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SVAZEK 22 (1977) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

QUALITATIVE ANALYSIS O F BASIC NOTIONS 
IN PARAMETRIC CONVEX PROGRAMMING, I 

(Parameters in the constraints) 

MOHAMED SAYED A L I OSMAN 

(Received September 15, 1975) 

A great deal of work has been done in the field of parametric linear programming 
from the theoretical as well as from the computational point of view. From the 
recent work in this direction, let us mention the book [9] "Theorie der linearen 
parametrischen Optimierung" by F . Nozicka, J. Guddat, H. Hollatz and B. Bank 
which appeared in 1974. In [9]. the notions of the set of feasible parameters, the 
solvability set, and the local stability set have been defined and analyzed qualita­
tively. The same notions have been defined and analyzed qualitatively for convex 
quadratic programs by J. Guddat in [7], Other works in parametric quadratic pro­
gramming discuss the effect of infinitesimal changes in the data of the problem on the 
solution vector, such as the papers of J. W. Daniel [3] and J. C G. Boot [2]. Recently, 
some works have related the notions of stability in extremum problems to certain 
directions in nonlinear duality research. For example, R. T. Rockafellar in [10] has 
dealt with stability in the convex case using the conjugate function theory, and he has 
attempted a further development of Fenchel's theory in both finite — and infinite 
dimensional spaces. G. B. Dantzing, J. Folkman and N. Shapiro in [4] studied 
stability in terms of the behaviour of the set of minima in response to right-hand-side 
perturbations. J. P. Evans and F. J. Gould in [6] established necessary and sufficient 
conditions for constraint set stability requiring neither convex constraint functions 
nor convex constraint set, with applications to quasiconvex functions. 

In this paper, basic notions in parametric convex programming are defined and 
analyzed qualitatively for the problem 

(1) min F(x) , 

subject to 

9W(v) = {xe R'7gr(x) S v„ r = 1, 2, ..., /} , 
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where F(x); gr(x), r — 1, 2, . . ., / are convex functions, possessing continuous first 
order partial derivatives on the n-dimensional vector space R" (the space of all 
ordered w-tuples of real numbers) and vr, r = 1,2, . . ., / are arbitrary real numbers. 
These notions are the set of feasible parameters, the solvability set, the stability set 
of the first kind, and the stability set of the second kind. 

1. CHARACTERIZATION OF THE SET OF FEASIBLE PARAMETERS 

Definition l.The set of feasible parameters for problem (l) denoted by 21, is defined 
by 

(1) 21 = {ve'R'/SKOO 4= 0} , 

where 'Rl is the l-dimensional vector space of parameters. 

R e m a r k 1. The set 21 is nonempty, unbounded [6] and moreover, if v e 21, 
then all v in the nonnegative orthant of the parametric vector space 'Rl with the 
origin at v = v belong to the set 21. 

Lemma 1. The set 21 is convex. 

Proof . Assume that v1, v2 are two points in 21, then there exist points x\ x2 

in Rn respectively such that gr(xx) g v1, r = 1, 2, . . . , / and gr(x
2) S vr, r = 1, 2, . . . 

. . . , / . Therefore, (1 - OJ) gr(x') + co gr(x
2) ^ (l - co) v1 + cov2, r = 1, 2, . . ., /, 

for all 0 = co g 1. From the convexity of the functions gr(x), r = 1, 2, . . . , /, [8], 
[11], [12] it follows that gr[(l - co) xl + a>x2] ^ (1 - co) vr + cov2, r = 1, 2, . . . , /; 
0 = co <: 1. Then 9W[(1 - co)vl + cov2] + 0, i.e. (1 - (o) v1 + cov2 e 21 for all 
0 ^ co ^ 1. Hence the set 21 is convex. 

Lemma 2. 1f there is v e 21 such that sJU(v) is bounded, then 21 is closed. 

