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SVAZEK 22 (1977) APLIKACE MATEMATIKY CisLo 1

ON SIGNORINI PROBLEM FOR VON KARMAN EQUATIONS

OLDRICH JOHN
(Reccived March 26, 1976)

1. INTRODUCTION

In this article we deal with the Signorini boundary value problem for the system
of von Karman equations. The existence theorem (Theorem 4.1) is proved in the case
of rather general boundary conditions. All restrictions concerning the shape of the
plate and the boundary functions (i.e. (4.2) and (4.8)) seem to be quite natural from
the physical points of view. There is only one unpleasant restrictive condition, namely,
that the boundary ¢Q of Q is infinitely smooth. (€ is the simply connected bounded
domain corresponding to the middle plane of the undeflected plate.) This can be
weakened immediately to Q € C3. Probably, apart from some additional technical
difficulties, Theorem 4.1 is available also for an angular domain whose boundary
is piecewise of C>.

Theorem 4.1 is obtained by means of Theorem 5.3 (see also [9]) which is a general-
ization of the result of J. L. Lions and Q. Stampacchia [6]. We make the application
of this abstract result possible by transforming previously our variational problem
in Section 6 to a suitable form using the idea of G. H. Knightly (see [3], [2]).

The present paper is a continuation of the article [2] by J. Necas and the author.
J. Naumann in [7] studies the unilateral problems by a different method.

2. CLASSICAL FORMULATION OF THE BOUNDARY VALUE PROBLEM

Let Q be a simply connected bounded domain in E, with infinitely smooth
boundary 0Q (see [2], Definition 5) divided into three pairwise disjoint subsets
3

I,y '3, Ul; =0Q. We suppose that either I'; = @ or I'? is a union of finitely
i=1

many sets A; where each ; is homeomorphic with an open interval. (F? is the interior
of I'; with respect to 09.)

As usual we write w, instead of dw/dx, w,, instead of 9*w[dx dy etc. The vector
function n = (n,, n,) maps each point of 9Q onto the unit vector of the outer
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normal to 0Q at this point and we define the normal derivative w, and the tangential
derivative w, as

(2.1) w, = wun, + wn,, w,=wl(—n)+ wn,.

Denote further

(2.2) Aw = A(Aw) = Wy + 2Wopy + Wy,
and
(23) [Ws f_] = Wx_\-fyy + ‘Vyy,fx.\' - 2Wx_vf.\'y -

Finally, let the boundary operators M and T be defined as follows:

(2.4) Mw = vdw + (1 — v) (weni + 2wonn, + wynl),

Xyxtty ey
(2.5) Tw = (—4w), + (L = v) (wenn, — wo(nd — n}) — wynn,),

where v is Poisson’s constant (0 < v < ).

Being interested above all in the variational solutions of boundary value problems
we do not give the classical formulation in full detail. We mention it here to make the
situation clearer.

Three types of problems will be introduced —R, S; and S;;. Each problem will
be specified on the one hand by the division of ¢Q into I'; (i = 1, 2, 3) and on the
other hand by the following given functions: g : Q@ — E,; (which represents the den-
sity of the perpendicular load), ®,, ®, : dQ — E, (boundary value of the Airy stress
function and its normal derivative) and k,, m, : 'y = E,, ks, k3,, m3, 13 : '3 > E|.
(Functions k are the coefficients in the boundary conditions concerning elastically
supported and elastically clamped part of 0Q while m and r are the given bending
moments and shearing forces on the corresponding parts of the boundary.)

2.1. Definition. A pair of functions w, ® € C*(Q) is said to be a classical solution
of the boundary value problem R if

(2.6) Aw= [d,w]+q on Q,
(2.7) AP = —[w, w] on Q,
(2.8) ¢ =3¢, and ®,=d, on Q,
(2.9) w=w,=0 on I,

(2.10) w=0, Mw+ kw,=m, on T,,
(2.11) Mw + ky,w,=my on Ty,
(2-12) Tw + ky,w=r; on Ijy.
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Remark. This problem was treated in the paper [2]. Remember herc at least the
meaning of the special case of boundary conditions: I'; is the clamped part of the
boundary. If k, = m, = 0 on I', then I, is simply supported. If k;; = m; = k5, =
= r; = 0 on 'y then I'5 is the free part of the boundary 0Q.

