3r13(x, y) . 

The system (3.20) for the unknowns 0311* •••» a3ii2 is given in Tab. 3.2. We have 
for example 

^-Lh+^+erty+ 
C ( dz$ Sz4 dzs 6 , \ 

+ ( z 5 z 4 + -—"— + - r ^ - ^ i \ H < ; 

J\5z4 ds = j % ( 4 - j,2) dy + J%x(x2 - 4) dx + p ( _ 4 y ) ( 4 _ y 2 ) d„ + 

2 ( - 4 x ) ( * 2 — 4 ) d x ^ Q > 
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Tab. 3.2 

aЗÍÍ ö312 ö313 ű
зi4 

aЗÍ5 ^316 
aзп ö318 ö319 

(1) 22-2832 0 0 0 0 -45-8083 0 0 

1 

0 

(2) 0 680914 0 0 0 0 -102-4000 0 -395-7810 

(3) 0 0 68-0914 0 0 0 0 102-4000 0 

(4) 0 0 0 506-1410 0 274-3638 0 0 0 

(5) 0 0 0 0 710-9410 0 0 0 0 
(6) -45-8083 0 0 274-3638 0 339-1892 0 0 0 
(7) 0 -102-4000 0 0 0 0 5764-8331 0 6291-1677 

(8) 0 0 102-4000 0 0 0 0 5764-8331 0 
(9) 0 -395-7810 0 0 0 0 6291 1677 0 6965-0143 

(Ю) 0 0 -293-3810 0 0 0 0 391-3384 0 

(П) 0 0 0 71-6387 0 41-3171 0 0 0 

(12) 0 0 0 0 -178-3806 0 0 0 0 

(13) 0 11-1416 0 0 0 0 78-5251 0 -21-7501 

(14) 0 0 -11-1416 0 0 0 0 -5-4750 0 

(15) 26-4038 0 0 0 0 -1810217 0 0 0 

(16) 0 9-4248 0 0 0 0 0 0 -11-7810 

(17) 0 0 9-4248 0 0 0 0 0 0 

(18) 6-2832 0 0 0 0 0 0 0 0 

f 7 T 7 1 * - . ^ ( M j ^ J O d j + f r-^(x,2)l|"-fi(x,2)ldx 
J F o ds ds J _ 2 dy dy J_ 2 [_ dx J[_ dx J 

+r,[-f?<-2"_[-^-2"_d'+ 

r2 a? ?)7 r2 r2 

+ _ _ ( x , _ 2 ) ^ ± ( x , - 2 ) d „ = 4.(-2y)dy+\ (-4). (-2x) dx + 
J-2 SX dX J _ 2 J _ 2 

+ I 4.2ydy + í ( -4) 

JTo dv dv J_ 

+ 

. 2x dx = 0 , 

Џ(2,y)д-^(2,y)dy + 
1 ox ox 

дzд. 
^ ( x , 2 ) ^ ( x , 2 ) d x 

; дy дy 

+ ÏI ~f(-2,y) 
дx 

^ < - 2 , , ) «+?.,[->-*} 
. [ " - _ _ : ( x , - 2 ) l d x = í 2>>.4dj;+í 2 x . ( - 4 ) d x + í (-2y) . 4dy 

+ í (-2x).(-4)dx = 0, 
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a
3110 bзш ^3112 ^зiiз ^3114 