Proof . Suppose that v e 'Rl is a frontier point of the set 21, then by Remark 1 and 
since any neighbourhood of v has nonempty intersection with 21, it follows that 
v + e e 21 for any e > 0, e e 'R[. (By e > 0, e e 'R[ we mean er > 0, r = 1, 2, . . . , /.) 
Consider the sequence sDc(v + en), en e 'Rl; e" > 0; en+1 < e"; en -> 0 (n = 1, 2, . . . ) . 
The set sJft(v + e1) is compact, since it is closed [12] and bounded [8], [12] (in [12], 
there is a lemma stating that "the nonvoid level sets S(a) := {x e R"/f(x) = oc] 
of a closed convex function are either all bounded or all unbounded", where closed-
ness of a function is equivalent to its lower semicontinuity on Rn [8], [12]). All the 
sets sU{(v + e"), n = 1, 2, . . . are closed in R" [12] and therefore closed with respect 
to the compact set 9Jc(v + e1) [5], [8] and it is clear that 9M(v + e") £ 9J((v + e1), 
« = 1,2, 
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Since f) 9M(v + eij) = s)Jl(v + sik) #= 0, e° e 'R'; ; = 1, 2, . . . , m, where ik = 
1=i 

= min ij, this holds for the intersection of any finite number of elements of the 
je{l ,2 , . . . ,m} 

sequence 9J{(v + s"). Therefore, it follows from the finite intersection property 
OO 

of compact sets [8] that [) Wi(v -f sn) = 9ft(v) 4= 0, i.e. v e 21 and hence the result. 
« = i 

2. CHARACTERIZATION OF THE SOLVABILITY SET 

Definition 2. The solvability set for problem (I) denoted by 23, is defined by 

(2) SB = {v6 'R ' / fn o p t (v )+0} , 

where mopt(v) is the set Of a// optimal points of problem (I), i.e. 

(3) mopt(v) = {x* e R"/F(x*) = min F(x)} . 
xeWl(v) 

Theorem 1. If for one v e 23 it holds that the set rciopt(v) is bounded, then 23 = 21 
where mopt(v) is given by (3). 

Proof . Suppose that k = min F(x), then it follows from the assumptions that the 
set M(v, k) defined by x e 9 J W 

M(v, k) = {x e Rn/gr(x) ^ vr, r = 1, 2, . . . , /, F(x) g k} 

is bounded. Hence, the set M(v, k) given by 

M(v, k) = {xe R"lgr(x) = vr, r = 1, 2, ..., I, F(x) S K k e 'R} 

is bounded for all (v, k) e 'R '+ 1 for which M(v, k) =t= 0 (see [12] and the proof of 

Lemma 2). 

Let us define the set A as follows: 

A = {(v, k)e'R/+J/M(v, k) 4= 0} . 

The set A is unbounded and from Lemma 1, Lemma 2 it follows that it is convex 
and closed. Suppose that v* e 21, then 9R(v*) =# 0 and the set 

A* = {ke'R/M(v*, k) 4= 0} 

is convex, unbounded, and assumes the form [k*, oo). Therefore min F(x) = k*, 
which implies that v* e 23. Then 21 c 23, and hence © = 21. xsW{x) 

Corollary 1. Under the same assumptions as in Theorem I, the set 25 is unbounded, 
convex (see Lemma 1). 
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Corollary 2. If the set 33 + 0, and F(x) is strictly convex on R", then 33 = 31 
(follows directly from Theorem 1). 

Corollary 3. If the set 33 +- 0, and the set ffl(v) is bounded for one v e 9t, then 
33 = 31, and the set 33 is unbounded, convex (see Lemma 1) and closed (see Lemma 2). 

Example 1. Consider the problem 

min y , 

subject to the set ffl(vl9 v2) given by 

ffl(vi9 v2) = {(xl9 x2) e R2l-x2 + eXi S v„ -x2 = v2} . 