2.2. Definition. A pair of functions w, ® € C*HQ) is said to be a classical solution
of the problem Sy if it satisfies the equations (2.6)—(2.11) and if

(2.13) w=0 and Tw + ky,w = r; and
wW(Tw + ky,w —r3) =0 on Iy.

Remark. In the special case of k3, = r3 = 0 the condition (2.13) describes the
following situation: The edge I'; of the plate lies on a rigid base so that it can be
deflected only upwards (w 2 0). The possible shearing force is the reaction of the
base which acts in the positive sense (Tw 2 0). If w(P) > 0 at a point Pe '3, no
reaction of the base acts there so that Tw(P) = 0 and the product w(P) . Tw(P) = 0.
If w(P) = 0 then Tw(P) can be >0 but the product w(P). Tw(P) is zero again.

2.3. Definition. A pair of functions w, & € C¥Q) is said to be a classical solution
of the problem Sy, if it satisfies the equations (2.6)—(2.10), (2.12) and the condition

(2.14) w, 20 and Mw + ky;w, = m; and

wMw + kyw, —m3) =0 on Ij.

3. VARIATIONAL FORMULATION OF THE BOUNDARY VALUE PROBLEMS
First we introduce the necessary notation:
(3.1 (u; V)wo22 = j (Uxlyr + 2u vy, + uy,w,,)dxdy,
(2]

(3.2) (u,0)y = (U, V)wy2 + vj [u, v]dxdy,

(3.3) a(u, v) =f kou,v, dS +J' (k3yu,v, + kypuv)ds,
I Is

(3-4) A(u, v) = (u, v)y + alu, v),

(3.5) B(v; u, ) = J- (010 + vou, 0, — vyu @, — vou,e,)dxdy.
0
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Notice that for ¢ € W2
(3.6) B(v; u, @) = B(g; v, u) = B(u: ¢, v) .
Using the Holder inequality we obtain
() 0050 )] = cliles [l ol
Define further the subspace V of W>?(Q) as ¥~ where
(3.8) ¥V ={veC?(Q);v=uv,=0o0n I, v=0o0n1I,]
(the closure in W2:2(Q)) and two cones in this subspace
(3.9) Ki={veVivz=0onTI,}, Ky={veV;v,200nTI;}.

3.1. Definition. A pair of functions we V, ® € W>*(Q) is said to be a variational
solution of the problem R if ® satisfies the condition (2.8) in the sense of traces,
if further

(3.10) Alw, v — w) 2 B(w; @, v — w) + J\ g(v — w)dxdy +

Q

+ J. my(v, — w,)dS + J\ [m3(v, — w,) + ry(v — w)]dS
I I's

holds for each ve Vand if
(3.11) Ve WGH(Q) : (P, ¥y = —B(w; w, %) .

3.2. Definition. A pair of functions we K,, ® € W>*(Q), (we K,, ® e W?3(Q),
resp.), is said to be a variational solution of the problem S, (S,,) if @ satisfies the
condition (2.8) in the sense of traces, if further (3.11) holds and if the inequality
(3.10) is satisfied for all ve K, (ve Ky).

Remark. The relation between the variational and classical solution is explained

in Section 8.

4, THE MAIN RESULT
Define
(4.1) Y, ={veV; A(v,v) = 0}.

It follows from the definition of A by means of the formula (3.4) that Y, is a linear
subset of the set of all polynomials of the first order restricted to the domain Q.
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4.1. Theorem. Suppose that Q is the domain described in Section 2 and that
(4.2) either Iy = 0or I'; is a union of finitely many segments of the straight line.