C
311 

a
3111 

a
3112 

a
зuз 

0 0 0 0 0 26-4038 0 0 6-2832 - 111-6165 

0 0 0 11-1416 0 0 9-4248 0 0 244-0914 

-293-3810 0 0 0 -11-1416 0 0 9-4248 0 - 2-6667 

0 71-6387 0 0 0 0 0 0 0 - 245-4667 

0 0 -178-3806 0 0 0 0 0 0 0 
0 41-3171 0 0 0 -1810217 0 0 0 2600914 

0 0 0 78-5251 0 0 0 0 0 - 409-6000 

1 391-3384 0 0 0 -5-4750 0 0 0 0 17-8667 

0 0 0 -21-7501 0 0 -11-7810 0 0 -1547-7810 

1990-7120 0 0 0 11-5627 0 0 -11-7810 0 10-6667 

0 28-8584 0 0 0 0 0 0 0 - 37-6865 

0 0 290295 0 0 0 0 0 0 0 

! o 0 0 11-8883 0 0 31416 0 0 35-1416 

11-5627 0 0 0 11-8883 0 0 -3-1416 0 1-3982 

0 0 0 0 0 47-1715 0 0 0 - 218-8012 

0 0 0 3-1416 0 0 9-4248 0 0 9-4248 

-11-7810 0 0 0 -3-1416 0 0 9-4248 0 0 
0 0 0 0 0 0 0 0 6-2832 6-2832 

z5Zл. ds = 1 ( — 2 cos s sin s) (cos2 s — sin2 s) ds = 0 
JTi Jo 

í ÔZ5 02 

Г j дs õs 
ás = 

дz5 Vv + 
ôzл дzл. 

vv + —± vx ds = 

L 
дz5 дz, л 

ds 
дv õv 

dx dy ) \ dx dy 

( — sin3 s cos s + sin s cos3 s) ds = 0 , 

dz5 dz5 \ /dz4 Oz4 

p Vx + irv>)hrv* + irv> , d 5 = 

r j \ dx dy ) \ dx dy 

( —cos3 s sin s + cos s sin3 s) ds = 0 

so that 

(^5> z 4 ) г = 0 . 

(A little routine yields this result more rapidly, if the simple form of the functions 
z 4 = x 2 — y2, z5 = 2xy is considered.) 
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The matrix of the system is obviously symmetric. Similarly as in Example 3A, 
the system "degenerates" into simpler systems containing no more than 6 unknowns 
in our case. The result is 

t i3 t = -4-3600 + 4-000x - 0-0732y -

- 0-6745(x2 - y2) + 0-0000 . 2xy + 0-4046 . ( - y 2 ) + 0-0000(x3 - 3xy2) + 

+ 0-0049(3x2y - y3) - 0-0000 . (~3xy2) - 0-0063 . (-y3) -

- 0-2108 . __________ + o-OOOO . ~2xy - 0-0000 . + 
x2 + y2 x2 + y2 x2 + y'2 

+ 0-0820 . —~£ 0-6455 In (x2 + y 2 ) - 3-0000ru(x, y) + 
x2 + y2 

+ 0-0926r12(x, y) + 3-3599r13(x, y) 

so that the required Airy function is 

U3l = - 4-3600 + 4-000x - 0-0732y -

- 0-6745x2 + 0-2699y2 + 0-0147x2y + 0-0014y3 -

2 2 

- 0-2108 . X - y - 0-0820 . =--— - 0-6455 In (x2 + y 2 ) . 
x2 + y2 x2 + y2 

In figs. 5 — 7, the components 

„ = _!__- „ = _ _ _ ! r - _ _ _ _ 
Gy Cor dx oy 

of the (approximate) stress-tensor are sketched in the cross-section y = — 1-5, 
- 2 = = x ^ 2. 

In the following example we show how to proceed if the requirement of equilibrium 
of the loading on each of the boundary curves separately is not fulfilled. 

E x a m p l e 3.3. For illustration, let us consider the same annulus G as in Ex. 3.1, 
with its centre at the origin and with the inner and outer radius r± — 1, r0 = 2, 
respectively, loaded as shown in Fig. 8. The orientation of the boundary curves F0, Ft 

as well as the choice of the points A e F0, B e Fx with s = 0 is also obvious from 
the figure. 

We have 

s s s s 
x = 2 cos - , y — 2 sin - , vx = cos - , vv = sin - on F0 , 

2 2 2 2 

x = cos s , y — — sin s , vx — —cos s , vv = sin s on ri . 
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-2 -1,5 -1 -0,5 0 0,5 1 1t5 2 x 

Fig. 5. 

Fig. 6. 