The problem is solvable for Vj = 0, v2 = — 2 with optimal points x^ = log 2, x2 = 2 
which means that mopt (0, —2) is unbounded. The problem is feasible at vi = 0, 
v2 = 0 but it is not solvable there. 

Let us consider the dual problem to (I), denoted by (T)d which assumes the form 
[8]: 

Find max ¥(x9 w, v) if it exists, where 
(x,u)eZ 

( I ) , V(X, U, v) = F(X) + £ "r(gr(x) ~ Vr) , 

r= 1 

and 

Z = 

= \(x9u)e R" + 7 — + £ u r — - 0 , a = 1,2, ...,n;ur = 0, r = 1,2, . . . , / } . 
I / &ca r=l dxa J 

Definition 3. The solvability set for problem (l)d denoted by 33d, is defined by 

(4) 33d = {v e fRllproblem (l)d is solvable} . 

Lemma 3. If the functions gr(x) — vr9 r = 1, 2, . . . , / satisfy any one of the con­
straint qualifications [8] (fOr example Slater) for all v e 33, and ¥(x9

 fu9 v) is strict­
ly convex at fx for all v e 33d, then 33d = 33, where 

¥('x, fu, v) = max ^(x , u, v). 
(.x,u)eZ 

Proof. Let v e 33, then by the assumptions and from Wolfe's duality theorem [8], 
[12] it follows that v e 33d and therefore 33 c 33d. Let v e 33d, then by the assumptions 
and from the strict converse duality theorem [8] it follows that v e 33 and therefore 
33d c 33. Hence 33d = 33. 

321 



It is clear that W(x, u, v) is strictly convex in x, if either F(x) is strictly convex, 
or gt(x) is strictly convex for at least one index i e {1, 2, . . . , / } for which ut is posi­
tive [8]. 

Remark 2. If F(x) is a convex quadratic function, and gr(x), r = V 2, . . ., / are 
linear functions on Rn (i.e. for quadratic convex programs), then the result that 
33d = 33 can be obtained directly from Dortis duality and converse duality theo­
rems [8], [12]. 

Theorem 2. If the functions gr(x) — vr, r = 1, 2, . . . , / satisfy any one of the 
constraint qualifications (for example Slater) [8], [12] for all v e 33 and F(x) is 
strictly convex on Rn, then the function T(V) is convex on 33, where T(V) = min F(x). 

xeW(v) 

Proof . Suppose that Td(v) = max W(x, u, v), then it follows by the assumptions 
( jc ,«)eZ 

and from Wolfe's duality theorem [8], [12], that Td(v) = T(V). 
Assume that v1, v2 are two points in 33d with corresponding optimal points (x1, u1), 

(x2, u2) respectively. Then 

Td(v') = F(x>) + i : M l : (g r (x' ) -v r
i ) , 

r = I 

and 

T,(v2) = F(x2) + i M
2 ( g r ( x 2 ) - v 2 ) . 

r = l 

It follows from Lemma 3, Corollary 2 and Lemma 2 that v* = (1 — co) v1 + cov2 e 33 d 

for all 0 ^ co ^ 1. Suppose that an optimal point for problem (\)d corresponding 
to v* is (x*, w*). Then 

a v * ) = F(x*) + X« r*(gXx*)-v r*) = 
r = 1 

= (1 - o>) [F(x*) + l M*(g,(x*) - vr)] + «,[F(x*) + l «*(gr(x*) - v 2 ) ] ^ 
r = 1 r = 1 

^ (1 - co) Td(v
l) + co Td(v

2) for all 0 ^ co ^ 1 . 

Therefore Td(v) is convex on 33j5 and hence it follows from Lemma 3 that T(V) is 
convex on 33. 

