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INTRODUCTION

We shall consider some approximate methods of solving the differential equation
on the infinite interval (0, c0)

(1.1 —u"(t) + a(t)u'(t) + b(t) u(t) = (1),
with the conditions

(1.2) u(0) =0, uelX0, o).

L3(0, oc) denotes the space of square integrable functions on the interval (0, o)
with the weight function n(1).

There are several articles dealing with singular boundary value problems [7], [9]
concerning two-point boundary value problems on a finite interval with a singular
coefficient. The articles mentioned above include implicitly the solution of our prob-
lem only in some particular cases.

Two approximate methods of solving the problem (1.1), (1.2) will be presented.
The first method consists in approximating the solution of the problem (1.1),(1.2)
for n = 1 by a sequence of solutions of boundary value problems on finite intervals.
The second method (for n = e ') is a modified collocation method. The collocation
method for problems on finite intervals is discussed in [4], [8], [10].

We shall prove existence of a solution of the problem (1.1), (1.2) and convergence
of the methods presented.

PART 1

The aim of this part is to construct an integral equation that is equivalent to the
differential problem (1.1), (1.2).
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1.1 Auxiliary problem

It will be convenient to introduce the equation

(1.3) Tu(t) = —u"(t) + ku(t) =v(t), 05t <

where k is a positive constant,
and the boundary conditions

(1.4) u(0) =0, uel’0, ).
Lemma 1. The boundary value problem (1.3), (1.4) is selfadjoint in *(0, ).

Proof. If u, v satisfy conditions (1.4), and if there exist u’, v', u”, v" and u”, v" €
e I*(0, o), then

r[—u"(r) T kou(o)] ofr) di =

=331[u0)w0)—-w0)40]4—qu0)[—uﬁﬂ~+kuuﬂ(h.
It suffices to prove

fm () v0) = w'0) o] = 0.,

ie.,

Ve > 0, 3N, V1,5 > N o, 2 u(r) v'(x) — u'(x) v(t) — u(s) v'(s) + u'(s) vs)| S e.
We have

T
&éj
s

Using the Schwartz inequality we obtain

o < <J:lu(t)|2 dt\)]/z( j o) dt)l/z " ( Du"(t)v dt>1/2< J' :|v(t)lz dt)llz .

If we recall that for an arbitrary function f belonging to I*(0, 0)

lim J”fz(t)dr =0

5,120 ) ¢

(% [u(t) v'(1) — u'(1) v(1)]

dr = Jtlu(t) V(e) — w(e) o(o)] dt

we can conclude that ¢, > 0 if 5, 7 —> o0, q.e.d.

Let L, mean the differential operator defined by the differential expression lu (1.3)
and the boundary conditions (1.2). The domain of this operator is the following set:
Q, = {ue 30, ), u” e L0, o) and u(0) = 0} .

Let LoC L.
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Lemma 2. The domain of the inverse operator L™ " is the whole space L*(0, o).
In the space LI*(0, o) the operator L™ is bounded.

Proof. The proof follows from the following theorem:
Let us consider the differential expression
Iu = —(pou’) + pyu
with additional conditions lim p,(f) = p and py(f) > 0. The selfadjoint operator
t— 0
in I*(0, o) generated by the expression lu has on the interval (— oo, p) only a point

spectrum (cf. [5], § 24). The above theorem together with the fact that 2 = 0 is not
an eigenvalue of L proves Lemma 2.

Theorem 1. If the weight function r/(t) is continuous and there exist constants
¢y, €y, C3 that

1° 0 < n(t)(min &) £ ¢ < 0,
0s¢g=st
2° Is e [0, /k) suchthat 0<c, <e®n(t)<cy <o,

then the inverse operator L, Lis defined on the whole space Lf,(O, o) in the following
manner:

(1.5) L' f(1) = JWG(I, 1) f(r)dr, feLi(0, w0),
where

l}; e V®rsh (k)T T <t

<\

1.6 Gt 7) =
(1.6) (t.7) lﬁe*ﬂ"”sh\/(k)t T>t

Jk

Corollary 1. For example, the assumptions 1°, 2° are satisfied by the functions

n(t) = o(t) or n(r) = e > (1)
where the function o(t) is continuous and bounded and m € [0, \/k).

