Aplikace matematiky

Subhas Dutta; Priyatosh Roy
Propagation of Rayleigh-type waves in aeolotropic material with cubic symmetry
Aplikace matematiky, Vol. 21 (1976), No. 2, 136-144

Persistent URL: http://dml.cz/dmlcz/103631

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/103631
http://dml.cz

SVAZEK 21 (1976) APLIKACE MATEMATIKY ClsLo 2

PROPAGATION OF RAYLEIGH-TYPE WAVES
IN AEOLOTROPIC MATERTAL WITH CUBIC SYMMETRY

SuBHAs DUTTA and PrivAaTOosH Roy

(Received November 15, 1974)

INTRODUCTION

Miller and Musgrave studied the propagation of elastic waves in cubic materials.
In this paper we have studied the possibility of propagation of Rayleigh-type waves in
aelotropic material with cubic symmetry.Three different models have been considered:
(1)a semi-infinite medium of the material, (ii) a layer of the material, of finite thickness,
resting on a rigid base, and (iii) a semi-infinite isotropic medium overlaid by a layer
of finite thickness of the material. For numerical calculation, the values of the elastic
constants are taken to be those for pyrites [Love — p. 163].

SOLUTION OF THE PROBLEM

(A) With the origin at the free surface and the axes of symmetry as the axes of
reference, Z-axis being directed into the medium, the equations of motion for cubic
material in two dimensions are

(1) Cr1 o t+ Caa o + (c12 + c4a) o =20 o
on? oz* Ox Oz ot
and
(2) ('44@ t+ ¢ (zz—w + (5'12 + 544) izu* = Fiw’
0x? 0z* Ox 0z or*

where u and w are the components of displacement in the x and z directions, respec-
tively.
Substituting
0 0?
(3) u="24 Ehd ,
Ox  0Ox 0z
¢ 0*
w="24 4 + o
0z 0z

136



in equations (1) and (2), « being a constant to be chosen suitably, we get

0 % % FRI0)
4 — ey —= + (e, +2044) — —0— +
@ 6%[ o (€1 ) 0z% ot
F o2y
+ —{c + (c12 + 2¢44) — + (€12 + Ca4) o—%1=0
az { 11 2 ( 12 44) ( 12 44) l// 6[2 }}
and
0 z % Foat?)
(5) b‘; [Cl 1 —; + (612 + 2C44) 6_3 — ’avti

Now let us assume
(6) @ = A cos kxe” ¥e'P*

Y = Bcos kxe %" .
Then equations (4) and (5) are satisfied if
(7 Al(cyz + 2¢44) % + (0P® — ¢11k?)] — Bq[(cy; + 2c44) 9% +
+ {(‘712 + cqq) o + 0p® — anz} =0

and

(8) Aqleqg® + {op® — K*(cya + 2¢44)}] —

- B[qz{"n‘lz + QPZ - kz("xz + 2044)} + 0‘{011‘72 + QPZ - "44k2}] =0.

Eliminating A and B from (7) and (8) we see that in order that (6) may satisfy

equations (4) and (5), ¢ must satisfy
(9) ciiCasqt + [("44 + "11) op® + (('%2 — iy + 2¢15€44) kz] q° +
+ (op* — ¢11k?) (0p® — c4sk?) = 0.
If +q, and +gq, are the roots of equation (9) we may write

(10) @ = (A" + Ae™97 4 A3e" 4+ Ase” ) cos ke,

Y = (Be"" + Bye™*'* + Bye + Bue %) cos kxe'?,
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where

(1) q:B, =4,
q:B, = —EA,,
42B3 = nds;,
q2B, = —nAy,

¢ and n being given by
(Clz + 2644) 41 + QP - Cuk
(Cl?. + 2044)‘11 + op® — ¢y k* + (012 + C44)0‘

o (Clz + 2c44) 45 + op® — ¢y k?
(clz + 2C44) q2 + Qp - cllk + (6‘12 + (,‘44)(1

From (3), (10) and (11) we get

(12)

Aty

(13) u = —ksin kxe™[(1 + &) A;e™* + (1 + &) Aye ™ +
+ (1 + n) A3 + (1 + n) Age” ],

2 2
(14) @ = cos kxe'* [{ql + (M) f}Ale"” _ {‘11 + <q_1~f.f>§} Ape 1 4
91 q1
2
+ {qz + <q2 + a>’7} A eqz {qz + <(I2 + a)ﬂ} A4e—qzz]'
q> q>

(B) If, however, instead of (3), we substitute

2
(15) w2, 0
o ox 0z

a 2

_ e oY

0z 0z?

in equations (1) and (2) and assume the same form of solutions for ¢ and ¥ as in (6),
we find that the values of +¢, and +g¢, are given by

2 _ (in - QCZ) k?
Ci2 + 2¢44 ’

(16)

2 _ (c1z + 2¢4q — 0®) K?