3. CHARACTERIZATION OF THE STABILITY SET OF THE FIRST KIND 

Definition 4. Suppose that v e 33 with a corresponding optimal point x, then the 
stability set of the first kind of problem (l) corresponding to x denoted by (£(x) is 
defined by 

(5) 6(3c) = {v e fRllF(x) = min F(x)} . 
JC£^(V) 
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Lemma 4. If the functions F(x); gr(x), r = 1, 2, . . ., l have continuous partial 
derivatives of the second order on R", if the matrix [d2Fjdxa dxp], a; p = 1, 2, . . ., n 
is positive definite and the matrices [d2grjdxa dxp], r = 1, 2, . . . , / ; a; /? = 1,2, . . . 
. . ., w are positive semi-definite, then the matrix [d2xFJdxa dxp], a; fi = V 2, . . ., n 
is positive definite for all ur = 0, r = 1, 2, . . ., / where 

d2V d2F l d2v 

(6) -A___ = -^— + X u, gr 
dxa dx(i dxa dxp r= I dxa dx^ 

a; /J = 1, 2, . . ., n, wr ^ 0 , r = 1, 2, . . ., 1. 

Proof . Let B, Cr, r = 1, 2, . . . , l and D denote the matrices [d2F/O\xa dxfi]9 

a;P = 1,2,... /i, [a2gr/c?xa r lx j , r = 1, 2 , . . . , /, a; p = 1, 2, . . ., n and [52?P/3xa &c,], 

a; /? = 1, 2, . . . , n respectively, then (x, Dx) = (x, Bx) + £ (x, ur Crx) = 

= (x, Bx) + X ur(x, Crx), where (., .) denotes the usual scalar product of two 
r= 1 

vectors. Since (x, Bx) > 0 and (x, Crx) — 0, r = 1, 2, ..., /, it follows that (x, Dx) < 0. 
Hence the matrix D is positive definite. 

Assume that problem (I) is solvable for v = v with a corresponding optimal 
point x, and that the functions gr(x) — vr, r = 1, 2, . . ., / satisfy any one of the 
constraint qualifications [ l ] , [8] (for example Slater), then there exist u e Kl such 
that (x, u) solves the Kuhn-Tucker problem [1], [8], i.e. 

(7) | _ ( x ) + X « r ^ ( x ) = 0, « = l , 2 , . . . , n , 

OXa relo ^-^a 

gr(x)^vr, r = 1,2, . . . , / , 

ur(gr(x) - vr) = 0, r = l , 2 , . . . , / , 

i 7 r ^ 0 , r e l 0 - {1,2, . . . , / } , 

ur = 0 , r e {1,2, . . . , / } - l0 . 

Assume that the matrix \_d2*Pjdxadx^\, a; /? = 1, 2, . . . , n which is defined by (6), 
is positive definite for all ur ^ 0, r = 1, 2, . . . , /. Then it follows from the implicit 
function theorem [5], [8] and from (7) that x can be expressed uniquely in the form 

x = f(u), 

where f is an n-dimensional vector function. Also, it follows that there exists a neigh­
bourhood V(x, u) of (x, u) in Rn + / such that 

(8) — + i > r — = 0 for all points (x, u) e V(x, u), a = 1, 2, . . . , n . 
<9xa r=l £xa 
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For these points, x can be expressed uniquely in the form 

(9) x = f(u). 

If (x*, u*) e V(x, u) solves the Kuhn-Tucker problem, i.e. 

(10) ^ ( X ^ + £ U * ^ ( A - * ) = 0 , a = 1 , 2 , ...,n, 
CXa r = l CXa 

gr(x*) ^ v r , r = 1,2, . . . , / , 

u*(gr(x*)- vr) = 0 , r = 1,2, . . . , / , 

w* = 0 , r = 1, 2, . . . , / , 

then x* solves problem (1). 
In order to obtain the values of the parameters vr, r = 1, 2, . . ., / for which 

problem (I) is solvable with an optimal point x e R " such that there exist ur ^ 0, 
r = 1, 2, . . . , / and (x, u) e V(x, u),.we consider the following cases: 

i) u*=0, re I c {1,2, . . . , / } , ur*=0, r e {1, 2, . . . , / } - I 

gr(f(u*)) = v r , r e I, 

g-OV)) ^ vr, r * l , 

where f(u*) = x* (see (8)) and I e P, where P is the set of all proper subsets 
of {1, 2, . . . , /} with the property ur = 0, r e J (J e P), ur = 0, r <£ J and (f(u), u) e 
e V(x, u). We define the sets T„ W, and Wj as follows: 