Let the prescribed functions k,, ks, ky, and q, m,, ms, r5 satisfy the following

conditions:
4.3) ky e L(l,) (p>1) and k, =0 almost everywhere on I,

(4.4) kyy e L(I's) (p>1) and ks =0 almost everywhere on Iy,

(4.5) ks, e Li(I3) and ki, =0 almost everywhere on Ty,
(46) q€ L,)(Q) s (P > 1) )
(4.7) my, e L(I,) and myeL(l3), (p>1), ryeLy(l5).

Let the functions @, and @, defined on 0Q almost everywhere have the following
properties:

(4.8) by =d, =0 on Iy,
(4.9) there exists a function F e C*(Q) for which
F=®, and F,=®, on 0Q.

Then the following assertions hold:

(i) 1f Y, = {0} then there exists a variational solution of the problem R.
(i) 1f R, Y, = {0} then there exists a variational solution of the problem S.
If B,nY, + {0} and if simultaneously each z e K, nY, N {0} satisfies the in-

equality

(4.10) f gz dxdy +f m,z, dS + f [myz, + ryz]dS <0
2 r; Is

then there exists a variational solution of the problem S;.

(iii) IfRyny, = {0} then there exists a variational solution of the problem S,,.
If KyunYy, # {0} and if simultaneously each ze K, n Y, \{0} satisfies the
inequality (4.10) then there exists a variational solution of the problem Sy,.

In the proof of Theorem 4.1 we employ Knightly’s idea of transforming the prob-
lems in question to nonlinear operator inequalities (Section 6) to which we apply
in Section 7 the abstract Theorem 5.3.

5. ABSTRACT EXISTENCE THEOREM

Let H be a real Hilbert space with its norm “ . H,, and let p, be a seminorm in H.
Let {f, v) denote the pairing between H' and H.
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5.1. Definition. An operator 7 : H — H' is said to be semicoercive on H with
respect to the seminorm p, if there exists a function

(5.1) G: €0, + ) > <0, +w) )
Sfor which
(5.2) lim G(z) = +w

z=+w

and a positive constant C such that
(5.3) Voe H: (T (v),v) = py(v). G(py(v)) — C.
5.2. Definition. An operator 7 : H — H' is said to be pseudomonotone if

(5.4) J is bounded on H
and

(5.5) w" = u and limsup (T (u"), u" — u) < 0 implies lim inf (T (u"), u" — v) =
> (T (u), u — v) forall ve H.

5.3. Theorem. Let H be a real Hilbert space with the norm H . ” s let py be a semi-
norm in H and py an other norm in H such that H is pre-Hilbert with respect to p,.

Let further the following assumptions be satisfied:
(5:6) po(*) + py(+) is a norm equivalent with “n,,
(5.7) the subspace Y = {z € H; p,(z) = 0} has a finite dimension,
(5-8) there exists ¢, > 0 such that for all ve H,
inf po(v + ) £ ¢; py(v),
yeY
(5.9) K is a closed convex subset of H, 0 €K,
and

(5-10) T : H — H' is a pseudomonotone operator semicoercive with respect to the
seminorm py.

Then the following two assertions hold:

HIfKnY= {0} then for each fe H' there exists an element w e K such that
(5-11) (T(w)v—wy={fyo—w), VoeK.
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(i) If K N Y # {0} then for each fe H' which can be decomposed into a sum
f=/fo + fi in such a way that

(5.12) {for¥> <0 foreach yeK n YN{0}
and
(5.13) 3e; > 0: |{fy, v)| £ ¢, pi(v) for each veH

there exists w e K such that (5.1 l) holds.

Proof. Denote
(5.14) K,=Kn {ve H;

v||,, < n} .

Each K, is a closed convex nonempty subset of H. According to [4], Theorem 8.1,
there exists for each f'e H' a solution u € K,, of the inequality

(5.15) (T (u)yv—uy=z{fv—uy, Yoek,.