Proof of Theorem 1.

1. The proof has two parts. The first part consists in showing that the theorem
is true for the weight function n = 1.

From Lemma 2 we know that the inverse operator L™ ! is bounded and defined
on the whole space I*(0, ). In this case we can apply the general theorem about
the form of the resolvent of differential operators ([1], Part XIII, 3.4).
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From this theorem we have
L () = j Gl 1) () de. fe (0, o).
0

The function G(1, *) belongs to I*(0, o) for every t € (0, «0) and satisfies the jump
equations.

With regard to the fact that the operator Lis selfadjoint we can use the general
theorem about the form of the Green function ([ 1], Part XIII, 3,10).

From this it follows that the Green function has the form (1.6). Thus, Theorem 1
is proved for n = 1.

2. If n £ 1 then Lemmas 1 and 2 do not hold. We must prove Theorem | in
another way.

Therefore, in the second part we must show that the function

(1L7) u(t) = 71]; {ewn J ;(sh J) D) 7@ dr + sh J(k) j fﬂmr f(r)dr}

satisfies the equation (1.3) and the conditions (1.2). We can easily verify that the
equation (1.3) and the first condition u(0) = 0 are satisfied.

Now it is sufficient to prove that if f € L2(0, o) then L; 'f belongs to L3(0, o).

We shall show that the first as well as the second component in the formula (1.7)
belongs to the space Lf,(O, o). It is convenient to denote these components by w,
and w, respectively. Without loss of generality we may assume that f is non-negative.

For the function w, we have the following estimate of the norm:

0 t 2

942000 < €4 j [ j (sh /() 7) \/(rl(f))f(f)dr] at <
0 0

2

L2(0,»)

<e. ” f G(t, 7) of) de

where v(7) = /(n(z)) f(z), i-e., ve X0, o), and ¢ is a positive constant.
Now, we consider the norm of the second component w,. From the assumption 2°
we have evidently

0 o0
i,,z(o,m) :J n(t) e*'e™ 2 wi(r) dt < c_,,J’ e 2 wi(r) de,

0 0

sz
and
(¢~ sh V/(k) 1)2 = sh (\/(A) — S)t + e”("(")"")'(l _ e~zxz) <
£2 sh? (\/(k) — g) + 2e“z(~/(k)'s)t )
Thus we find

N 0 0 2
el ey = 25 j {sh (k) — )1 J e~ CO-9% (D)) £(2) dt} di+ M,
t

2J0
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where

S © 2
M = 2(_3'[‘ e~ 2V k)(=s)t <f e~ W) =sr \/(n(r))f(r) d‘r) dt < oo
0

C2 t

If we take into account the assumption 2° and the additional condition f(t) = 0

we obtain
Jwﬁ(r, 7) v(7) dt
0

where c is a positive constant, and G{(t, 7) is defined by the formula (1.6)

2

<

[w2|Z,200,00) < € + M,

L2(0,)

for k= (J(k)—s)?>0.

The results obtained in the first part and the above estimates of the norm w, and w,
imply that

[]|z,200,0) < 0 if fe L0, ),
q.ed.

1.2. Integral equation

The equation (1.1) can be written in the following form:
—u"(t) + ku(t) + [b(1) — k] u(t) + a(t) u'(1) = /(1)

where k is a positive constant for which 5(7) satisfies the assumption 2° of Theorem 1.
If the conditions of Theorem 1 are satisfied then we can substitute

L, u(t) = u1).

It is easy to find that the problem (1.1), (1.2) takes an equivalent form

o(t) + a(?) j G, ’) o(z) dt + [b(t) — k] J G(t, 7) o(x) dr = f(1),

where ve L7(0, ).
This equation can be expressed in-a shorter form

(1.8) [I+K]v=1,

where I is the identity operator in L2,1(0, o) and K is the integral operator with the
kernel

(19 K9 = 0) - K67 + a(n PO

Under the hypothesis of Theorem 1 and the assumption that the functions
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a, [b(+) —k] belong to L3(0, ), the operator K transforms the space L3(0, o)
in L2(0, o).
Thus we have the integral equation (1.8) in the Hilbert space (0, o).

