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QUALITATIVE ANALYSIS OF BASIC NOTIONS
IN PARAMETRIC CONVEX PROGRAMMING, II

(Parameters in the objective function)

MOHAMED SAYED ALI OSMAN

(Received September 15, 1975)

A short survey of recent results in the field of parametric convex programming
from the qualitative point of view can be found in [4].

In this paper the same notions as those introduced in [4], i.e. the notions of
the solvability set, the stability set of the first kind and the stability set of the second
kind, are defined and analyzed qualitatively for the problem

(11) min } 4, &,(x),
a=1
subject to
M={xeRg(x) <0, r=1,2...,1},

where @,(x), a = 1,2, ..., m; g(x), r = 1,2, ..., I are convex functions possessing
continuous first order partial derivatives on R" (the vector space of all ordered n-tu-
ples of real numbers) and A,,a = 1,2, ..., mare arbitrary nonnegative real numbers.

The restriction set M is supposed to be nonempty and fixed.

1. CHARACTERIZATION OF THE SOLVABILITY SET
Definition 1. The solvability set of problem (1) denoted by B, is defined by

m
(1) B = {1e'R%[min ) A, ®,(x) exists},
xeMa=1
where 'R7 denotes the nonnegative orthant of the 'R™ vector space of parameters

Lemma 1. If the set B is defined by (1), then it is a cone with vertex at A = 0.
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Proof. It is clear that A = 0 is a point in B. Let us assume that e B, Z = 0, then
there exists X € M such that

¥ Cba()‘c) =min Y A, ,(x)
a=1 xeMa=1
and therefore, for all 0 < t < o0 we have
Y11, @,(X) = min Y 12, P(x),
a=1 xeMa=1

i.e. A¥ € B, where A* = t1, 0 < t < oo and hence the result.

Lemma 2. If problem (11) is solvable for A', 2* (A" 4 %), then it is solvable for
all A = p At + ppd?, py + py = 1 (pg 2 0, py = 0) iff for the problem

1y mig [y Hi(x) + o Ho(x)], sy 4+ =1 (1 20, p, 20),
where
Hi(x) = Y Al d,(x), i=1,2
a=1
the solvability set B” is convex in 'R2, where
B~ = {(u, pZ)E'RZ/miAr: [ Hi(x) + py Ha(x)] exists, uy + pp = 1(pg 2 0,11, 2 0)}.

Proof. i) Suppose that if problem (II) is solvable for A', A2 (A' & A?), then it is
solvable forall A = p(A' + ppA%, py + py = 1 (g = 0, pi, = 0)and let (uf, u3)eB~;
then there exists x* € M such that

m

() S (utha + u1322) B (x*) S Y (ufhe + p322) Dy(x), VYxeM.
a=1

a=1

Further let (/2,, f,) € B~, then there exists £ € M such that
() S (2 + 222) DAR) £ 3 (A40 + 0,02) B(x), VxeM,
a=1 a=1

where ui; 13 A3 s Z 0, pf + p3 =1, iy + 2, = 1. Let us denotey, = piA' +
+ u3A%, y, = A" + fi,4%. From (2), (3) it follows that problem (II) is solvable
for 74, y, and by the assumptions of the lemma it is solvable for all y = (1
— )y + wy,, 0<w=1, and hence (1 — ) (uf, p3) + o(fy, ;) €B~, 0
< w £ 1, i.e. the set B™ is convex.

A1

i) Assume that the set B~ is convex and let (u}, u3) e B~, (41, ;) € B, then it
follows that (1 — ) (uf, u3) + w(fy, fi;)eB™, 0 < w £ 1, therefore, if y, € B,
7, €B, 9, # 7, then (1 — w)y, + wy,eB, 0 £ w < 1, where y;, y, are defined
in i). '
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Remark 1. If problem (II)' is solvable for y; = 0; u, = 1, then

min [y Hy(x) + p, Hy(x)] = min Hy(x) = min Y 22 &,(x),
xeM xeM 1

xeMa=

and if it solvable for p; = 1; u, = 0, then

min [g; Hi(x) + p, Hy(x)] = min Hy(x) = min Y ' ,(x).
xeM 1

xeM xeM a=

Lemma 3. If f,(x); f,(x) are convex functions on M such that f(x) = 0; f,(x) = 0
for all x e M, then

max [f;(x), ()] < fi(x) + f(x), YxeM,

and the functions max [f,(x), f(x)]; fi(x) + f,(x) are convex on M, where M is
defined in problem (11).