(11) T, = {u e rV/(f(u), u) G V(x, u), ur = 0, r 6 1, ur = 0, r $ 1} , 

W, = {v e 'iV/vr = gr(f(u)), r e I, vr ^ gr(f(u\ r f I, u e T,} , 

W- = U W, . 
leP 

ii) u* = 0 , r = 1,2, . . . , / , 

g r ( f ( 0 ) ) ^ v r , r = 1,2, . . . , / . 

We define the set W2 by 

(12) W 2 = {v e ' R'/vr ^ gr(f(0)), (f(0), 0) e V(x, «)] . 

iii) u* 2: 0 , r = 1,2, . . . , / , 

gr(f(u*)) = v r , r = 1,2, . . . , / . 

We define the sets T3 and W 3 as follows: 

(13) T3 = { « e R'/(f(«), H) e V(x, u), u, ^ 0, r = 1, 2, . . . , /} , 

W3 = {v e 'R'/vr = gr(f(«)), r = 1, 2, . . . , /, u e T3} . 
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Let us define the set denoted by W in the form 

(14) W = {v e 23/there exist (x*, u*) e V(x, u) and (x, u*) solves (10)} . 

W represents the set of all parameters for which the dual problem (Id) is solvable 
in the neighbourhood V(x, u) of (x, u) in Rn + [ [8]. 

It is clear that the first relation in (10) is satisfied by (8), and therefore in the cases 
i), ii) and iii), the set W defined by (14) can be written in the form 

3 

w = U wf 
i= i 

where W f, i = 1, 2, 3 are given by (11), (12) and (13) respectively. 
In order to obtain an explicit description for the set defined by (5), let us consider 

the system 

(15) A F _ ( * ) + £ W r ^ ( * ) = 0 , a = l , 2 , . . . , , z 
OXa r=l dXa 

which represents n linear equations in / unknowns ur, r = 1,2, . . ., /. System (15) 
can be solved explicitly, and depending on its solution the value of vn r = 1,2, . . ., / 
are chosen in such a way that (x, u) solves the Kuhn-Tucker problem [1], [8], where 
u solves (15). 
Let us consider the following cases. 

i) ur>0, r e J c {1,2, . . . , / } , ur = 0 , r e {1, 2, . . . , /} - J . 

Let US define the set denoted by 6j(x) in the form 

S.(x) = {ve fKllgF(x) = vr, r e J, gr(x) = vr, r * J} , 

and J e ^ , where ^ is the set of all proper subsets of' {l, 2, . . . , /} such that J* e ^ 
means that there exists u* which solves (15), such that u* > 0, r e J, u* = ()> r e 
e{l, 2, . . . , / } — J*, and let us define the set denoted by ©i(x) in the form 

(16) 6x(x) = U ©j(x) ; 

ii) ur = 0 , r = 1, 2, . . ., / . 

Let us define the set denoted by ©2(x) in the form 

(17) ©2(x) = { v e ' R 7 g r ( x ) ^ v r , r = 1,2, . . . , / } ; 

iii) ur > 0 , r = 1,2, . . . , / , 

let us define the set denoted by S3(x) in the form 

(18) S3(x) = {ve 'R'/gr(x) = v„ r =- 1, 2 /} . 
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From the Kuhn-Tucker sufficient optimality theorem [1], [8] it follows that the set 
6(x ) defined by (5) assumes the form 

(19) S(x) = U ©,<3c), 
i= i 

where S;(x), i = 1, 2, 3 are given by (1.6), (17), (18) respectively. The set 6(x) is 
nonvoid, for by the assumption v e S(x) (see Definition 4). 