'

PART 11

This part is devoted to the approximation of boundary value problem (1.1), (1.2)
by a sequence of boundary value problems on finite intervals.

We shal consider the problem (1.1), (1.2) only for n = 1. In this case the conditions
of Theorem 1 are satisfied for s = 0. According to the results of Part I, the problem
(1.1), (1.2) is equivalent to the integral equation

(2.1) [I+Klv=/f

in the space L*(0, o).

2.1 Projection methods

Let us consider an equation of the form (2.1) in a Banach space X. We can separate
a class of approximate methods solving this equation — the so called projection
methods.

A projection method is defined if we have a sequence of subspaces {X,} of the
space X and a sequence {P,} of continuous projection operators from X onto X,
The approximate equations have the form

(2.2) [/ + P.K]uv, = P.Sf
where v, € X,,.
It is well-known [4], [10] that the following theorem holds.

Theorem 2. Suppose that

1° the homogeneous equation [I + K] v = 0 has only the trivial solution in the
space X,

2° the operators P, converge strongly to the identity operator I : X — X,

3° the operator K is completely continuous.

Then for all sufficiently large n there exists a unique solution v, € X, of the equation
(2.2). Moreover, v,(1) converge in the norm to vo(t) and the convergence satisfies

HUO — Uy = c”PnUO - UOH

where ¢ is a constant independent of n.
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2.2 Approximation by boundary value problems on finite intervals

Let the projection operators P, be defined in the following way:

P,: LZ(O, co) — LZ(O, n)
and

(2-3) P,,_/'(T) — {é(t) 1= Z

Defining the subspaces X, = I*(0, n) and the operators P, we obtain a projection
method.

It turns out that the approximate equation (2.2) for P, and X, defined above is

equivalent to a certain boundary value problem on a finite interval (0, n) as we have
the following lemma:

Lemma 3. If a € I*(0, c0) and 3k > 0[b(+) —k] € L*(0, o0) and if the operators P,
are defined by the formula (2.3), then the equation (2.2) is equivalent to the fol-
lowing boundary value problem:

(2.4) —un(t) + a(t) u(t) + b(t) u,(t) = f(1), te(0,n),
(2:5) u,(0) =0, /(k)u,(n) = —uy(n).

Proof. We show that if v, is a solution of the equation (2.2), then u, = L™'v, is
a solution of the problem (2.4), (2.5). Fort <n

f()="P,f(t)=[I + PK]v,=[I +K]uv,.

This means that u, = L™ 'v, satisfies the equation (2.4) for ¢ < n because the hypo-
theses of Theorem 1 are satisfied. The function u, satisfies also the condition at the
point 0. With regard to the equality

v(t) =0 for t>n
we have

u,(t) = \7112 {e_w"' j;(sh (k) 7) v,(1) dT + sh {/(k) tJ.:e_*/”"’ v,(7) de
and
u,(t) = —e_w‘”j (sh \/(k) 1) v(r) dT + ch /(k) t‘[ e YOy (1) dr.
thus fort = n
) = — (k) ).
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Now it suffices to prove that on the interval (0, o) there exists an extension i,
of the solution u, of the problem (2.4), (2.5), such that #, € [*(0, o) and v, = L,
is a solution of (2.2).

Let fort > n

(2.6) @(t) = u,(n) " VE.
Then it is easy to find that for t > n
—a@'(t) + ki r)=0.

Hence v, = Lii, is a solution of (2.2). qg.e.d.

2.3 Convergence

The convergence of the method defined in 2.2 follows from the general Theorem 2.
Thus it suffices to show when the hypotheses of Theorem 2 are satisfied.

Lemma 4. Let us suppose that a € LZ(O, o0) and that there exists a positive con-

stant k such that [b(+) —k] e I*(0, o).
Then the operator K is completely continuous.