€11
The relations between the constants A,, B, etc. are now given by
(17) q:B, =4,, qB,=—A4,,

q:B; = A5, q,By= —A,
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and the displacements by
(18) u = —2ksin kxe'”'[ A" + Ao~ + A" + Ase” ],
(19) o = 2cos kxe'[q,A,e"* — g A,e” 1 + q,A36"F — g,A,e” "]

Case (i). For a semi-infinite medium of cubic material, the suitable solutions for
u and w as obtained from (13) and (14) in case (A) are

(20) w = —ksin kee™[(1+ &) Aze™" + (1 + 1) Ae™],

2
— cos kxe'?* [{q, + (m> f} Aze™ 7
q1
a +a -
+ {qz + ( —) n} Aze ‘“’].
q: -

The stress-strain relations give

(21) o)

~ u o
22 2z = Cy5— + ¢y —,
@2) o Moz

= ou N ow
x — +—].
oz o
The boundary conditions require that the stress-components zz and zx vanish at
z = 0. These conditions together with (20), (21) and (22) yield

(23) Ay[eni{al + (aF + ) &) — ek} (1 + 8] +
+ Agfen{as + (a3 + @) n} — ¢ k(1 +m)] =0,
(24) Az[‘h(l + f) + 1/41{‘1% + (qf + “) f}] +

+ A ax(1 + 1) + 1gq2{q5 + (45 + 0)n}] = 0.
Eliminating A, and A, from (23) and (24) we get the frequency equations as
(25) [enafar + (47 + ®) & = cok®(1 + O] [q2(1 + 1) + Vaz{as + (a3 + 0)n}] —
~ [ennfad + (@2 + @) n} — cok®(U+ )] [q,(1 + &) + 1au{ai + (a1 +2)&}] = 0.

Again, if we take the values of ¢, and g, as obtained from (16) in case (B) the fre-
quency equation becomes

(26) (Qﬁ)z - (ﬁl 1+ Gz + 2) (gci) + (2 + 51_2) (ﬂ - _cj_L> =0.
Caa Caaq Caq Cq4a/) \Caa C11C44
Case (ii). For a layer of the cubic material of finite thickness h resting on a rigid
base, the boundary conditions are
(27) z2=0, zx=0 at z=0,
h

u=0, w=0 at z =
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These boundary conditions together with (18), (19) and (22) give
(28) LA, + 1Ay + LAy + LA, =0,
4141 — q1A; + 4245 — 4,44 =0,
A" + Aje™ " + A + A =0,
Al‘heq'h - Az‘he_qlh + As‘]zeqz}' - A4‘Ize_qzh =0,
where
(29) I = KPeyy — ‘I%Cn >
I, = K¢;; — q3eq,

and q, and g, are given by (16).
Eliminating 4, A,, A3, A, from equations (28), we get the frequency equation

(30) I I I, I, }
91 —4; q2 —4q: |=0.
eq,h e—q;h eqzh e“‘lzh !
‘heqlh "‘119-1“" ‘lzeqzh _(12‘?—‘"”

Case (iii). Let us now consider an isotropic homogeneous semi-infinite medium
overlaid by a layer of the cubic material of finite thickness h.
The equations of motion for the lower isotropic medium in two dimensions are

o4 o*u %u 0%u
31 o+ ou)— + Ly 27 = g, =4,
3 (i +w) % ’“(axz 622> "o

o4 0w w ’w
32 Ay + — + LR et 1) [ S had B
(2) ( ”')az ”’(axz 022) "o

where u, and w, are the displacement components in the lower medium, ¢, and yu,
are respectively the density and the rigidity, and

_ouy | dwy
Ox 0z
Substituting
A A
(33) u, = ELAN Wy ,
Ox z
dp, 3,
1 - T — b
0z Ox

in (31) and (32), we find that these equations are satisfied if

(34) e, + o’ _ _l g,
‘ ox? 0z ot o
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and
82 2

(39 Py, L N _ 1Y,
0x? oz B oot

b}

where

(36) a0 = (’1_1“"_2/_{1_)”2, B, = (ﬂ)m
21 Q1

The solutions of equations (34) and (35) suitable for the problem are

(37) @, = Lie™ " cos kxe'" |
¥y = M e " sin kxe'?*
where
(38) ng =k (1 = c?al),
hy = k\/(l - Cz/ﬁf)

The stress-components are given by

0
(39) ()= 2050+ (0 20) %2 0"’1
~ Ou; | Ow,
) = - +—).
( ho=m ( 0z Ox >
The boundary conditions in this case are
(40) zz=0, zx=0 at z=0

u=u;, 0=w,
=), %= (3), atz=h.
These conditions lead to
LA, + LA, + LA; + 1,4, =0,
q1A; — g4, + q,45 — q,A, =0,

20" Ay + 274, + 267 Ay + 2674, — LeTmk A_'Ikl nye " = (.