Lemma 5, If v is a common point of visibility for all star shaped sets Tj, i = 
k 

= 1,2, . . ., k [12], then \J Tt is a star shaped set with a common point of visibility 
i= 1 

v, (A set L is said to be star shaped if there exists a point \x e L such that for all 
f.i e L, the closed line segment [/I, fi\ £ L, and fi is said to be a point of common 
visibility of L.) 

k 

Proof. Suppose that v e U I\> then v e Ts for at least one index s e {1, 2, . . . , k}, 
i = l k k 

then the assumptions imply that [v, v] £ r s and hence [v, v] ^ U I\- Since v e U r f , 
fe i = i i = I 

the set U I i is star shaped with a common point of visibility v. 
i = i 

Lemma 6. If the sets 6;(N), / = 1, 2, 3 are defined by (16), (17) and (18) respectively 
then each of them is star shaped with a common point of visibility v*, where v* = 
= gr(N), r = 1, 2, . . ., / (see Lemma 5), and closed. 

Proof . It is clear that v* e S/(x), i = 1, 2, 3. The first part of the proof will be 
shown for Sj(3c). It can be done similarly for the sets 62(x) and S3(x). 

Assume that v is any point in ©i(x), then from (16) it follows that there exists 
an index set l0 c {1, 2, . . ., /} such that 

gr(x) = v r , r e l 0 c= {1,2, . . . , / } , gr(x) ^ v r , r e {1, 2, . . . , / } - I0 . 

The points v = (1 — co) v* + cov e Si(3c) for all 0 ^ co g 1, since 

gr(^) = v r , r e l 0 , gr(3c) ^ v,, r e {l, 2, . . . , / } - I0 . 

Therefore, [v*, v] ^ S ^ x ) for all v e Sx(x), and hence the set St(3c) is star shaped 
with a common point of visibility v*. The closedness of the sets S,-(x), / = 1, 2, 3 
follows directly from their definitions (see (1.6), (17) and (18)). 

Theorem 3. If &(x) is defined by (5), then it is star shaped [12] and closed. 

Proof. The result follows directly from (19), Lemma 5 and Lemma 6. 
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E x a m p l e 2. Consider the problem 

min (x\ - x2) , 

subject to 
X, + x 2 й v, , 

For vt = 2, v2 = 0 an optimal point is found to be x t = \ = x2, and the set 

®V2- i ) *s given by 

<S(i,i) = {(v„v 2 )e 'R 2 /v 1 ^ - i , v 2 = 0 } u { ( v 1 , v 2 ) e ' R 2 / v 1 = - ± , v2 £ 0} . 

The set ®(2, -J) is star shaped, closed but not convex. 

Lemma 7. If ur = 0, r = 1, 2, . . ., / sO/ves (1.5), then the set ®(x) defined by (19) 
is convex and closed. 

Proof . It is clear that the set ®2(x) is convex (see (17)). By the assump­
tion ®2(x) 4= 0, and therefore it follows from (16), (17) and (18) that ® t(x) c ®2(x) 
and ®3(x) cz ®2(x). Then ®(x) = ®2(x) (see (19)), and hence the set ®(x) is convex 
and closed (Lemma 6). 

Remark 3. The method used in this section to obtain the set given by (14) cannot 
be applied for linear programs, since in that case the matrix [d2F/Obca dxp], a, fi = 
= 1, 2, . . ., n is positive semi-defintie (see Lemma 4). 

4. CHARACTERIZATION OF THE STABILITY SET OF THE SECOND KIND 

Definition 3. Suppose that v e 93 (see (2)) with a corresponding optimal point x, 
and x e l(v, I) where 

(20) I(v, !) = {x G rV/gr(x) = vr, r G I cz {1, 2, . . ., /} , 

g r (x)< vr, re {1,2, . . . , / } - ! } . 