Proof. Let
Al = {xeM[fi(x) z ,(x)},

A, = {xe M[f(x) < f)(x)},
then
max [fy(x), f,(x)] = fi(x) < fi(x) + f(x), VxeA,,

max [fi(x), f,(x)] = fo(x) < fi(x) + f,(x), VxeA,,

which implies that max [f,(x), f(x)] = fi(x) + fy(x), Vx € M. The convexity of the
function max [fy(x), f,(x)] follows from the fact that

max {f,[(1 — o) x' + wx?], §,[(1 — 0)x' + ox?]} £
max {[(1 = ) f(+) + 06,6, [(1 - ) 6() + 0 LA S
max [(1 — o) f(x"), (1 — w) f,(x")] + max [ f,(x?) + o f(x*] =
= (1 = o) max [0, B0 + 0 max [6,(2), 0]

forall0 £ w = 1.
The convexity of f,(x) + f,(x) is clear [3], [5].

IIA

iIA

Lemma 4. If f,(x), f,(x) are strictly convex and closed functions on M [6] and
min [f(x)], i = 1,2 exists, then both the sets A(k), A,(k) defined by
xeM

4 A,(k) = {x e M[f(x) £ k},
(5) Ay(k) = {x e M[fy(x) = k}

are bounded for all k € 'R and such that A,(k) # 0, A,(k) * 0.
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Proof. Let mmf(x) = f(x') = ki, i = 1,2, where x' e M, x? e M.
Then the sets /11(/(1) Ay(k,) given by

Ay(ky) = {xe M[fy(x) £ Kk} ;

Ay(ky) = {x e M[fy(x) < k,}

are clearly bounded since A,(k;) = x', A,(k,) = x> (which follows from the strict
convexity of the functions f,(x), f,(x) on M). Therefore, a lemma given in [6] (this
lemma states: “The nonvoid level sets $(«) = {x eR"[f(x) < a} of a closed convex
function f are either all bounded or all unbounded”) implies directly the results.

Remark 2. The nonvoid level sets [6] {x e M[f(x) < k, ke'R} are bounded
iff the nonvoid level sets {x € M/f(x) +ask ke 'R} are bounded for any constant
aeR.

Lemma 5. If the assumptions of Lemma 4 are satisfied, then the sets F(k) defined
by

(6) (k) = {x e Mf,(x) + f(x) < &}
are bounded for all k € 'R such that F(k) * 0.

Proof. From the assumptions it follows that there exist constants a;e R, i = 1,2
with a; > |min f,-(x)], i = 1,2 such that
xeM '

f(x) +a;, 20, i=12 forall xeM.
From Lemma 3 we have
max {[f;(x) + a(], [f2(x) + a,]} = fi(x) + fo(x) + a; + a,
and therefore
{x e M[fy(x) + f,(x) + a; + a, £ k} <
< {x e M/max {[fi(x) + a,], [fo(x) + a,]} = k}.
It is clear from (4), (5) that
) {x € Mmax [1,(x). 69T £ K} = 4,6) 01 45 (6)

and hence the result follows from Lemma 4, Remark 2.

