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SVAZEK 21 (1976) APLIKACE MATEMATIKY CisLo 1

A MIXED FINITE ELEMENT METHOD CLOSE TO THE EQUILIBRIUM
MODEL APPLIED TO PLANE ELASTOSTATICS

JAROSLAV HASLINGER and IVAN HLAVACEK

(Received December 20, 1974)

INTRODUCTION

In the present paper we derive a new variational formulation of the displacement
boundary value problem in linear plane elastostatics, following the idea of [1], [2],
where the Dirichlet problem for an elliptic differential equation has been treated.

The new variational principle for the problem under consideration is established
on the basis of a non-classical splitting of the system of the differential operators
and the Friedrichs transformation. The principle is justified by proving the existence,
uniqueness and a continuous dependence of the solution of the variational problem
on the given data. Then we show a possible application of the variational principle,
establishing a mixed finite element model and deriving an a priori estimate of error.
As a result, two components of the approximate vector-field converge to the real
displacements and the third tends to the shear stress.

The new method seems to represent a model in between the compatible and mixed
models. In fact, the new model has three unknowns (u, u,, t), whereas the compatible
and mixed models have two (uy, u,) and five (uy, u,, 6., 6,, T) unknowns, respectively.

1. DERIVATION OF A VARIATIONAL PRINCIPLE FOR PLANE ELASTOSTATICS

Let us consider a bounded domain Q <= E, with Lipschitz boundary I', occu-
pied by a homogeneous elastic body and a Cartesian coordinate system x = (x;, x,).

For simplicity, we assume the material to be isotropic, with the Lamé’s constants
4o > 0, o > 0. Denoting v,; = dv[dx;, the system of Lamé’s equations (cf. e.g. [3])
can be written in the form

(1.1) (Ao + mo) uj i + pous j; + Fi=0 (i=1,2),

where u = (uy, u,) is the displacement vector and F; the body force components.
Henceforth a repeated index implies summation over the range (1, 2). Let us consider
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the homogeneous boundary conditions
u=0 on I.

Moreover, let Fe [ L,(2)]> The weak solution of the problem under consideration
is defined as an element u € [ W, **(Q)]? such that

(1.2) A(u,v) = (Fiv) Yore Wor(Q),
where (¢, ) = [q @V dx,
Ay, v) = Ao(uii 0j5) + dpo(us; + s vij + v;).
Note that (1.2) expresses the zero variation of the potential energy
L(u) = JA(u, u) — (F;, uy)
on [ W, *(Q)]?. Setting
Ny =Ni(u), &, =N3yu), A45=N3u),

NY(u) =u;; (j=1,2, nosum),

N3(u) = uy 5 + 1y,
and applying the Friedrichs transformation') to the problem £(u) = L(u, 4;) =
= min., we obtain the dual variational formulation, namely the so called principle
of minimum complementary energy (Castigliano). Because of some difficulties in

the construction of admissible stress fields in the above principle (cf. e.g. [4]), we
choose here a different approach.

Let us set
(1.4) N = Nu) = NJ(u) + o u; . (k=1,2,3)
Ny = Ny(u) = Bu;,
A5 = Ns(u) = yu;,

where o, B;,7; are constants. Define?)

1y See e.g. [6], chpt. IV. §9.
2) Note that k is the matrix of the stress-strain relations:

7 = ke,
where
T11 N{(u) | e11
T=|[15,], &= Ng(u) = &,,
Tys Ng(u) 2645

7, £ being the stress and strain tensor, respectively.
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Ao + 24g, Ao, 0
(1.5) k = {4, Ao + 2, 0 |,
0, 0, o

3
K(u, v) = j (3 ki Ni() N(v) + Ka Na() Na(v) + K5 No(u) No(v)} d.
nij=1
Let us choose such constants o,;, f;, y;, K4, Ks, that

(1.6) A(u,v) = K(u,v) Vu,ve[W;*(Q)]*.

It is easy to find that (1.6) is satisfied if

(1.7) a; =0 (j=1,2)
(1.8) k¢ = d,
where

KO — [20 + 219, Ao ], v [a”, a,z:l
20> Ao + 24, Oagy Oaa
and d is a diagonal matrix,
(1.9) @'k + K BpT + Ksyy" =0,
where B = (ﬂu ﬁz)T, Y= (Vl’ 72)"

In fact, using (1.3), we may write

3

(1.10) A(u, v) =3 (ki Ni(u), Ny(v))

i,j=1

and inserting (1.7)—(1.10) into (1.5), we obtain

K(u,v) = A(u,v) + j (R (N () o0, + s N (V) +

o
+ (k?j“m“jm + KyBiBw + Ksiy) uv,) dx .

By virtue of the symmetry of k°, (1.8) and (1.9), the last integral reduces to
2 2
f > d”(N?(u) v + u; NY(v))dx = Y zliif (u; 0 + up; ;) dx =
o i=t i=1 o
2
= Z dii_[ up;v;dll =0
=1 r

for v; € Wy *(Q), consequently (1.6) holds.

