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LJUSTERNIK ACCELERATION AND THE EXTRAPOLATED
S.O.R. METHOD

Ivo MAREK and JAN ZiTKO

(Received May 25, 1976)

1. INTRODUCTION

The purpose of this paper is to extend an extrapolation procedure used first by
L. A. Ljusternik [1] This Ljusternik procedure accelerates the convergence of succes-
sive approximations solving linear algebraic systems obtained by discretizing the
Laplace equation by finite differences. This method was also used for accelerating
the convergence of some particular iterative procedures in both linear [2] and
nonlinear problems [3].

In our paper a general result is derived and it is then used for accelerating a succes-
sive over-relaxation (S.O.R.) scheme with a non-optimal relaxation factor. An iterative
procedure is obtained, the convergence of which is faster than that of the optimal
S.O.R. method.

Let 4 be a complex Banach space, 2" the corresponding dual space and [4]
the space of all bounded linear transformations of Z into itself. Hence, #” and [2']
are Banach spaces.

The following class of operator equations will be considered,

x=Tx + b,

where T'e [Z] and its spectrum o(T) has the following structure: There exists a se-
quence {4} (finite of infinite) such that each %, is an isolated pole of the resolvent
operator and

NV - VA

1\%

T,
This work was supported in part by the Science Research Council Grant B/R6/74266 made
to Brunel University to finance a Symposium on Finite Element Methods during the period
January—June 1975.

Part of this material was presented at the Gatlinburg VI meeting in Munich December 15—22,
1974, (sponsored by the Stifterverband fiir die Deutsche Wissenschaft through the German
Research Council).

116



and if Aeo(T), 2¢ {4} then |A| < 7. Such a structure of the spectrum is typical
for Radon-Nikolskii operators [4]. We call an operator Te [2'] a Radon-Nikolskii
operator, if T can be written as, T = U + V, where U, Ve [‘1] with U compact,
and for the spectral radii the relation r(V) < r(T) holds. This is the case of compact
operators with positive spectral radii and of all non nilpotent finite dimensional
operators, i.e. non nilpotent square matrices.

Definition. Let u € 4" and {y}i=o < &. Let us assume that there exists a function
¢ =¢(k), k=0,1, ..., a constant » > 0 and a sequence {z,};-y = & such that
the following conditions are fulfilled:

1) lim ¢(k) = 0

2) 1k < limsup ||z,]| < x
k-0

3) e — u = ¢(k) z,

for k = ko, where kg is a positive integer, we then say that the rate of convergence
of {»} 1o u equals ¢ and express this symbolically by writting

¢
Ye— U

If yi" *\ u and p % wand ’¢1(k)| < lqﬁz(k)lfor k = ko, where kg is some positive

integer, then we say that {y;"} converges to u faster than {y\*'}.
Let Te[Z] be convergent, ie. let r(T) < 1. Let x, € Z be a suitable element
and b € 4 be a fixed one. Let
Nepr = T, + b
Then it follows that

¢ '
X = x* = Tx* + b,

where ¢, (k) = [/(T)]* k"' with ¢ = max [qy, ..., q,]. q; is the multiplicity of
4;€0(T) as a pole of the resolvent operator R(Z, T) = (Al — T)™', |/;| = H(T),
j=1,....p. and, assuming that for peo(T), p 4, j=1,...,p, M < (T).
If
HT) = || > |42 .. andgq, =1,

then the sequence {y,} defined by

1 )
we= (= Ax_y),
[ — 2,
converges to x* = Tx* + b faster than {x,}, see [1, 2]. More precisely
b2
Y — x*

where ¢,(k) = |}121" k*~! and s = max {q;; l’lil = Ilz'}. A generalization of this
result is given in Theorem 1.
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2. GENERAL THEOREM

Let us consider an equation

x=Tx + b, '
and let A, ..., 4, t > 1, be mutually different elements of the spectrum o(T). Let
f(T) =4z ... 2[4 > |4

forany Aeo(T), A=+ 4;,j=1,....t
Let

p(Z)ZZN-i-rlzN‘l + ...+ Ty

be a polynomial with complex coefficients such that p(1) % 0. We then put

1
(1) (e, oo ty) = — = (X F T X e TN Xk )

p(1)
where m is a positive integer and the x, are defined by
¥)] Xee1 = Tx, + b

For a fixed j € [ 1, 1] let C; be a circumference with center 4; and radius ¢; > 0 such
that
(2:|h =4 S0} no(T) = {2;}.

