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Let Q = {x € E;; x| < I}. Let 2(Q) be the class of real functions, each of which
is infinitely differentiable and has its support in Q. Let W'3(Q), Wg*(Q) be the
usual Sobolev spaces. Let us define C;jy, i,j, k, [ = 1,2, 3 (the tensor of the elastic
coefficients) in Q as

Ciju(x) = 5(0udyj + 0udj) + ;0 +
3 9
+ (0ixux1 + Opixix;) + T e XXX ﬂx” *0,
x| x|

where 6;; is the Kronecker symbol delta. Let us denote the strain tensor by e, =
= 4(u,/0x, + Ou,/0x,) (where u is the displacement vector), k, | = 1,2, 3.

Let u, € [W'%(Q)]*. We say that the vector function u € [ W'-*(Q)]? is a generalized
solution of the second problem of the mathematical theory of elasticity in Q with
the boundary condition u = u, on 09, if the following conditions are fulfilled:

(i) j Cijk,——f—l]i e dx =0 forevery ve[W; Q)]
Q j

(we neglect body forces),

(i) u—uge[We Q)] .

Put
a = = 17)
217
Theorem. The displacement vector u(x) = x||x|[* = (x| x||*, x,]x[* xa|x[?) is
the generalized solution of the second problem of the mathematical theory of
elasticity in Q with the boundary condition u(x) = x on 0Q.

Proof. We shall prove the relation (i). The other one is obvious. If |x| =+ 0, then

0 .
(l) E(Cijklekl) =0, i= 1,2,3.
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Let ¢ be an arbitrary function from [2(Q)]%. Let i € 2(R) be such a function that
¥(x) = 1 when ||x| < 1. We write

Yu(x) = d(xle) . odx) = @(x) (1 — w(x)). ee(0,1).
Then
a(ﬂ,‘ 6([)“' 0 ire
Srlcijkl b_" €1 dx = J‘D C,'jklg‘ € dx + J‘“l” . (‘ijkl ‘("(’p"*l/*/“) €y dx .

X; 0x;

J

The first integral on the right hand side is, according to Green’s theorem and to (1),
equal to zero. Because C;;, and d(¢#,)/0x; are bounded and [ek,! < [lx|| it s

Con e dx| < et >0,
0 ax.,—

Because (« + 3) > 0, the relation (i) holds for every function ve [2(Q)]*. The set
[2(Q)]? is dense in [W,*(2)]°, hence (i) holds.

The unigeness of the solution follows from the relation
Cijkl(x) S:ijékl = Cf.'jfij for every ¢ekE,, iij =Ci, ”x” 0.

From the physical point of view we may compare this deformation to an explosion.
When the radius of the sphere Q increases by an arbitrary ¢ > 0, then the points
from a neighbourhood of the origin “cross the boundary of Q” (i.e., for the boundary
condition ue(x) = ex it is |x + u(x)| > 1 + & in a neighbourhood of the origin).
The displacement vector and the stress tensor are unbounded.

The tensor C;j, is constant on the radial lines (except for the origin) and invariant
with respect to the rotation about the origin. The behaviour of the derived material
is paradoxical. Let us have a constant tensor C;;,; = Ci; (3, 0, 0). Consider the cube
€0, 1>* of derived homogeneous material. In the case of a constant hydrostatic
pressure the body extends in the direction of the axis x,. In the case of a pure tension
in the direction of the axis x, the body contracts.

Nonetheless, all the assumptions of the mathematical theory of the linear elasticity
are satisfied (i.e., the coefficients C;j, are measurable, bounded, the form C;j;,¢;:&,,
is elliptic).
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Souhrn
PARADOX V TEORII LINEARNI PRUZNOSTI
JinpRicH NECAS, MiLos StipL.
Uvazujme systém parcidlnich diferencidlnich rovnic linedrni pruznosti. UkdZeme,
7e Tfeleni tohoto systému s omezenou okrajovou podminkou neni (obecné&) omezené
(tj. nejsou omezené slozky vektoru posunuti). Tento piiklad je modifikaci ptikladu

z &ldnku E. De Giorgiho [1].
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