Lemma A. Let u € K, be a solution of (5.15) and let “u H,, < n. Then u is a solution

of (5.11).
Indeed, fix v € K and denote w, = Zv + (I — 1) u. We can choose /€ (0, 1) such
that w; € K,,. Substituting into (5.15) we have

(T (u), wy — u) = {f,wy — u)
which implies immediately
(T(u)v—uy = (oo —u)
and Lemma A is proved.

According to Lemma A it suffices to prove that

(5.16) in each sequence {u"},Z, (u"€K,) of solutions of the inequalities (5.15)
there exists u" such that ||u”°”,, < Ry.

Let (5.16) be not valid, i.e.,

ny o

(5.17) there exists a sequence {i"},2, (@" € K, of solutions of the inequalities (5.15)
such that Hﬁ"“,, = n for all n e N.

We shall prove that under the assumptions of Theorem 5.3, (5.17) leads to a contra-
diction.

Denote

(5.18) w'=—, nelN.
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n) o

It is w" € K for each n € N. Because of the boundedness of {w"}2, in H there exists

o0

a weakly convergent subsequence {w"}:%,
(5.19) W= W
K is closed and convex which implies that K is weakly closed and so w € K.

Lemma B. Let w be defined by (5.19). It is p,(w) = 0 (i.e. we Y).
To prove that we put in (5.15) @™ for u and 0 for v. We have

(T (am™), a™y < (f,a"™)
and using the inequality (5.3) (semicoerciveness),
D) 6 (@) — € = <.

Hence it follows after substituting (5.18) that

C . \
Pi(w™) G py(w™) = = = fow™> < [ f]ur-

Ny
Taking into account (5.2) we obtain finally
(5.20) lim p,(w™) = 0.
k=

Denote now
(5.21) P: H - Y (the projection of H on Y with respect to p,).

From (5.6) it follows that P is a continuous mapping in H (with respect to || |i,,)
It is w"™ — Pw™ — w — Pw in H. This together with (5.6), (5.8) and (5.20) yeilds
po(w — Pw) + py(w) < MHW — Pw|y £ M lim inf “w"" — Pw™||,;, £ MM, liminf .
po(wW" = Pw™) + py(w™)] £ MM (¢, + 1)lim p,(w"™) = 0 and so p,(w) = 0.

Lemma C. Let {w"™} be defined by (5.19) and let P be the projection defined by

(5.21). Then po(Pw) > 0.
Suppose that pO(Pw) = 0. As the operator P is continuous in H and its range Y

_n) o

has a finite dimension it is totally continuous. So there exists a subsequence {z"},~
of {W"™}Z, such that

(5.22) lim py(Pz") = py(Pw) = 0.

n—oo

On the other hand,
U= [2"]u = Mi(po(2) + Pi(2") =

< Mi(poz" = P2") + pi(2") + po(P2") = My((c; + 1) pi(2") + po(P=")) -

Using (5.22) and (5.20) we obtain a contradiction and Lemma C is proved.
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So the assumption (5.]7) yields the existence of an element w e K which belongs
to Y (Lemma B) and is not zero (Lemma C). But this is impossible if K n Y = {0}.
Thus in this case (5.16) takes place and the assertion (i) of Theorem 5.3 is proved.

Lemma D. Let K N Y + {0} and let fe H', f = f, + f, where f, e H and f, € H'
with fo, fy satisfying (5.12), (5.13). Then (5.16) holds.