Theorem 1. If f,(x), f;(x) are strictly convex and closed functions on M [6] and

min fi(x), i = 1,2 exists, then
xeM

min [fi(x) + f)(x)] exists.
xeM
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Proof. Let us define the sets denoted by C, D as follows:

C = {ke'R[A((k) n Ay(k) = 0} (see (7)),

D = {ke'R[I(k) + 0} (see (6)).
It is clear (see [4]) that C & @, D + 0. It follows from Lemma 3 that D = C. From
the assumptions and from Lemma 1, Lemma 2 it follows that the sets C; D are convex,

closed and unbounded subsets of the real line and C has the form C = [ko, oo) where
ko = min {max [f:(x), f,(x)]}- Hence mln [f (x) + f5(x)] exists.

xeM

Corollary 1. [f all the assumptions of Theorem 1 are satisfied, then all problems
of the form

min [py f(x) + g f2(x)], w20, p, =0
xeM
are solvable.

Remark 3. It should be noted that Theorem 1 can be proved under the assump-
tions that the functions f,(x), f,(x) are closed, convex on M and min f,(x), i = 1,2
exists such that both the sets

my, = {x* e M[fy(x*) = min fi(x)},
m = {x* e M[fy(x*) = mm fo(x)}
are bounded (see the proof of Lemma 4).

Theorem 2. If the set U is defined by
(8) U = {deB|m,(2) is bounded} ,
where B is given by (1), and
©) M) = (F M]3 2,0,5) = min 35, 2]
then U is a convex set.

Proof. Let 2' e U, 2> € U(A' # 4?), then

min 2) P (x) = mm H(x) exists,

xeMa=1

and
m

min Z ha Dx) = mm H,(x) exists .

xeMa=1



Since the functions H,(x), H,(x) are continuous and convex on R, they are convex
and closed on M (since lower semicontinuity is equivalent to closedness over R")
and hence from Corollary 1, Remark 3 it follows that

min [y Hi(x) + py Hy(x)] exists, py +py =1, p 20, up =0,

ie. min Z(ﬂll + paAl) D x) exists, gy Fpy=1, p; =0, p, =0,
xeMa=1

and hence uA' + p,A%2eU for all py + pu, =1, p; =0, p, = 0, therefore U is

convex.

Remark 4. If B = U, then the solvability set of problem (II) B is convex.

Corollary 2. If the set M is bounded, then (8) implies that B = U and therefore B
is convex by Remark 4.

Corollary 3. If the functions @ (A) a=12, , mare strictly convex on M, then
(8) implies B == U, and therefore B is convex by Remark 4.

Lemma 6. If for problem (1) m,,(2) is defined by (9), then it is convex and closed
in R

Proof. If mom(l) is a one-point set, or the empty set, or the whole R"-space, the
result is clear. Suppose that x', x* are two points in m,,,(4), then the convexity of the
set M and the functions @,(x), a = 1,2, ..., m, yields

Y2 P[(1 — ) x' + ox?] S (1 — @)Y 2, 0(x") + 0 2, D (x?) =
a=1 a=1 a=1
= min ¥4, 00x), 0S0=1
xeMa=1
and hence (1 — w)x" + wx®>em,(7) for all 0 £ w < 1, ie. the set my, () is
convex. Assume that X, € mop,()‘), n=1,2, ... is a sequence of points which con-
verges to %. Then

3

.,Z Ja PX,) = min [ :i 2a Po(x)]

fim 28430 = mia [ £2.040]

From the finiteness of the sum and the continuity of the functions ®,{x),a = 1,2, ...
., m, we have

Z/l (I)(llmx,,)—Z/l ?,(%) = mm[Zlad)(x)]

n— o

Hence % € mop(%) and the set m,,(2) is therefore closed.
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Remark 5. If <I>,,(x), a=1,2,..., m are strictly convex functions on M and

min ®,(x), @ = 1,2, ..., m exists, then the solvability set of problem (II) B is given
xeM

by B = 'R™.
Theorem 3. If the solvability fuction of problem (11) denoted by &(4) is defined by
(10) A =min[ Y A, P(x)],
xeM a=1

then it is concave on U, where U is given by (8).

Proof.If A, A% are any two points in U, then by Theorem 2, (1 — w) A' + wA’eU
for all 0 £ w < 1, and therefore

= )2 + 0i?] = min 3 [(1 — ) 2 + wi2] &,(x)

xeMa=1

v

(1 — w)ymin Y 4, @,(x) + o min Y i; & (x) =
xeMa=1 xeMa=1

=(1 —w)il)+wii), 0so=1.