If 2; is a pole of order g; of the resolvent operator R(4, T), we put

B, = | r@T)d2.

Js .
2ni )¢,

and
Bixir = (T— ).jl)" B;,, k=1,2,....

It is easy to see that

t k
e =% ‘J‘ R T) xo 2 + LJ A R(LT) xodd + Y T' |
i=1 2= [, 2ni J ¢ s=0

Here C = {/.:|7| = 0,0 > 0} is such that {1 :|i| < ¢} i o(T) contains o(T) but
not 4, ..., 4, and on C there are no singularities of R(%, T).
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Theorem 1. We suppose that m, s, t, N, -are positive integers, the operator T in the
equation

x=Tx+b, beq,

is convergent, the eigenvalues A, ..., 4, ..., 4, are poles of R(A, T) of order

q(1) = qq, - q(t + ) = q4 respectively, and

H(T) =l 2 ooz |2 > ] = o = s

> |4

for any 2eo(T), 2% 2; j=1, ...t +sand g(t + 1) Z g(t + k). k =2, ...
Let xq € 2 satisfy

1
Biiigu+n) |:X0 I b:l +0.

We then define a sequence {y,\.} < 4 as follows:

Ww=x, for k=0,1,... ., Nm—1,
and

v =M™, . eW") for k= Nm,
where x, is given by (2) and f{"™ by (1) with the t{™ = o' being defined by

t
pz)=(E-20)" == 4N+ 0y, N=Ygq;.

j=1

Then

.Vk‘m—\'* =Tx* + b,
where

Giai(k) = l}‘rﬂlk KaaEn=1
Moreover,
(3) Vier =Ty + b, k> Nm,
and

1
Y= x* = —= p(T") (v ym — X¥) -

p(1)

Remark. Itis easy to see that the formulas for ' are very simple if all the poles
of R(4, T) are assumed to be of multiplicity one. This is the case of normal operators
and those similar to normal ones. It should be noted that some of the results of this
paper were obtained in [7] under the assumption that T is a normalizable n x n
matrix, i.e. an n X n matrix similar to a normal one. However, the S.O.R. iteration
matrices are non-normalizable for certain choices of relaxation parameters [6, p. 238].
It will be shown that the assumption that T is normalizable can be omitted and the
failure of T to be normalizable actually does not complicate the considerations
essentially. The main results of [7] thus remain valid in general.
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Proof of Theorem 1. By definition we have

Y+ =~ (ll) {(Txk + b) + O'(M)(’rxkAm + b) + ... + OA}VM)(Txk~Nm + b)} =
p
=Ty, +b.
Further
xp — x* = T(x—; — x*)= ... = Tj(xk,j - x*), j=zk,
and hence

X, — x* = TN"'(x,(,N,,, - x*)

* m(N—1) . ES
Xgmm — X7 = T (Xk—-Nm X )’

Xg-Nmen — X5 = Tm(xk—Nm - X*) >

Xg—nm — X* = To(xk—Nm - X*)'

It follows that
p(1) [y — x*] = p(T™) [xi—ym — X*] -
which gives

y — X* - p(Tm Tk Nm[l\0 _ X*] —

()

p(T) T — (1= T)7" 0],

(1

Using the method of functional calculus [5, p. 287] we can write the error vector
yi — x*in the form

|- 1 k-N
o — x* = Am) 2N R(2, T) Yo — ——b|di+
. p(l);zx 2ni )¢, o ( {0 1 -2 :I

1 | _N 1
w b L omy Y R(L T [x — b |da.
p(1) 2nin( ) R

Let us define the vectors

1 Am) 1
u; = — p(N (A,I)[Xo—~\b di, j=1,...,t
(I) 27” l'" 1 — 4

and assume that the eigenvalues 4,41 - - -» 4r+5 €an be arranged in such a way that
the corresponding multiplicities g, 1» - - -» Gr+s satisfy
d=(qer1 = ... =de4r > ey 1 2 ... 2 q,ys-
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According to our assumptions, u; =0,j=1,...,1 Itiseasy to see that there exists
a number y independent of k such that