Proof. First we shall prove the following estimate:

(2.7) r FKZ(z, B drdr < o

0 0

The Schwartz inequality permits us to obtain

J: J;LKZ(t, t) dr dt gJ [lb(t) - A[(j G*(t. 1) )1/2 +

o 2 1/2 72
+ ]a(t)[(f <6—G(ii)) dr) ]dr.
° ot
It is easy to find that
® 1 1 '
G(1,7)dt = — {W (2, + __) e—zy/(k):}

.[0 4k \/k \/k

N gci(i’.ﬂ 2d-[ = } ,,l,__ 1_ — 2t> —zJ(k)x}

oL ot 4 | Jk JVk

fwfwKz(t, t)ydrde < c | {[b(t) — k| + |a(n)|}> dt < o .

and

Hence

IA
°.s
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This implies the complete continuity of K because, as is well-known [J], every
integral operator in LZ(O, o) with a kernel satisfying the estimate (2.7) is completely
continuous. q.e.d.

It remains to prove that the operators P, defined by the formula (2.3) satisfy the
condition 2° of Theorem 2.

We have evidently
o 1/2
Hf - PanLZ(O.xD = (J fz(f) dt)

and if n — oo then for any f e [*(0, o)

limj‘ f3(t)de =0.

Thus if we assume that the homogeneous equation (2.]) has only the trivial solution
in LZ(O, o) and that the hypotheses of Lemma 4 are satisfied, then we obtain con-
vergence in the norm of [*(0, o0) of the sequence {v,} to a solution of the equation (2.1).

Returning to the differential form of the problem (2.1) we obtain the following
theorem:

Theorem 3. Let i, be the extension of u, defined by the formula (2.6). Suppose
that a € I2(0, c0) and 3k > 0, [b(*) —k] e I*(0, o0). Also suppose that the homo-
geneous problem (1.1), (1.2) for n = I has a unique solution.

Then for any f € I*(0, o) there exists a solution u, of the problem (1.1), (1.2) and

and there exist constants independent of n and f such that

. ) o 12
sup |a@(1) — uo(t)] = Ci(J’ (—ug + kuy)? dt> , i=0,1.

0<t<mx n

U, — Uy

L20.%) 50 0

Proof. This theorem is an easy consequence of Theorem 2.

With regard to the continuity of the operator L™' we obtain the convergence of u,
10 u, in the norm of I*(0, o).

The estimate of the term sup |u,',(t) - ué,(t)] follows from the following inequalities:
0Lt

[Mﬁ—uwﬂg(ﬂ%ﬂnﬂm)@”%—%mwa“

(1) — uolt)] < ( j <G(%)>d>

and from the fact that

o0 1/2
wa¢MW§uM%~Mgcq(MWm>.

n

Uy, — UO“LI(O.’X;)

The proof is complete.
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PART IIl

Let us consider the equation
(3.1) [1+K]v=/f

in the space L0, o) for n(t) = e~". The operators I and K are defined in 1.2.

From the Theorem 1 it follows that the equation (3.1) is equivalent to the dif-
ferential problem (1.1), (1.2) if the constant k from the formula (1.9) satisfies k > }.

3.1 Description of collocation method

It is possible to define such subspaces X, and projection operators P, so that the
method obtained is simple and has direct numerical applications.

Let C[O, oo] mean the space of continuous functions on [O, o0) which have finite
limits in infinity.

Suppose a partition r, on the interval (0, ) is given:

n

(3.2) 0 <ty <fi<..<t,.

Let 1 = —Inx}, i =0, ..., n,where x} are zeros of orthogonal polynomials on the
interval [0, 1] with a positive and continuous weight function g(x). Define P, as the
projection operator from C[0, o] onto the space X, which is generated by the basis
(], e ., e ")

More precisely,

—_ — -t —nt
an =0, = % + e + .+ o,e >

where the coeffictents o, ..., «, are such that
o) = o}, i=0,...n.