Hence the function &(4) is concave on the set U.

Corollary 4. If the functions ®,(x), a = 1,2, ..., m are strictly convex on M,
or if the set M is bounded, then the solvability function (%) is concave on B (see
Corollaries 2 and 3).

2. CHARACTERIZATION OF THE STABILITY SET OF THE FIRST KIND
Definition 2. Suppose that 1 e B with a corresponding optimal point X, then the

stability set of the first kind of problem (I) corresponding to X denoted by S(X)
is defined by

(11) S(x) = {ie B/é:l,l,, 2,(5) = min [él;.a o, (x)]) -

Lemma 7. If the set $(X) is defined by (11), then it is a cone in 'R™ with vertex at
A=0.

Proof. It is clear that 0 e $(X). Suppose that 2* € §(X), A* # 0, then Y. 4 ®,(X) =
a=1

= min [ ) 27 &,(x)] and therefore ) 12} @,(X) = min [ ) tA7 &,(x)] forall 1 > 0,
xeM a=1 a=1 xeM a=1

i.e. 14* € §(%) for all t > 0. Hence the result.
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Theorem 4. If the functions g(x). r = 1,2, ..., 1 (see problem (II)) satisfy any
one of the constraint qualifications [1], [3] (for example Slater), then the set S(x)
is convex and closed in 'R™,

Proof. If S()‘c) is a one-point set, or the empty set, or the whole nonnegative
orthant of the 'R™ space, it is convex and closed. Suppose that A' € §(X), 2> € §(%),

' 4 2%, then there exist u' € R’, u? € R' such that (X, u') and (X, u?) solve the Kuhn-
Tucker problem [1], [3], i.e.

2/1162»()_;.;“ m-—()_O a=1,2,...,n,

g(X)<0; ug(X)=0, r=12,...,1,
uy =0, relyc{,2,...,01}, u 20, re{l,2,...,0} =1,
and

YA T @ =0, a=12 o,

a=1 ré¢ly
g(¥)s0; ulg(x)=0, r=1,2...1,
ul =0, rel,c{,2, ...}, u}20, re{l,2,...,0} —1,.

Hence we deduce that for all0 £ w = 1,

ST — w) 4y + 02
a=1

Do+ Y wrE () =0, a=12 . ,n,
’)x ré(linlz) 0)»(1

g(X)=0; ufg(x)=0, r=12...,1,
uf =0, relynly, uf 20, re{l,2,..,1} =(I,nl,),
where

uf =(1 - w)u,, re[{L,2, ..., 0} = l4] 1y,

= wu?, relyn[{1,2,...,0} = 1,],

=(l-wu +oul, re[{l,2, ...} = L]n[{1,2, ..} = 1,],

=0, relynl,.
Therefore it follows from the sufficient optimality theorem of Kuhn-Tucker [1], [3]
that (1 — w) A" + wi? e §(X) for all 0 < w =< 1. Hence the set $(X) is convex in 'R™.
Assume that 1 is a boundary point of §(x), then for any interior point A° of §(x)
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the open line segment (4% 2) lies in S(¥) due to the convexity of S(X). For any
2 €(2° A) we have

YA PR) S Y 2,P,(x), VxeM
a=1 a=1
and therefore
lim Y 4, @,(%) < lim ) 2,®,(x), VxeM.
A=2 a=1 i=da=1

From the finiteness of the sum and the continuity of the functions <1>a(x), a=1,2, ...
..., mon M it follows that

Y lim[2, @,%)] < Y lim [4, P(x)], VxeM.

a=1 A—2 a=1 i-1
The limiting process concerns the path directed from A° to 1 as a straight line, and
since A° is an arbitrary point in int $(X), this path is considered to be arbitrary, and
therefore
2 P(X)

1

Za P (x), VxeM.

1

7![\/]5
I\
ﬁ[\/]s

Hence / € $(X), and therefore the set S(%) is closed.