Suppose on the contrary that (5.17) holds and let {w"};%, be defined by (5.18)
and (5.19). Substituting in (5.15) @™ for u and 0 for v and using the condition (5.3)
of semicoerciveness we get

(5.23) Sy z - keN,

ny
On the other hand,

(5.24) Cfow™ = (s W = PW) 4 (fo, PW™) + {fy, W™

Estimating {f,, w"™ — Pw™) by Hfo”,,, ‘w”“ — Pw™|, and using (5.6), (5.8) and
(5.20) we get
(5.25) lim (fo, W™ — Pw™y = 0.
k= o
From (5.13) it follows immediately that
(5.26) lim (f,, w™> = 0.

k— o
Using finally the fact that Pw"™ — Pw together with Lemma C (Pw = 0) and Lemma
B (Pw = we K n Y) we conclude

(5.27) lim {fo, PW™> = (fo, Pwd < 0.

k=0

Passing to the limit in the equality (5.24) we obtain from (5.25)—(5.27) that
{f,w) < 0 while (5.23) yields that {f,w) = 0. So the assumption (5.17) leads to
a contradiction and the proof of Lemma D is complete.

Lemma D and Lemma A imply immediately the validity of the assertion (ii) of

Theorem 5.3.
6. APPLICATION OF KNIGHTLY’S IDEA

From now we still suppose the assumptions (4.2)—(4‘9) to be satisfied. Let
F e C*(Q) be any function for which F = &, and F, = @, on 0Q. Define

(6.1) g=®&—(F
where { is an auxiliary function from C*(Q) for which

(6.2) {=1 on 02 and (,=0 on 0Q.
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Substitute now from (6.1) into (3.10) and (3.11) realizing that the equation (3.11)
is then equivalent to the inequality

(6.3) Yy e Wy (Q):
(9. — @worr + (LFo b — g)wyrr + Bw;w, ¥ —g)=0.

Adding the inequality from (6.3) to the result of the substitution into (3.10) we
obtain the inequality

(6.4) A(w. v —w) + (9. — g)werr — B(wi g, 0 — w) + Blwiw.y — g) +

+ (CF W — g)wyro — B(wi (F 0 — w) =

> J glv — w)dxdy + f my(v, — w,)dS +J [my(v, — w,) + r3(v — w)]dS.
) r, r

6.1. Definition. A couple of functions weV and g e WOZ‘Z(Q) (we K, and ge
€ WOZ‘Z(Q), we K, and g e WOZ‘Z(.Q), respectively) is said to be a solution of the
problem R, (Sy, S) if the inequality (6.4) is satisfied for each couple ve V and
e Wy Q) (ve Ky and e Wg*(Q), ve R,y and e W5 3(Q)).

Remark. It follows from the procedure described above that the existence of
a variational solution to the problem R, (S;, Sy, respectively) will be proved if we
prove the existence of a solution of the problem R, (S, Sy;.) for a fixed function (.
The formulation of all three problems is based on the same inequality (6.4) but each
problem has its specific convex set of solutions and test functions.

Now we rewrite the problems R;, Sy, and S;; in a form which permits to apply to
them Theorem 5.3.

Denote by
(6.5) H=Vx W7Q)
the linear space whose elements
(6.6) U=|wgl. weV. geW;*Q)

are normed in the usual way as

(67 [ = Dol + ol
(Remember here that “q” worr = (9. 9w and H“H wao = ““'“Lz + H WH Wore2)

The space H with the norm H -||,, defined by (6.7) is a real Hilbert space. Denote
further

(6-8) K, = K, x WOZ.Z(QL Ky = R, x anvz(g)
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and define the functional Q: H — E| and the operator 7 ,;: H — H' as

(69) o) - j gwaxdy ¢ f

I

myw, dS + j [msw, + ryw]dS
r;
and
(6.10) (T JU), Z) = A(w. 0) + (9, ¥)wer2 — B(wi g, v) + B(wiw, ) —
— B(w: (F, v) + (CF, ¥)wee s
where Z = [v, /.

6.2. Definition. A solution of the problem Ry, (Sy, Sy respectively) is such an
element of H (K, Ky) for which the inequality

(6.11) (T(U),Z—-U)=2<0,Z-U>
holds for each Z € H, (Z eK,, ZeKy).