2q,e""A; — 2q,67 "4, + 29,045 — 29,74, + Line ™" 4
+ M ke™™" =0,
=20, Ay — 21,e7 " Ay — 21,6 Ay — 2y, — me ML
— 2pyanye "M, =0,
—2keyaq €Ay + 2kcqaqie” A, — 2keyaq,e" A, +
+ 2kecgqqre” Ay — 2uiknge "ML, — pui(n? + k) e M, =0,
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wher€
(41) my = A0} = 1) + 2,2

and 41> 4> are given by (16).
Eliminating A,, A,, A3, A4, Ly and M from these relations we get

@) | L I, IR 1,
91 —dy q2 —q,
‘ elth e~ Nh 292" D¢~ 42h
2g,em" —2gq,e” " 2q,¢™" —2g,e” "
=21, " —2l,e” " —21,e%" —2l,e e
—2kcgqq €™ 2kcgaqie” " —2kegaqre™h 2kcyaq.e” 9"
0 0
0 0
—e Mk —nylk e
nle-mh ke—nzh 1
__mle—nlh “Zlilm”ze_”h

=2pkyne™ ™" —p(n3 + k¥ e ™ =0

NUMERICAL RESULTS

For numerical calculation of the roots of the frequency equations, we take the
values of the eleastic constants to be those for pyrites, i.e.

¢y = 3680 x 10° grammes wt. per sq. cm.
css = 1075 x 10% grammes wt. per sq. cm.
¢, = — 483 x 10° grammes wt. per sq. cm.

Roots of equation (25). (Approximate Solution.) Let us choose « to be so small
that gi + « =~ 47, ¢ + @ ~ q3,

(c1z + 2¢44) @3 + 0P* — ¢k + (c12 + cag) @ = (c12 + 2¢44) g7 + 0P — ¢y k?
and
(012 + 2044) 45 + op® — ¢k + (C12 + C44)OC o (012 + 2044) g5 + op* — cy1k?,

sothat¢ = landgn = 1.
Equation (25) with the values of g, and g, given by equation (9) in (A) then

reduces to
ﬁ 2_. ﬁ_l + 1 i + c/l_l — fi&_) =0
ﬁz Caq ,32 Casa  C11Caa
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where

It

ﬁz Caa

£ _ [1 <& 1 N {(‘L‘ 3 ]>2+4 sz }l/l)}llz‘
B 2 \Cqs Caa C11€aq

With the values of the elastic constants given above, we get

c/p = 0.987, 1.85.

Hence

The former of these two values of ¢/B clearly corresponds to Rayleigh waves.
We, therefore, conclude that Rayleigh waves exist in a semi-infinite medium of

aeolotropic material with cubic symmetry.

Roots of equation (26)

Here
€ _ [1 (CI:L 24 {(CH N 2)2_
B 2 Caa Caq
e T
Ca4/ \Caa C11Ca4
Hence ¢/f = 1.23, 1.86.

Roots of equation (30)
Four of the roots of the equation are readily obtained as

1/2 2 2 1/2 1/2

c c 11 — €12 — 2¢q5C c

¢ _ (2 + _13> Iy <gﬁ - Ciz - _,1241) , <_u) .
B Caq C11Ca4 Caq

Hence four of the roots are

¢/ = 1.24, 1.41, 1.90 and 2.03 .

Roots of equation (42)
Two of the roots are easily found to be

€ _ (2 + m)”z (@)"2
B Caq Caq

References

o

Hence ¢/f = 1.24, 2.03.

[1] Miller, G. F. and Musgrave, M. J. P.: On the propagation of elastic waves in aeolotropic

media. Proc. Roy. Soc. A 236 p. 352— 383, 1956.
[2] Love, A. E. H.: A treatise on the Mathematical Theory of Elasticity. Dover Publ. New York.

143



Souhrn

SIRENI{ VLN RAYLEIGHOVA TYPU V AELOTROPICKEM
MATERIALU S KUBICKOU SYMETRII

SuBHAS DUTTA a PrIYATOSH Roy

V ¢lanku se zkouma moznost §ifeni vin Rayleighova typu v aelotropickém ma-
terialu kubického systému pro riizné modely.
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