According to the definition of a projection method (point 2.1) we have an approximate
equation in the form:

(3.3) [+ PK]uv,=P,f.
Let us return to the differential problem (1.1), (1.2) for n(1) = ¢~".
It is clear that the equalities
P, f()) = P,g(th). i=0...,n

for f, g € C[0, o] imply that
P.f=Pg.

n.

101



Thus the equation (3.3) is equivalent to the system o.f equations
v (t7) + Ko(i}) = f(i5), i=0,....,n

which with regard to Theorem | can be written as

(G4)  —ul) + () ul) + BE) ) = SE). =0
where

(3.5) u,(1) = J\OO G(t, 7) v,(7) dt.

Since

G(t,t) e dr = L [e7 = e_""‘"] for s + Jk
k —s?

0
and
@ — 1 _
JO G(t, 1) e dr = 2N4V7k e VY for s =k,

the method defined above (3.3) is the so-called collocation method which consists
in finding a function of the form

(36) un(t) = Z ﬁi(pi
i=0
where
oft) =e " —e VB f i % \/k and oft)=e "t if i=Jk,
which satisfies the differential equation (1.1) exactly at the collocation points, i.e.,
at 1}, i =0,..., n.

3.2 Properties of operators P, and K

Lemma 5. For each function v e [0, o] the sequence {P,v} converges to v in the
norm of the space Lf,(O, ®).

Proof. We shall base our proof on the Erdés-Turan theorem [6] about a conver-
gence of interpolation polynomials.

Let us consider a function f continuous on the interval [0, 1]. Suppose that L,f
is its interpolation polynomial of degree n based on nodes xg, ..., x; which are the
zeros of orthogonal polynomials with a continuous weight function o(x) > 0.
The Erdos-Turan theorem implies that

lim j o) [La f(x) — F(5)]2 dx = 0.

n—w
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Let us substitute x = ¢~ ". On account of

L,f(e™") = P,u(t) where o(t) 2L f(e™")
we obtain

0 0

It follows that
lim f e '[P, o) — o)]2dt = 0,
n— o0 0

g.e.d.

Lemma 6. Suppose that

1° a, b e C[0, 0], v
2° 3k > $1im (b(1) — k) e'? = 0,
t— w0
3 lim a(f) ¢! = 0.
1= 0

Then the operator K maps the space L3(0, ) into C[0, w].

Proof. By the definition of K (1.9),

Kot) = 00~ 0 [0t 9 o) 0+ aty [ D g

It is obvious that Kv is a continuous function on the interval [0, ).
It remains to prove that the function K v(t) has a finite limit in infinity.
The function Kv may also be written as

K oft) = (6(1) = K) 200, + w) + (k) a(t) 20wy — wy) +
I 1 —J(k)t * = V(K
o= Je e [T an,

where

| B ! -
Wy = e VORI (VI o=V ®R) (1) g
2k 0

W, = 71% ew(k)ﬂ/znf e~V o7) dt .
By the Schwartz inequality it is easy to find that

(3.7 wi(®)] = o ][o] 20000 »

(9) 0] = 2.0

t

L,2(0,) >

where a4, a, are independent of ¢.
The above fact together with the asumptions 1°—3° implies Lemma 6.

jlg(x) [L,f(x) = f(x)]? dx = one" o(e™) [P, v(1) — v(1)]?dt.
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Lemma 7. Under the hypotheses of Lemma 6 the operator K : 13(0, o) — C[0, ]
is completely continuous.

Proof. As we know from the Arzela theorem we must prove that the operator K

maps the unit sphere from Lf,((), ) into a set of equicontinuous and uniformly
bounded functions from C[0, «o].

From the proof of Lemmas 6 and 7 it evidently follows that K maps the unit
sphere into a set of uniformly bounded functions. The definition of a set P of equi-
continuous functions in the space C[0, ] is as follows:

For every ¢ > 0 there exist open sets Q,, ..., Q, such that

[0,0]=U0Q; and Vi, t,€Q;, j=1,..,n, |[f(t;)—f(t)] <¢
Jj=1 .

for an arbitrary function belonging to P.