Then the stability set of the second kind of problem (I) corresponding to (v, I) 
denoted by q(v, I), is defined by 

(21) q(v, I) = {v G 93/mopt(v) n l(v, I) * 0} , 

where mopt(v) is given by (3), and 

(22) I(v, I) = {x G R"/gr(x) = vr, r e I, gr(x) < vr, r $ 1} . 

From (20) it is clear that the index set I characteries in general more than one 

side of 9W(v) or int 9W(v). 
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Lemma 8. If the function F(x) is strictly convex on R" and v \ v2 are two distinct 
points in 53 with q(v\ l t) 4= q(v2, !2), then 

q ( v \ l , ) n q ( v 2 , l 2 ) = 0 . 

Proof . From the uniqueness of optimal solutions and by the assumption it follows 
that I] 4= l2. Suppose that v* G q(v\ l t) n q(v2, l2), then there exists x* e £(v*> 'i) n 

n X(v*, l2), where 

I(v*, \ ) = {x e R"/gr(x) - vr\ r e l t, gr(x) < v*, r £ I,} , 

I(v*, l2) = {x e R"/gr(x) = v*, r G l2, gr(x) < vr\ r £ l2} . 

Therefore, gs(x*) = v*; gs(x*) < v* for at least one s e {l, 2, . . . , / } if lt 4= l2, and 
then li = l2 which is a contradiction. Hence the result. 

Remark 4. Lemma 8 gives a decomposition of the set 33 into nonempty stability 
sets of the second kind corresponding to certain index subsets of {1, 2, . . . , / } . 

In order to have more properties concerning the stability set of the second kind, 
let us concentrate our attention to the problem 

n 

(l)q min £ iCijXiXj 
i,j=l 

subject to the restriction set $R(v) , 

where [c,y], i; j = 1, 2, . . . , n is a real symmetric positive semidefinite matrix. 

Lemma 9. If problem (I) assumes the form (l)q, then the set q(v, lL) is convex 
where (v, IL) characterizes either a linear side of ^)l(v) or int ^ (v ) . 

Proof . The proof will be done for the case of int sJJl(v). The proof for the case 
of a linear side of ^ ( v ) is similar. 

Suppose that (v, lL) characterizes int sJ}?(v) and v \ v2 are two points in q(v, lL), then 
there exist x1 e int ^ ( v 1 ) , and x2 e int 9Jl(v2) such that ( x \ 0) G R"+f, (x2, 0) e R" + l 

solve the following Kuhn-Tucker problems (23), (24) respectively: 

(23) f > a ; x j = 0 , a = 1,2, . . . , « , 
1=t 

gr(x
x)< v r , r = 1,2, . . . , / , 

ul(gr(x
l) - vl) = 0 , r = 1,2, . . . , / , 

u\ = 0 , r = 1,2, . . . , / , 

and 

(24) l ^ x 2 = 0 , a = 1 , 2 , . . . , n , 

gr(x2) < v 2 , r = 1,2, . . . , / , 

"2(g r(*2) - v2) = 0 , r = 1,2, . . . , / , 

w2 = 0 , r = 1,2, . . . , / . 
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Therefore 

n 

Z c*j[(l ~ w) x) + WXJ ] = 0 > a = 1, 2, . . . , w , 
1=i 

g r[(l - cO) x1 + cox2] < (1 - CO) v1 + cOv2 , r = 1, 2, . . . , /, 

u*(gr[(i - cO) x1 + a;x2]) = 0 , r = 1, 2, . . . , /, 

u* = 0 , r - 1,2, . . . , /, 

0 = cO 5̂  1 . 