Am L\
L1 j o) ( / ) R(.T) dl’
k1 p(l) 21 Jo A \Ayaq
more precisely \

m t+s m
L ”@——)/‘;" R(A, T)dA = R G KR4, T)dA + z,,
k
C

. ﬁ*N- .
2ni Jo AT j=r+1 2mi )¢, ANm

=7y

where
”Zk“ =7 l“}~r+ 1 lk

with y; and «, 0 < o < I, both independent of k. It follows that

27i J o ANm

t f (2" i R(2, T) dlf

'i’ . f (A" 5 R(2. T)dz“ + o[ [

j=t+1 2mi ’ ANm

Similarly,

| B ") A\
L J —’i(:_)< ) R(A, T)da
k=t p(1) 2nmi ¢ A \Aay
forj=1t+r+1,...,t+ s, where y, does not depend on k.

We deduce that

1 { A" i\ ‘
— J— — B(;v) - R(4, T)dA| =
k=t p(1) 2mi Je AN \2, 4,

l ] t+r im k
Ly R—(T—)» VRO T) di
K p(1) 2mi =k Jo, AN\ Ay
In order to show that

1 1 t+r }"” 1 k
— Z ,L:‘[ l’(Nm) <_/i> R(i, T) [\—0 _ 1_ b d/l“ >
KV p(1) =k 2mi Je, A Y 1 -2

> (),

+ o(1).

o = lim sup
k— o

we set

Gisy =0, L=, 0<é¢,<2m, j=t+2 ... 14r.

j'm bl k
w,= L[ P (J— R(4, T)d2
2ni Joj A" \Aigy

my Wi, ha=0,.
W, = %AT) oy %) By 4 ...+ W00 g
A ! (¢ = 1)

Defining W; as

we show that
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where
A p().m) /1 k (@ d a
h(i) = =2 ——), and W"4) ={—) h(1).
=" 00 = (55) )

For sufficiently large values of k the main term of W; is given by

1 p(A7) k!
(g — 1) A0 297

m b] k
v, =-L pmy (AN 1 R(i, T) dJ.,
2ni J ¢, JNm Aevt) L= 2

l'd)j(kéq-# 1)
e B;,.

Similarly, for

we can write

U. = p&r) ki ,l,,,_ B, + g‘:_(/:f) B;, + + gg&'-’_) B

J }V;Vm | — )~j A I s (q _ ])! Jq>
where
p(A™y [ A\ 1 @ dy
(A)= " —)——; g7(%)=(— 2)a=s, -
o) = T <l.+1> 1o )= () s

The main term in this expression is given by

Loop(2) 1kt
(g — O A 10— 2, 217

A 1
-I—jv_(‘m t_: 11.), BI +1,q Xo — b +
. 1

- )“H»l

igjtk—q+1)
e B;,.

It follows that

. 1
w = limsup ——

k— o !p(l)l
t+r m
KR e p—— |

a— N
Miyi=ce2 A" 1 — 4;

J
Mot = Lp(lf)[xo - b].

TN Y

Let us put

We then see that

t+r
o | i$j(k—q+1) :
o = lim sup ﬂB,H,qw,+1 + ) eltstkma Bj.qwjh .
k—x j=t+2

Let k; < k, < ... = 400 be positive integers such that
le"’"““‘"—"ﬂ) — 1| -0 for v— +o00.
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Then

r .
”Bt+1,qwt+1. + .Zze”bl”(ku‘“I)BHI‘JIWHJ'“ =
i=
r ro
2 | X Bussamwens] = L[S — 1 [Braj v | 2
j= j=

z | ZIBzH,qWHJH = o(1),
i=
and we deduce that
t
w2 i” ‘ZlBt+j,qwt+j“ >0.
iz

This proves that
Vi — x* = At K7z,
where

t+s m k
z,,=—11 Y 1 ﬂ(il(i)R(x,T)[xo—]'—ib]dwr

K p(1) L 2mi e, AN\ Ay

m k
S S )
kT4 p(1) 2mi Jo AN\ Aeay 1 -4

We have also shown that

|2 = v
and

lim sup “zk” = to >0,
k=0

where the bounds for y and w do not depend on k. As a consequence we have obtained

the relation
e+t %
Yk X",

where ¢, (k) = 25, k?~", and this completes the proof of Theorem 1.