Theorem 5. If int [S(x') N $(x?)] * 0, then S(x') = S(x?), where S(x'), S(x?) are
the stability sets of the first kind of problem (1) corresponding to x!, x? respectively
(x' * x?).

Proof. Let 2° e int [S(x') n §(x?)], then

(12) YA D (x") =Y Ag @ (x?).
a=1 a=1

"

Assume that A' e §(x'), A' % 1% then there exists 0 < w < 1 such that A* =
= (1 — w)2' + wA° e S(x?), and therefore

Iy @,(x7) Y 25 d(x"), e
a=1

=

1
(1 — @)Y A x?) + 0Y i) D,(x*) S (1 — @)Y 1y Px") + @Y 20 D,(x").
a=1 a=1 a=1 a=1
Using (12) we get
Y e B (xP) S Y A B (x") Y 2 D(x), VxeM,
a=1 a=1 a=1

therefore A' € §(x?), and hence §(x') = S$(x?). Similarly it can be shown that §(x?)
< S(x'). Hence S(x') = S(x?).
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In order to have an analytic description for the set $(X) defined by (11), let us
proceed in the following way: We order the functions g,(x), r=1,2,...,1in such
a way that

6{1,2,...,5} if g,(2)=0, s=1,

re{s+1,....1} if g(x)<0.

Consider the system of equations

(13) Z/I—~()+Zu g'(x)-() o=1,2,...,n.

It represents n linear homogeneous equations in m + sunknowns 4,,a = 1,2, ..., m
and u,, r = 1,2, ..., s, which can be solved explicitly.

Suppose that A¥ >0, a = 1, 2, ,myuf=0,r=1,2, , s solve the system
(13), then it is clear that (X, i) solves the Kuhn-Tucker problem [1], [3], where
i, =ul,r=12,...,5i =0r=s+1,...,1and hence 2* € §(X). Let us define
the set denoted by p(/l, u) as follows:

(14) p(Z, u) = {(4, u) e 'R x R%[(4, u) solves (13)},

where 'R ; R’ are the nonnegative orthants of the 'R™ vector A-space, and R* vector
u-space, respectively. Then

(15) S(x) = {7 e 'R"/(2, u) e p(4, u)} .
The representation of $(X) by (15) can be used to prove the convexity and closedness
of the set §(X). If g(X) < 0, r = 1,2, ..., [, then it is easy to see that §(X) can be

written in the form

_ D em e, 0D,
S(x)=1{ie RJZA,,T*();):O,ot=1,2,...,n
a=1

0x,

and it is clear that this representation proves the convexity and the closedness of the
set §(X).

It may happen that for some problems, the system (13) has only the trivial solution,
and for such cases $(X) is a one-point set, namely S(X) = {0} .

3. CHARACTERIZATION OF THE STABILITY SET OF THE SECOND KIND

Definition 3. Suppose that 1€ B (see (1)) with a corresponding optimal point X
and 2(1, ) denotes either the unique side of M from those given by {x € R"[g,(x) = 0,
re); g(x) <O0,r¢]} which contains X, or int M. Then the stability set of the second
kind of problem (11) corresponding to X(Z, )) denoted by Q(X(1, ))), is defined by

(16) , Q(=(1, J)) = {4 € Blmoy(2) A 5(%, J) + 0},
where m,,(7) is defined by (9).
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(16) gives a definition for the stability set of the second kind corresponding to
a side rather than to an index set as was done in [4], and this is due to the assump-
tion that the set M is fixed and independent of parameters.

Let us adjoin to problem (II) the following problem

(ry min [ Y 4, ®,(x)],
a=1
subject to
‘M= {xeR'g(x)£0, rel}
where ] is the index set given in the definition of X(%, J).

Lemma 8. If 1€ B with m,(7) < X(1, )), @, is strictly convex on R for at least
one ke{1,2, ..., m} for which I, > 0, then

¥em,, (1)< }::]}.E D (%) = mli]x; [ ;la ?,(x)],

where "M is the same as in problem (Il)’ and

m

Za P(x*) = min LI D, (x)} .