Then (1 - cO) x1 + cOx2 e int Wl((l - cO) v1 + cOv2) for all 0 = cO = 1, and 

the Kuhn-Tucker sufficient optimality theorem implies that (1 —• cO) x1 + cOx2 e 
e moPt((l — cO) v1 + cOv2) for all 0 = cO <I 1. Therefore m o p t((l - cO) v1 + cOv2) n 

n int 9M((1 - cO) v1 + cOv2) + 0 for all 0 <I cO 5; 1 and hence (1 - cO) v1 + cOv2 G 
e q(v, lL) for all 0 51 cO tg 1, i.e. the set q(v, lL) is convex. From the assumptions 

of Lemma 9 it is clear that (v, lL) characterizes either a unique side of sM(v), or 

int dJi(v). The uniqueness follows from the linearity of the functions gr(x), r e lL. 

E x a m p l e 3. For the problem 

Minimize 

[x\ + (x2 - l ) 2 ] , 

subject to 

x] + x\ 51 v t , 

— Xi + x 2 51 v2 

І 

x2 

ч 4 

' \ 

><y 

-І-V 
УV4 э 

V 
(/ / 

^ ^ / ^ / l / i i 1 | i i j 
\\\J 

.>> 

Fig. a. The set sffi(4, 1) . 
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the following sets are obtained: 

SR(4, 1) = {(xl9 x2) e R2/x2 + x 2
 = 4 , - x - + x 2 = 1} , 

see Fig. a, 

81 = {(vL, v2) 6 ,R2/v1 = 0, v2 = 0} u {(v1? v2) e /R2/v1 = 0 , v2 = 0, v2 _ 2vJ 

see Fig. b, 
83 = 81 

S ( 0 , l ) = {(v1,n2)e'R2/v1 = 1, v2 = l } , 

łv, 

riíiiiiiiiiini.iiiiiiiiiiííiiiniiii 
(i,D 

Fig. b. The set Ш. Fig. c. The set ©(0, 1) . 

Let us denote the stability sets of the second kind of our problem corresponding 
to the index subsets \t £ {1, 2} by qf, i = 1, 2, 3, 4, where f- = {!}, I2 = {2}, 
l3 = 0 and l4 = {1 ,2} . Then 

q i = {ve'R2/v1 = 0, V(vi) < v2, V(vL) = 1} , 

q2 = {ve'R 2 / l + v2 <2v 1 ? v2 S 1 } , 

q3 ^ { v e ' R 2 ^ > 1, v2 > 1} , 

q4 = {ve 'R2/v2 = 2vlf v2 = 2vt - 1, v2 S 0} u 

u {v e 'R2/v2 = v1? v2
 = 2vj - 1, v2 = 0} . 
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The decomposition of the set 93 into the sets qf, i = 1, 2, 3, 4 is shown in Fig. d, 

and it is clear that qf n q,- = 0, i 4= j , /; / — 1, 2, 3, 4. The sets q2 and q3 are seen 

to be convex (see Fig. d). 

Fig. d. The nonempty stability sets of the second kind. 
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S o u h r n 

KVALITATIVNÍ ANALÝZA ZÁKLADNÍCH POJMŮ 
PARAMETRICKÉHO KONVEXNÍHO PROGRAMOVÁNÍ, I 

(Parametry v omezujících podmínkách) 

MOHAMED SAYED ALI OSMAN 

V článku je podána kvalitativní analýza základních pojmů parametrického kon­
vexního programování pro konvexní programy s parametry na pravé straně omezují­
cích podmínek. Jsou to pojmy množiny přípustných parametrů, množina řešitelnosti 
a množiny stability prvního a druhého druhu. Předpokládá se, že vyšetřované funkce 
mají spojité parciální derivace prvního řádu v R" a že parametry nabývají libovolných 
reálných hodnot. Výsledky mohou být použity pro širokou třídu konvexních pro­
gramů. 

Author's address: Dr. Eng. Mohamed Sayed Ali O smán, Military Technical College, Kahira 
EAR. 
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