3. APPROXIMATE CONSTRUCTION OF EIGENVALUES

When the method considered in the previous section is used, it is important that
the appropriate eigenvalues of the iteration operator are known. In practical calcula-
tions information is usually available concerning the structure of the spectrum.
This may be of some use for deciding which method of approximating the eigen-
values to choose. This is the case for certain finite dimensional problems, where some
well tried methods can be used, e.g. the QR-method, QD-method, Jacobi method etc.
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If no special information concerning the operator is available, the following
simple power method can be used. However, we must be very careful because of the
numerical instabilities. We remark that the acceleration method described in Section 2
gives practically useful results if a limited number of eigenvalues appear in the acceler-
ation formula. We will discuss this matter in the concluding section.

Theorem 2. Suppose that a, m, p, t, N, are positive integers, Te [Z], and 1; € o(T)
fulfil the relations

Y =T VI I VSN [

)
>
Aol Z ..

Further let peo(T), p # A;, j =1, ..., p, not necessarily an eigenvalue, satisfy
!ﬂl < |)~1+1| 8
and assume that the eigenvalues Ly, ..., A, are known. [ et x; and x' be in &' and

lim x;(x) = x'(x)
k—

for all xe 2. Finally let x'° € & be such that
X'(Bis1,ax'?) 0 and B, ., x _
We construct vectors x* and y® from
xk+D — Tk ,

and

(k) g
) x¢ for k=0 Nm—1
y == (my[ _(m) (m) S eeay m y
g™(e(™, ..., ay") for kglvm,
where
(m)( _(m) (m)\ __ (m)
..., 0 = >
9k (GI 5 s UN ) Xk + 01 Yk‘m + .. .+ O-gvm}xk—Nm
: (m) ,
with the o™ defined by
p(z) = (z = 27" ... (z = A7) =2V 4 o{™aN

If we put

PR
+ ...+ 0.

_ x,"(y(kJr 1 ))
506®)
then
limv, =4,,,.
k—
Note that if 2" is a Hilbert space with an inner prodllct
following choice of x; is advantageous x;(x) = (x, y*), ; .
(D, )

=

(y"", y"”) :

(x, ), x, ye X, then the
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Proof. Using the same machinery as in the proof of Theorem 1, we show easily
that

1+ 1
yO =3 l-_»J. h(A) R(%, T) x'© d2 + _LJ' h(%) R(4, T) x* d2,
i=127ni J¢, 2ni J ¢
where
h(2) = 2% + ™A™ 4 0+ ay" = p(Am) Ak
It follows that

y& = hk( z+1)Bz+1,1X(m + ..+ h(”_”()‘l+l)Bl+1‘a xO + W,

with
| .
Ilm *—('—:T—'" W,\ = O,
"""’V’h;\' (}“Hrl)
where
d J
“’(/) = l:( ~> hy(z )] .
Consequently
1
- NI NEN (0) _
Uy = — (,, l)(4;+1)y By aX U.
Obviously
Vv = Toy
and thus
_ '\'I:(Uk+l)

Ve = Ap =

X'(Tv)
xio) X0
IFurthermore,

- x(Tv)  x'(Tv)

Ve — A I <
k t+1 x’:(vk) x‘:(uk)

X'(Te)  x'(Tv)
* xi(v)  x'(v)

and there is a positive number ¢ independent of k such that for k large enough

’

inf{lx,',(vk)|, |x,'((v)| k2 kol =0>0.
This implies that

= 2] = L picro) — ) + FUI oy — v s

ka(T[uk ) | + Ix,"(Tv) - x'(Tv)]} +

Q7|'_‘

Ix

= o) + |xi(v) = x'(0)]} -
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Since {x;} is a convergent sequence, it is uniformly norm-bounded with respect to k.
Finally we obtain that

1
lvk - /1,+]| < 5{1]'7“0,( — Tv|| + lxk'.(Tv) - x'(Tv)l} +

+ lx‘g@‘ {eoe = of + [xilo) = X)) -
with

T=sup x| < +.
k

Since all the right hand side terms tend to zero, the proof is complete.