1 XeM a=1

M=z

mop(4) = {x* e RY/

Proof.i) Let X € m,, (1), then g(X) = 0, r ej g(x) <o, r¢Jand hence X ¢ 'M.

I

a

Assume that there exists x* € ‘M such that ZZ,, P(%) > ZZ @ (x*). It is easy
a=1

to prove that there exists w with 0 < @w < 1 such that £ = (l — w) X + wx*e M.
From the convexity of the functions d)a(x), a=1,2,..., m we obtain

Y@ (2) S (1 — )Y 2, %) + 0 Y 1, d(x*) <
a=1 a=1 a=1
<= 0)Y LX) + 0 1, (%) =
a= a=1
=2 1a ®(%)

a=1

which contradicts our assumption, and hence

Y 2y Do) §Z D x), Vxe'M
a=1

i.e.

s

A @ (X) = min [ i Za Do(x)] -
xe’'M a=1

i) Let ’
ZZ (D(x)—mm[}_lzt D (x)]

xe’'M a=1
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If X € M, the result is clear. Suppose that X ¢ M and let x° e X(Z, ]) be an optimal
point corresponding to A(x® # X) with Y 1, ®,(x°) = min Y 1, ®,(x).
a=1

xeM a=1
There exists a point £ = (1 — w) X + wx° e M, 0 < w < 1. Therefore, from the

convexity of the functions fb,,(x), a=1,2,...,m; a %+ k and the strict convexity
of @,(x), we obtain

YA PX) < (I — )Y 2, (%) + © Y T, D,(x°)
a=1 a=1 a=1
and by the assumption

Y ha ®,(x°) <

a=1 a

u[\/];

2y B(5) .
1
Therefore
S A 0(x°) < Y 2, ®,(x),
a=1 a=1

0

which contradicts our assumption, and therefore X = x” which follows from the

strict convexity of @,(x). Hence X € m,(2).

Lemma 9. If the functions @,(x), a = 1,2, ..., m are strictly convex on M and
(A1, )y); Z(2%, ),) are two distinct sides of M then

Q24" J1)) n Q(2(2*, J2)) = {0} .

Proof. Itis clear that A = 0 belongs to all stability sets of the second kind corre-
sponding to different sides of M. Suppose that A* e Q(Z(1', J,)) n Q(X(22, J,)),
2% % 0, then (16) yields

m, (A*) (A 1) + 0,

m,, (A%) N 2(A%, ),) £ 0.

This leads to a contradiction, since mop,(i*) by the assumption consists only of
a single point. Hence the result.

In order to have more properties concerning the stability set of the second kind,
let us concentrate our attention to the problem

n n
(I1), min [ Y 3e;xx; 4+ Y pixi]
i j=1 i=1
subject to the restriction set M,
where [c¢;;], i,j = 1,2, ..., n is a real symmetric positive semidefinite matrix, p;,
i =1,2, ..., n are arbitrary parameters and M is the same set as in problem (II).
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Lemma 10. If 2(p, |,) denotes either a linear side of M or int M, then the stability
set of the second kind of problem (1), corresponding to X(p, ).) denoted by
Q,(2(p, 1)) is convex in 'R” (the vector space of p,,« = 1,2, ..., n).

Proof. The proof will be done for the case of a linear side of M, the proof for the
case of int M being similar. Suppose that p', p® are two points in Q,(X(p, J,)), then
there exist u', u? in R' such that (x', u') and (x?, u?) solve the Kuhn-Tucker problem

[1], [3], where
xl € mopl(p’) o Z(ﬁa JL) ’ Xz € mopt(pz) N Z(ﬁ’ JL) b}
35, ) = {xeRg(x) =0, rel,, g(x)<0,r¢l),

and the functions g,(x), r € J, are linear over M. Therefore,

.Zlczjx}-kp;—i-Zu};—g'(xl):O, o=1,2,...,n,
I=

rejL X,
g(x')=0, rej., g(x') <o, rél,
u; g(x') =0, r=1,2...,1,
ur1=0, ré L, u,';‘O, rel.

and

‘Zlcajxf+pf+Zufg—gl(x2):(), oa=1,2,...,n,
=

rejr X,
g(x) =0, rel., &) <0, rél,
u? g(x*) =0, r=1,2...1,
up =0, r¢l, u 20, rel;.