Remark. The equivalence of Definitions 6.1 and 6.2 is evident. In accordance
with our programme we are looking for the function { for which the operator 7,
is pseudomonotone and semicoercive with respect to a suitable seminorm.

6.3. Lemma. The functional Q defined by (6.9) is a continuous linear functional
on H.

Proof. The assertion follows from (4.6) and (4.7) by means of Sobolev imbedding
theorems and theorems of traces (sce e.g. [8]).

6.4. Lemma. Let { € C*(Q) be a function with the property (6.2). Then the opera-
tor 7, defined by (6.10) is a bounded operator from H to H'.

Proof. The assertion follows from the estimate (3.7), Sobolev imbedding theorems
and theorems of traces.

7. PROOF OF THEOREM 4.1

In the space H defined by the relations (6.5)—(6.7) set for U = [w, g/
) V) = ol + ol
(7.2) pi(U) = [A(w, w)]'* + ”gwwoz.z.

H is pre-Hilbert with respect to the norm py. From (4.3)—(4.5) it follows that p,
is a seminorm in H. From the definition (3.4) of A(u. v) we obtain easily that py(+)+

+ py(*) is equivalent with the norm H H,,. So the assumption (5.6) of Theorem 5.3
is satisfied.

62



Denoting Y = {U € H; p,(U) = 0} we have immediately
(7.3) Y=1Y, x {0}

where Y, is defined by (4.1). Since Y, is a linear subset of the set of all polynomials
of the first order restricted to the domain €, it is finite dimensional and the assumption
(5.7) of Theorem 5.3 is satisfied.

To prove (5.8) we have to show

(7.4) 3V infu+:z

c>0 wuev zeY,

I,‘Z < C[A(u, 11)]”2 .

Let X L Y, be the orthogonal decomposition of the space V' with respect to the scalar
product in L,(Q). Suppose that (7.4) docs not take place. Then there exists a sequence
{u"}~, in Vsuch that

. 1
(7.5) inf | u" + 3“1,2 =1 and AW, u")<—-, n=12....

zeYy

Let w" be an orthogonal projection of u” onto X. According to (7.5) it is
(7.6) [w', =1, nenN

and A(w", w") = 0 so that HW”HWOZ,z — 0. Thus the sequence {w"};- is bounded
in W*2(Q). Thanks to the compact imbedding W?-*(Q) = L,(Q) there exists a sub-
sequence {w"};2, convergent in L,(Q) to an element w. Because of D*w™ — 0 in
L,(Q) for each «, Ia[ =2,itis w™ —> win W>*Q). As we Vand A(w, w) = 0 we

obtain that w € Y, which implies
j w*wdxdy =0, keN.
o

Thus w = 0 which contradicts (7,6).

Each of the sets H, K, and K/, is a convex closed subset of H containing zero so
that in all three cases the assumption (5.9) is satisfied.

To prove the semicoerciveness of .”/";(U) with respect to p, for an auxiliary func-
tion { we use the following lemma the proof of which will be sketched at the end of
this section.

7.1. Lemma. There exists a function { € C*(Q) satisfying (6.2) for which
(7.7) [B(w: LF. w)| < { pi(U) forall U = |w.g/eH.

63



Let us estimate now (73(U), U). We obtain by means of (3.6), (7.2) and (7.7)
for each U = |w, g/

(7.8)  (THU). U = A(w.w) + (9. 9)worr — Bwi g, w) + B(w:w, g) —
— B(w: LF. w) + (TF, g)wy:r = 3 pi(U) — |B(w: {F. w)| —

- |(ZF, !J)wolylt =3 P]z(!]) - I(ZF~.(1)tV“2~l .

Estimating

ICF. gwazol = g = C+ dlglhee = C+ Lpi(U)

and substituting it into (7.8) we obtain finally that
(7.9) (TH(U) Uy =z }pi(u) - C.
It remains to prove the pseudomonotonicity of the operator 7. We can write
(7.10) (THUM), UM = VY =T HU") — THU), U" — U> +
+ {THU) U = Ud + (THU") U = V.