Remark. It should be mentioned that in practice one can recommend using
the results of Theorem 2 only if g; = 1 for j = t and ¢, = 2. As we shall see in
Section 4 this is also the case for the S.O.R. iterations.

4. EXTRAPOLATED S.O.R.
In this section we show how the preceding results can be applied to accelerate
the S.O.R. iterations.

Let 2 be the n-dimensional complex vector space. We consider the equation

where A is an n X n positive definite matrix, n = 2. Let us write
A=D(I—-L-U),

where D is diagonal with entries as in 4, L and U are strictly lower and upper trian-

gular matrices respectively corresponding to A. The above system is equivalent
to the following

x = Bx + ¢,
where B= L+ U and ¢ = D™ 'b.
We assume that B satisfies the following conditions
(i) Bis weakly cyclic of index 2 (see [ 6, p. 162]),
(ii) B is consistently ordered ([6, p. 144]),
Let

Wy >y > 0>,

be mutually different positive eigenvalues of B and let

G(B) - {0} = {Hl» Y T SUREED —;1,,}.
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As usual, we let
H(w) = (I — oL)"' [(1 — )] + oU].
It is well known [6, p. 172-173] that
r(Hw)) <1 for we(0,2),
and

) inf {r(H(w)) : w € (0,2)} = w, — | = r(H(w,)),

_ 2
L+ /(0 =[(B)])

If w e (0, 2) satisfies the relation

[

i — Ho —1)=0

for some p; € o(B), then we call it j-optimal and denote it by w;. If w (0, 2) is not
j-optimal for any j € [1, p], we call it regular. Note that w, = w, and

2> > ... >0,>1.

Theorem 3. Let the Jacobi matrix B corresponding to a positive definite matrix A
satisfy the conditions (i)—(ii).
If we(0,2) is regular, then H(w) is normalizable and the numbers

Aaj-i(w) = Hop; + Y[0’1] — 4o — D],
L) = oy — V[0 — 4o - D],
forj=1,...,p, and
i=1-w if 0ed(B),
are eigenvalues of H(w).

Let r be a positive integer, | < r < p. Then the matrix H(w,) is not normalizable,
more precisely, H(a),) possesses d, principal vectors each of grade 2, where d, is the
dimension of the eigenspace of B corresponding to the eigenvalue p,. All the other
eigenvalues of H(w,) are simple poles of the resolvent matrix R(4, H(a),)). The
eigenvalues of H(w,) fulfil the following relations

2(w,) > (o) > ... > 4, (@) = Ayw,) > i, 5(w,) > ... > Ay(w,).
Moreover,

=w, — |

MZr - l(wr)

= MZr(wr)

and

Aaj-1(@y)

= '/12]'(&)")
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Jorj=r+1,..., pand
42— 1(w)] = @, — 1
for j=vr,...,p, and
o) =1 — w,

for the remaining indices.

Theorem 3 contains results which are actually proved in [6, pp. 234 — 238]. We only
summarize these and state them in a formesuitable for our purposes.

As direct applications of the Theorems 1 and 3 we obtain the following results.

Theorem 4. Let r € [1, p] and let w e (w,_,, w,),

A(w) = Hop; + (@5 — Yo — 1))
for j=1,...,p and
r—1
S,;=Sm"=(=1yY Y Ay, ... AN

a(l),....a(j)=1
a(1)<...<a(j)

forj=1,....r — 1. Define
S=1+S8,+4...4+S.,_;.

Let P; ; be the eigenprojection onto the eigenspace corresponding to A; and let x,
be such that

1
P, xg ———— P, {d(w) # 0,
%o = Py d(®)

r

where
dlw) = ol — wL)™' D7'b.
If we put
w=x for k=0,....,(r—1)m—1
and
Vi = ]E(Xk + S i Xkem o S X rm1ym) fOr k= (r—1)m

then

Vi hid x*
where x* is the unique solution of

Ax = b,

A=D( - L~-U),and

gu(k) = [A(0)]*

where

’A,(w)l =w-—-1.
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Theorem 5. Let r e [l, p], s be a positive integer and, o) = ws,
pE) = (2 = M@)o (2 = (@) Agw)?.
Az = Ayi(@) L (2 = Afw))
and let y, be defined as in Theorem | via j‘,‘(’"’(a‘,’"), <O ), where
pz) ="+ M el

withv = 0forr <sandv =1 forr = s.