Hence it follows from the linearity of the functions g(x), re], that for all
0 < w £ 1 we have

'Z]cajx;‘+pf+2u:k§§~’(x*)=0, a=1,2,...,n,
J= a

rejL
g,(x*) =0, re),, g,(x*) <0, ré ..
uf g (x*) =0, r=1,2...,1,
u;k:()a r¢Jl,, u:“go, reJLs

x* = (1 — w)x' + ox?,
p*=(1 —0)p' + 0p®,

ut = (1 — w)u' + ou’.
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This together with the Kuhn-Tucker sufficient optimality theorem [1], [3] implies
that

x* e mg,(p*) 0 2(p, )
forall 0 < w < 1. Hence the set Q,(2(p, J,)) is convex.

Remark 6. It is easy to prove that (see Lemma 9) if [¢;;], i/ = 1,2, ..., nis
a real symmetric positive definite matrix, then the nonempty stability sets of the
second kind of problem (II) corresponding to certain sides of M, int M are mutually
disjoint and all together exhaust the solvability set of problem (II),.

Example. Consider the problem
Minimize
.2 2
[M + X3 + pyxy + szz],
subject to
M= {xeRx] +x3<1, x, +x,£1}.

Fig. a. The set M.

The set M is compact, and therefore B = 'R,. M consists of four distinct sides
and int M (see Fig. a). Let Q; denote the stability sets of the second kind correspond-
ing to the sides 2;, i = 1,2,4,5 while Q; is the stability set of the second kind
corresponding to X2 = int M. Then the sets Q;, i = 1, 2, ..., 5 are obtained in the
form (see Fig. b)

/ » P2 —pr — 220},
Q. ={pe'R?p; <0, py — p, —220},
/

Qs ={pe'R¥pl + p3 <4, p, + p, > =2},

Q
N
|
—
=
m
-]
N
)
-
+
S
N

< -2,-2<p,—p <2},

©
I

={pe'R*lp; >0, p, >0, p; + p5 =4} U
vi{pe'Rp <0, p, >0, pi +p; =4} v
u{pe'Rp; >0, p, <0, pi + p; = 4}.
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The set B is decomposed into the sets Q;, i = 1,2,3,4,5,and Q; n Q; =0, i % j,
i;j=1,23,4,5 The sets Q, i = 1,2,3,4 are convex. The convexity and the
closedness of the sets Q;, Q, follows from the fact that

Q, = 5(1,0),
s, 1),

°2

)
ARNaYsTe

Fig. b. The nonempty stability sets of the second kind.

where $(1, 0), $(0, 1) are the stability sets of the first kind of our problem correspond-
ing to the points (1, 0), (0, 1) respectively.
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Souhrn

KVALITATIVNI ANALYZY ZAKLADNICH POJMU
PARAMETRICKEHO KONVEXNIHO PROGRAMOVANI, 11

(Parametry v cilové funkci)
MOHAMED SAYED ALI OSMAN

V ¢lanku je poddna kvalitativni analyza zdkladnich pojmi parametrického kon-
vexniho programovédni pro konvexni programy s parametry v cilové funkci. Jsou to
pojmy mnoziny pfipustnych parametrii, mnoZiny feSitelnosti a mnozin stability
prvniho a druhého druhu. Predpoklddd se, Ze vySetfované funkce maji spojité
parcidlni derivace prvniho fddu v R" a Ze parametry nabyvaji libovolnych redlnych
hodnot. Vysledky mohou byt pouzity pro Sirokou tfidu konvexnich programi.

Author’s address: Dr. Eng. Mohamed Sayed Ali Osman, Military Technical College, Kahira,
EAR.
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