Fig. 7. 
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A simple computation yields 

du 
on F0: 

(3.38) 

дx 
= - ľ Y(t) át = 

,0 for 0 = s = Зтc, 

— P for Зтr < s < 4тc 

õu 

7У 

= 0 , 

дu 

~дv 

u = 

0 for 0 = s = 3 я , 

4 — P cos - for Зя < s < 4тc ; 
2 

0 for 0 = s = Зя , 

- 2 P cos - for Зя < s < 4я ; 
2 

Similarly, on rl we get 

(3.39) 
дu 

ôv ~ 

u 

0 for 0 < s < ~ , 
_ / 2 

\ я 
— Pcoss for - < s < 2я , 

2 

0 for 0 < s < - , 

= / 2 
\ л n я 

P cos s íor - < s < 2я . 
2 
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The loading on F0 as well as on Fx is not in a static equilibrium (as evident from 
Fig.8). It follows that, for example, the function u(s) is continuous neither at the 
point A on F0 nor at the point B on Ft. From (3.38), (3.39) we easily compute 

(3.40) lim u(s) - u(0) = - 2 P on F0 , 

lim u(s) — u(0) = P on Ft . 
s -* 2 n — 

Similar relations can be derived for dujdv. 
To be able to apply the method of least squares on the boundary in its original 

form, we can use the well-known result from [4], Sec. 2A0:11) The functions 

(3-41) <p(z)=-£±^ln(z-zi), 
2K(1 + x) 

., , x(X - i Y ) w x 

2TT(1 + x) 

produce a state of stress in G (with a single-valued displacement) with the main vector 
(X, Y) and a zero moment on rt. Here z t is an arbitrary point lying in the interior 
of rt, x = (A + 3/i)/(A + /L), where A and /i are the Lame constants. In our example 
we can choose for example zt = 0 and then put (see Fig. 8) 

X = 0 , Y= - P 
so that 

cp(z) = In z , i//(z) = In z . 
V ; 2rc(l + x) W 2TC(1 + x) 

To get the Airy function corresponding to these functions by 

(3.42) u = Re (zcp + x) 

we compute 

* ( z ) = - ^ - z ( l n z - l ) 

and writing In z = In r + icO, we get by (3.42) 

(3.43) u = 1 Re [z iP In z + ixPz(ln z - l)] = 
27l(l + x) 

p 
[ —(l + x) xco + xy + (l — x) y In r] . 

2я(l + x) 

X 1 ) Actually we try to find a "particular solution" which will produce the same static inequi-
librium as is the given one, not changing the given moment which is equal to zero in our case. 
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From (3.43) it follows easily — by putting x = 2, y = 0 o r x = 1 , y = 0 (the 
coordinates of the points A or B), respectively, and taking into account that co 
increases or decreases by 2n or — 2n when we run along F0 or Fx in the positive sense 
of its orientation — that the function (3.43) fulfils (3.40). Similarly, it is possible to 
verify analogous relations for dujdv. Thus we can take the function (3.43) as a "parti­
cular solution" of our problem and perform the algorithm of our least squares method 
with the function 

3 

Ust(x> y) = " p a r t i * * y) + Ust(x, y) + £ CC^jT^X, y) , 
1=1 

where upart.(x, y) is the function (3.43) and Ust(x, y) and rtj(x, y) are the functions 
(3.10) and the singular functions introduced above, respectively. Note that the values 
of the function (3.43) on F0 as well as on Fj can be easily computed which is of 
importance for further numerical calculations. 

From Ex. 3.3 it is easy to see how to proceed in a general case. The idea is to 
"remove" the inequilibrium on the inner boundary curves by finding a proper 
"particular solution". Most frequently, it is convenient to use functions of the type 
(3.41), with suitably chosen points z,-.12) In other problems it may appear that 
another type of a particular solution is more convenient. 

In the next issue of this journal, Part II of the present paper will appear, containing 
proofs of Theorems 3.1 and 3.2 from p. 379 as well as of Lemma 2.4, p. 369. 
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