If xo €% is such that

1
Pr,1+a(s—r)x0 - THVA; P i+ss-n) d((“) 0,

r

where
Pryir = (H®) = Af0) ) Pry k= 1,2,
and
1 r s=r
s =r) =y igr s+’
then
Yk Y,
with

[Aw)]* for r s

Vi k) = k[ A w,)]* for r=s"

It is quite clear that the choice r =+ s is not advantageous.

If w = w, and x, satisfies

1
P,. Xg — P,- d W, + 0
140 | A ,1 ( )

r

while

Py axe — T

! P d) =0,

r

we obtain the following rate of convergence
VoK) = [Ae)] = (w0, = 1)

It is obvious that this fact has only theoretical value.
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5. CONCLUDING REMARKS

In this concluding section we give some comments concerning a practical realiza-
tion of the method described. We may proceed in two different ways. According as
to whether we use the definition of the acceleration iterations or (3) in Theorem 1.
We found that the use of a combination of both of these approaches in the calcula-
tion is preferable. Thus the strategy is to evaluate x, X,, ..., Xy,,_; and the corre-
sponding vector yy,, to continue by using (3) till k < ko, then to improve y, by
putting,

Yiot1 = flim,(a(lm)’ SR ‘7;\;"))

and again to use (3) until 2k,, etc.

As usual, we start with m = | and change it during the calculation. Because the
method is suitable for solving many systems with the same matrix and different
right hand side vectors, we determine the appropriate m by solving the system with
a fixed right hand side vector and keep the value of m fixed for the other right hand
side vectors.

Because of difficulty in obtaining the required eigenvalues and also because of
possible numerical instabilities the method is effective only if a relatively small
number of eigenvalue cuttings are used. Tests show that in practice t < 4. The im-
provement in convergence obtained in this way may be remarkable. The extrapola-
tion used to accelerate the S.O.R. using 7 eigenvalue cuttings has an asymptotic rate
of convergence of order ¢ hh for the model problem

du=f on [0,1]x[0,1],
with
u=0 on 0{[0,1]x][0,1]},

when discretized by the well-known five point finite difference formula. This means
that our extrapolation retains the asymptotic behaviour with respect to the mesh
size as does the S.O.R. with the optimal relaxation factor.

We have shown that Ljusternik acceleration applied to H(w) gives improvements
in the convergence rate particularly, if ® = w, for some s > 1. There is no improve-
ment if one extrapolates H(w,) (see Theorem 7.2, Chapter 11, p. 375 in [6]). A similar
argument shows that the extrapolation of the S.O.R. with w < 1 leads to weaker
results than that with @ > 1.

A typical example where the extrapolated S.O.R. can eflectively be used is the
source iterative technique in solving reactor physics diffusion systems.

Acknowledgement. The first author gratefully acknowledges the excellent research
facilities provided by this grant, the stimulating atmosphere in the Symposium
seminar and the dedicated engagement of Dr. J. R. Whiteman. These possibilities
lead to the preparation of this report.
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Souhrn

LJUSTERNIKOVO URYCHLENI A EXTRAPOLOVANA
METODA S.O.R.

Ivo MAREK, JAN ZiTKO

Necht 2 je Banachiiv prostor, 2" odpovidajici dudlni prostor a [ 4] prostor viech
ohraniéenych zobrazeni 2 do 2.

Necht ue 2 a &Eleny posloupnosti {y,}i=o lezi v 2. Nechf existuje funkce
@ = ¢(k), k =0, 1, ..., konstanta K > 0 a posloupnost {z,};2,€ % tak, Ze jsou
splnény ndsledujici podminky:

1) lima(k) =0,

2) ]/% < lim sup ||zk|| < x,

3) existuje pFirozené Cislo &, tak, Ze pro k = kg je

yi — u = ®(k) z,

Jsou-li splnény tyto podminky, pak fekneme, Ze rychlost konvergence posloupnosti
{»}i=o k u se rovnd @ a budeme to symbolicky zapisovat