If we prove that the situation
(7.11) U" = U and limsup{THU"),U" = Uy =0

implies that the first two members on the right hand side of (7.10) tend to zero and
T (U") = THU) then the pseudomonotonicity will be established. Obviously,
lim (T HU), U" — U) = 0. Further, according to Lemma 7.1,
(7.12) <K7:(U") - ,“75(U), U" — Uy = AW" — w, w" — w) +
+ (9" — g, 9" — Gworr — B(w" — w; CF, w" — w) +
+ [B(w"; w", g" — g) + B(wi g, w" — w) — B(w'; g", w" — w) —
— B(w;w, g" — g)} = ipi(U" - U) +
+ {B(W"w", g" — g) + B(w; g, w" — w) — B(w": g", w" — w) — B(w; w.g" — g)}.
For n — oo the expression in figure brackets tends to zero. (This follows from the

estimate (3.7) and from the compactness of the imbedding W?(Q) = W'4Q).)
Using (7.11) we obtain from (7.12) that

lim (T HU") — THU), U" = Uy =0.
Simultaneously we get from (7.12) that
(7.13) lim p,(U" — U) = 0.

n— oo
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Let now Z = [v, /. 1t is

(7.14) (THU") = THU), 2> = A(w" = w,0) + (9" = g, Y)wor —

— B(w":g".v) + B(w; g,v) + B(w" w", ) — B(w: w, ) — B(w" — w; IF, v).
From (7.13) and (3.7) it follows that

(7.15) m {A(W" — w, 0) + (¢" — g Y)wore — B(W" — wi LF, v)} =0,

(7.16) lim {B(w; g, v) — B(w": g", v)} = lim B(w — w"; g, v) —
— lim B(w"; g" — g,v) =0

and o

(7.17) lim {B(w": w", W) — B(w; w, )} = lim B(w" — w: w", §) +
+ lim B(w; wh—w, ) =0.

Using (7.15)—(7.17) we obtain from (7.14) that

lim (T H(U") — THU), Z) = 0.
n— oL
In this way we have established that under the conditions of Thesorem 4.1 all
assumptions of Theorem 5.3 are satisfied for the operator .7; in the space H. The
assertion of Theorem 4.1 is nothing else than the assertion of Theorem 5.3 rewritten

for the operator 7

Sketch of the proof of Lemma 7.1. Under the conditions (4.2), (4.8) and
(4.9) we are able to prove the following fact: For each y > 0 there exists a function
{ e C*(Q) satisfying (6.2) for which

(7.18) |B(w: CF, w)| £

!w”fyz,z forall weV.

(For the details see [2], Section 6.) Put y = 1/16(c¢* + 2) where ¢ is the constant from
(7.4) and denote by { an auxiliary function for which (7.18) holds. For we V and
- e YV we have

yzz:

|B(w + = CFow + 2)| < W,,,,A |w +

< ————(Hw :Hi2 + HWH;ZVOJ‘Z)

§_ + 2)
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and, using the definition of A(w, w) and the relation (7.4),

5 1

7.19 inf [B(w + z; lF.w + 2)| £ ——————(c? + 2) A(w. w) < 4 p?(U).

(1.19)  inf B N5 gy (€ DA S A
a) In the case Y, = {O} the proof is complete.

b) In the case Y, #+ {0} we must prove that B(w + z: {F,w + z) = B(w; {F, w)
for we V, z € Y, or, equivalently (remembering that z are polynomials of the first
order)

(7.20) B(w; ZF, z)=0
for all we C*(Q) for which w = w, = 0on I'y and w = 0 on I, and all polynomials

z(x, y) = ax + by + ¢ from Y, \{0}. We obtain by Green's formula (using also
(6.2), (4.8) and (4.9)) that

(7.21) B(w: {F, 2) :j (EF), (= bw, + aw,)dS =

cQ

:j (@), (—bwy + aw,)dS .
r

If now I', = 0, the last integral equals zero. Let I', = 0. Asze Y, < V,ax + by +
+ ¢ = 0on I',. This implies that (— b, a) is a tangential vector so that the expression
—bw, + aw, equals cw, with some real constant ¢. But w, = OonI';asw = Oon I',
and so B(w, {F, z) = 0 q.e.d.