We may assume without loss of generality that ¢, > t,. We shall prove that for
every ¢ > 0 there exist § and y such that if t, — ¢, < J or t; > y then for every
o (o] eyo.mr = 1)

K o(t)) — Kot,)| < &.
Let us denote
ey (1) = b(t) — k £ J(k) a(r) .
We have
|Ku(t,)) — Ku(t,)] £ A4+ B,
where

! AN “s (k) 7) v(t) dt —
A=b;amw <j5h«m)(m

)

_ ?/1; c_(1) e VT r(Sh J(k) 1) v(r) de

B= "
2k

[C+(t1) e~/(k)h + C*(IZ) e«/(k)fl]J‘ e*x/(k)fv(.[) dr —

Ty

— [ei(ty) @2 + c_(t,) /7] j e VO (1) dr| .

12

To A we apply the Schwartz inequality and the estimate (3.7) which give

(ﬁ}m«wﬂwﬁm.

2]
e e
t

A Zoyle? e (1) — e e ()| + lyll; c_(t,)

Likewise, by using the estimation (3.8) and denoting

0<t<m
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we obtain

(0 + a3) |eu(ty) €2 — (1) €| + 2-17( ei(1y) e v 0r —

153 1/2
— L'_(fz) e\/(k)le <J e—2~/(k)r d‘L’) .
ty

With regard to the hypotheses of Lemma 7 it follows that if |, — 1,] > 0ort, —» ®
then A > 0and B—> 0. gq.ed.

3.3 Convergence

Theorem 4. Suppose that

1° a, beC[0, o],
2° 3k > L lim [b(r) — k] €2 = 0,

1= o0

37 lim a(t) e"/* = 0,

-5
4° the homogeneous problem [/ + K] v = 0 has only the trivial solution in the
space Lf,((), o).
Then for every f belonging to 3(0, o0) there exists a unique solution v, € L3(0, o0)
of the equation (3.1) and for all sufficiently large n there exists a unique solution of
the equation (3.3) which satisfies

|
Hl’o = Un|[L,2(0,00) =c. “ano - l‘onl_,,l(o.,;

where ¢ is a positive constant independent of n.

Proof. This proof is a certain modification of the proof of Theorem 2. For the
sake of clarity we will quote it in its full form.

A convergent sequence in C[0, oo] converges also in the norm of the space Lz,i(O, )
because the weight function n is integrable. Thus, taking into account Lemima 7,
we can state that the operator K is completely continuous also as the operator
from L3(0, o0) into L3(0, o0). On the other hand, the following general theorem [2]
is known:

If X is a Banach spaceand T =1 + K : X — X is the sum of the identity operator I
and a completely continuous operator K and the equation Tx = 0 has only the
trivial solution in X, then

T(X)=X.

Applying the Banach theorem about the inverse operator to the operator [ + K :
: (0, ) - L3(0, o) where K is defined in 1.2 we obtain that (I + K)™' is con-
tinuous on L2(0, ), i.e.,

(3.9) Im >0, Voe 30, %) (I +K)v

Ly2(0.0) = ’”l!vl Ln?(0.,%0) *
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From Lemmas 5 and 7 it follows by contradiction that

PK — K|ppor,p —o2> 0,

n—oo

1e.,

(3.10) Ing >0, Vn > ng |

PK — K|p2ap, < '~2"

The estimates (3.9) and (3.10) imply

|1+ PK]o| = |[1 + K]v+ [P.K —K]o| = 2.

"
2
This means that there exists a continuous inverse operator [I + P,K]™".

For each function v € L3(0, o) we have
lo]| = ¢ + PK) (1 + PK)" o] 2 '21’ (1 + P,K)" o]

Thus
1 2
[0+ ) o] 5 2 ]
m
i.e., the norms of the operators (I + P,K)™" are uniformly bounded.
We have the following equalities:
(I+PKyv=Pf+({—-P,)v,
(I + P,K)(vo —v))=(I — P,)vg .

Taking into account the above proved properties of the operators (I + P,K) we can
state that

o S [0+ PR [P = vofl 5 2 [P = uo]

Uy — DOI

q.e.d.