P
Vi — U
Jestlize pro posloupnosti {y¢" %0, {32 )20 plati
y’((” ﬂ u ., ,V[(‘-Z) if) u

a existuje-li prirozené ¢islo k, takové, ze pro k = kq je
|0, (K)| < |@,(k)|

pak fekneme, Ze posloupnost {y}")} konverguje k u rychleji nez posloupnost {.\',\.2)}.
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Predmétem studia je v tomto &ldnku operdtorovd rovnice x

= Tx + b, kde
Te [X], spektrdlni polomér H(T) < 1 a spektrum operdtoru T md ndsledujici struk-
turu:
Existuje posloupnost {4} (konetnd nebo nekonetnd) tak, Ze

eo(T), ||z |4z

z. .. z|Alz...z1>0
aje-li 2eo(T), A * 4, pak l)l < 1. Uvazujme nyni iteraéni proces
(*) Xpvr =T + b

Pak

xkﬂx* =Tx* 4+ b,
kde @,(k) = [/(T)]* k%" ". Pfitom ¢ = max(qy, ..., q,), q; je ndsobnost %€
€ o(T), kde [ij] =rT)proj = 1,2, ....p,aprokazdé peo(T), nu + 7,(j = 1, 2,.
c.p) je |u| < H(T). Jestlize Ay, 4,
venty R(4, T) ndsobnosti g,

.y Aty Apyq jsou navzdjem rizné pdly resol-
.., q.4, a plati-li

4] = ...

I

> ol 2 I
pro kazdé ieo(T), 2= J(j=1,....1+ 1), pak mbazeme iterani proces ()
urychlit. Necht

p(z)

=(z = A7) ...

(z — e =2V + oMV !

t
Mk, N=Y,,
i=t
kde m je zvolené prirozené ¢islo a polozme
w=x k=01,...,Nm—1,
! m
Yk = p(vl) (xi + 0 X+ o+ OV N ) -
Pak
Dy -
Yy ——>x* =Tx* + b,
kde

&y 1(") = |)~1+1 |k ket
Navic je pro k > Nm posloupnost {y‘k} mozné potitat podle (*), tj

Yewr = Ty + b

Toto je podrobné popsdno a dokdzdno ve Véteé 1.
V dalsi ¢dsti prdce je pak odvozen algoritmus pro vypocet nékolika prvnich vlast-
nich &isel (Véta 2).
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V posledni &dsti prace je pak ukdzdno, jak je mozné pouzit vytvofené teorie na
urychleni metody S.O.R. Uvazujme systém linedrnich algebraickych rovnic
(%*) Ax = b,
kde A je positivné definitni n x n matice, n = 2. Pfedpoklddejme, Zze Jacobiho
matice B pfisluSnd k matici A je slab€ cyklickd s indexem 2 a shodné uspotddand.
Nechf py, ..., p, jsou viechna kladnd a navzdjem riiznd vlastni isla matice B.
Reseni soustavy (+x) hleddme podle algoritmu

I

Xppr = H(@)x, + d,

kde H(w) = (I — oL) ' [oU + (1 - w)I]
a d = ol — wL)"' (dag A)™"'b.
Oznacme si
2
w;=—— w;e(1,2).
Plati

2> w0 >wp; > >, > 1.
Je zndmo, Ze pro w = w; je x; Y x* = A7 b, kde ¥,(k) = k(w, — 1)* (optimdlni
S.O.R. (Young)). Nechf jsou zndma vlastni Cisla p,, ..., p, Jacobiho matice B
a zvolme

0, <0< w,_

V prici je sestrojena podle obecného postupu posloupnost { y,} -, takovd, Ze

Virr = H@) y, +d (k> rm)

¥,

Vis1 — X¥ = A"'b kde

¥(k) = (0 — 1)* (V&ta 4).
Zvolime-li w = w,, pak
V(k) = k(w, — 1)* (V&ta 5).

Poznamenejme zdvérem, Ze tato metoda je vhodnd pro feSeni problému se sou-
stavami typu (**) kdy matice soustavy je pevnd a méni se vektory pravych stran.

Aulh(}rs‘ addresses: Dr. Ivo Marek, Dr.Sc., Dr. Jan Zitko, CSc., Matematicko-fysikalni fakulta
KU, Malostranské nam. 25, 118 00 Praha 1.
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