8. RELATION BETWEEN CLASSICAL AND VARIATIONAL SOLUTIONS
OF THE PROBLEM

The sufficiently smooth variational solution is a classical one. We sketch the proof
in the case of the problem S;. From Green’s theorem we obtain (for u. v and w
sufficiently regular)

(8.1) (w,v)y = f A*wodxdy + f TwovdS + '[ Mwuv,dS,
2 2 o

(8.2) (m@%m:fAmumm:wvemP@y
Q

(8.3) B(u; w, v) = '[ [u,w]vdxdy — j (wyty, — wyu) vdS.
Q

GLo]
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Let w, @ be a sufficiently smooth variational solution of the problem S, (sce
Definition 3.2): using (3.11), (8.2) and (8.3) we obtain

j (4?0 + [w,w]) ¥ dxdy =0, Ve Wg*Q).

This yields
4*P = —[w,w] on Q,
which is the equation (2.7).

Setting in (3.10) v = w + ¢ where ¢ is a smooth function with a compact support
in Q we obtain from (8.1) and (8.3) that the functions w and @ satisly the equation
(2.6). Because of we V, the condition (2.9) is satisfied automatically and w = 0
on I, as well.

Using these facts together with the formulas (8.1) and (8.3) we transform (3.10) into

J (Mw + kyw, — m,) (v, — w,)dS +J‘ (Mw + kyw, — m3) (v, — w,)dS +
I>

Is

+f (Tw + k3w — r3) (v — w)dS +J‘ (P, — Pyw,) (v — w)dS 2 0.
I's o

The integral [, (®w,, — @,w..) (v — w)dS in (8.4) equals zero because v — w =
=0onl, uTl,and &, = &, = 0 on I'; (see the assumption (4.8)). If we take now
v=w £ ¢ with ¢ € C*(Q) and such that ¢ = 0 on 0Q, ¢, = 0 on I'; U I', we get
Mw + kyyw, = my on I'y which is the boundary condition (2.11). Analogously we
obtain that satisfies the condition Mw + k,w, = m, on I',.

It remains to prove that w satisfies the inequalities (2.13). Until now we have
proved that the inequality (8.4) has the form

(8.5) J (Tw + kzow — r3) (v — w)dS =20, VveKk,.
I;

Firstly, w = 0 according to the definition of K,. Secondly, if (Tw + kj,w — r3) (P) <
< Oata point P € I'y we obtain (by the continuity) that for a suitably chosen function
ve R, itis

f (Tw + kzow — r3) (0 — w)dS < 0,
I3

which contradicts (8.5). So it is Tw + ky,w — ry 2 0 on I'y. Finally, substituting
v = 0and v = 2w we obtain from (8.5) that

(8.6) J (Tw + kz,w — r3) wdS = 0.
Ir;

As we have proved the non-negativeness of the subintegral function, the formula
(8.6) implies that (Tw + k3w — r3)w = 0 on I';.
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Souhrn
O SIGNORINIOVE PROBLEMU PRO VON KARMANOVY ROVNICE
OLDRICH JOHN

Clanek volné navazuje na praci [2] Je v ném dokdzana existence variacniho feSeni
zobecnéného Signoriniova problému pfevedenim prislusné okrajové ulohy na nerov-
nici s pseudomonotonnim semikoercitivnim operdtorem. Resitelnost této nerovnice
plyne z abstraktni Véty 5.3, kterd je zobecnénim vysledku J. L. Lionse a Q. Stam-
pacchii z &lanku [6] na nelinedrni piipad.
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