Corollary 1. If the solution v, of the equation (3.1) belongs to the space C[0, o],
then with regard to Lemma 5 v, — vy in the norm of the space Lf,(O, 0).

Corollary 2. If v, belongs to the space C[0, 0] then there exists a constant & > 0
such that the following estimate holds

L2000y = ainf {{vg = v co.0} -

VEXR
This follows directly from the Banach-Steinhaus theorem in viritue of the fact
that for any function ve X,

leo = v

L2000y =

”ano - ”o”l,,,zto.m = |Pn(v() - U) - (Uo - U)

<|i -~

oo = eleto.s-
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Let us return to the differential problem (1.1), (1.2) for n(t) = e¢~'. Theorem 4
implies the following theorem about convergence of the collocation method.

Theorem 5. Suppose that

1° a, b e C[0, 0],
2° lim /2 a(1) = 0, 3k > L lim (b(1) — k) e"? = 0,
t— 00 1= 00
3° the homogeneous problem (1.1), (1.2) has only the trivial solution,
4° the solution uq of the problem (1.1), (1.2) belongs to C*[0, ©].
If 1°=3° then for every f e (0, o) there exists a unique solution of the problem
(1.1), (1.2).

If 1°—4° then there exists ny such that for n > ny the approximate solution u,
defined by (3.4), (3.5) is unique and the sequence {u,} converges to u, in the supre-
mum norm on any finite interval [0, ]; more exactly

V&< oo, sup ,u,’,(l) — u(")(t)l < c,-e“‘””v,, — Uo”LUZ(OAl) s
0=r=¢

where i = 0, 1.

Proof. By Theorem 4 there exists n, such that for n > n, there exists a uniquely
defined solution of the equation (3.3). From (3.5) it follows that u,, is also well defined

for n > ny.
Using the Schwartz inequality we can estimate the difference between u, and u,

i = 0,1 in the following way:

IWU)—u40]§<JjZéSG«Lﬂdrfﬂ

Jun(t) — uo(1)] = (J:;(]T} (aGEtt T)> df>l/2 120 = o]l L2009 -

On the other hand, it holds

Uy — Uo”L,,l(o,x) s

e’ GZ(I, ‘r) dt = A t o' + 2 PREN O
4k — 1

0 Jk k-1

_ L g-avw-ix
Vk 2 (k) -1
fme’ <aG(t, T))Zdr _ Ak o 4 2k v

>

0 ot 4k — 1 4k — 1

7

1 - \/k e~ V)~ Dyt

2 J(k) - 1
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i.e., there exist constants ¢,, ¢, independent of ¢ such that

0
0 3 2

p i?&i)) dr <
. at

sup |ux(t) — ug(t)] < cie?

0sr<é

j ve' Gz(t, 7)dt £ ¢pe

and

A
S
—
«.
N

Hence, Theorem 4 yields

Uy — DO"L,,z(O,no) neo 0

where i = 0, I.

Corollary 3. If the function vy = —ug + ku, has derivatives up to the order r
(r=0), vie C[0, ] (i =0, ..., r) and v" satisfies the Lipschitz condition with an
exponent a then :

sup |uy(t) — ug(r)] £ Me¥>n™""* i=0,1,

0=r=¢

where M is a constant independent of & and n.

This follows from Corollary 2 and from the Jackson theorem about the rate of
approximation of a continuous function on the interval [0, 1] by polynomials [3].
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Souhrn

PRIBLIZNE METODY RESENI DIFERENCIALNICH ROVNIC
NA NEKONECNEM INTERVALU

TERESA REGINSKA

Autorka uvadi dvé metody priblizného feSeni jistého okrajového problému na
nekone¢ném intervalu. Prva metoda spociva v aproximaci feSeni posloupnosti feseni
jistych okrajovych uloh na koneénych intervalech. Druha metoda je modifikovana
kolokaéni metoda. Dokazuje se existence feSeni a konvergence uvedenych metod.

Author’s address: Dr. Teresa Reginska, Instytut Matematyczny Polskiej Akademii Nauk,
Sniadeckich 8, Warszawa.
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