30



Let us apply the Friedrichs transformation to the problem
L(u) = 1K(u,u) — (F,, u;) = min., ue[W,*(Q)]*.

Thus we obtain

F(Aj iy uyy, N)) ( Z ki A+ KoA'G + KsA'3 — Fyu;)dx +
o i.Jj=1
5
Z f J{Nj(u) — &) dx + j pju;dr .
j= r

Define the subscript transformation j — (j + 1) as follows:
(j+1)=2 for j=1,(j+1)=1 for j=2.

Then the integration by parts yields
5 2
Z(j’f’ ( )) Z{(/1 + )3 j+1 U i )4/3 - /15'})17 j)

2
+j S (A + Asvjeq) u;dr.
ri=t

Denote
af2) =4 ; + 3541 — a2 (= 1,2, no sum over j) where 1 = (4, 4,, 4,).
Then
F = (Zkum N+ KahG + KsA3)dx — f {j(aj(z) + F; — 2.B; —
o ii=1 0 J=1

5
= Asy;) u; = Zlflr""j} dx + Z () + 259 + Agvjeq)u;dl
=

ri=t

The variations of .# with respect to .4"; and u; read

3
(1) 07 = (3 ks = 20 (= 1,29
i=1
o F = (K = 25 047;) (j =4,5,n0 sum)
8,7 = —(aj(A) + F; — Luf; — Zsv, ou;) +
J‘([L + v+ Asvjey) Ou;dl.

Following the Friedrichs transformation, we have to eliminate A4, A5, u, i from %
by means of the zero variations of (1.11). To this end we assume

(1'12) By — By #0, KuKs +0
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which enables to find 4,4, 45 from the two equations
(1.13) Bita + 145 = aA) + F; (j=1,2).
Moreover, we set
(1.14) Wi+ Ay + Aviey =0 on I, (j=12)

3

hip=Y kN (=1,2,3)
i=1
A; =K;&; (j =45)(nosum).

Substituting for A"}, A4, As, p; from (1.13), (1.14) into #, we are led to the functional

20 =1 [ {3 k' + KL 6o a) + B +

o L,i=1

+K'S o) + P ax.

ji=1

where k{jl and Ci'j1 are entries of the matrices inverse to k and
C — [ﬁl’ yl:l ,
ﬂZ: Y2

(1.15) Ak + Kyt + Ksyl = 0.

respectively.
From (1.8), (1.9) we obtain e.g.

As ki > 0, (1.15) and (1.12) imply that at least one of K,, K5 must be negative.

Obviously, the conditions (1.8), (1.9) and (1.12) do not suffice to determine the para-
meters a, f3, y, K4, K5 uniquely. Let us choose

(1.16) Ki'=Ks <0,

G(KR) an
1 [ko] ’ 2 (k(l)llkol)l/z
e 5y
1 (kgzlkol)n/z’ 2<lk0|

where &, &, are arbitrary non-zero real numbers, Ikol denotes the determinant of k°.
By an easy calculation we derive

(1.17) ok = [ &, —%6162]
—M‘flﬁz, é% ’
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where
0
ki, _ Ao

(k?lk(z)z)uz Ao + 240 .

Calculating the variation of %(1) and making use of (1.16), (1.17), the following
statement is justified: the stationary value of &(1) is characterized by the condition

(1.18)
B(Z, p) = i (kij' 2o py) = (1 = %) lji <(fj_zaj('1) + ;{* a;41(4), “j(#)) =

ij=1 =1 162

2
USE SR (5;2F, + E&% Fiir, a,(u))

152

for all u e [Ly(Q)]* such that aju) e Ly(Q), j = 1, 2.
We may expect that a vector 4, satisfying (1.18), will be related to the solution u
of the primal probiem (1.1) according to (1.14) and (1.4), i.e.

(1.19) z;i ki Nj(u), (i=1,273).

Really, in the next section, we shall justify the variational formulation (1.18), using
the expected relations.

Remark 1.1 The Euler’s equations, associated with the variational problem (1.18),
are (1.19), where u = u(2),

w() = —(1 — 27 [fj‘z(aj(/l) L F)+ 2{_ (a,01(2) + F,.H)],

152

(j = 1,2, no sum).

These relations can be interpreted as equations of compatibility for quasi-deforma-
tions 4" or quasi-stresses A, respectively.
2. CORRECTNESS OF THE NEW VARIATIONAL FORMULATION

In order to study the variational principle (1.18), we introduce the following

Definition 2.1. Let the linear space
# = e[L@F . afi)eL(Q), j=1,2)
(where the differential operators in aj(/l) are taken in the sense of distributions),
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be furnished with the norm*)

e = I + 3 [0 17T

Let the bilinear form B(A, p) be defined on # x # by means of (1.18), (1.16).
The form B(A, p) is obviously symmetric and continuous on # x .

Theorem 2.1. The variational problem to find A € # such that

2
(21  B(Lpw=(01- &ﬁ)"{; <£,T2Fj + %FW, a,-(u)) Vuest

152

has a unique solution A in #.

The solution 2 is related to the solution u as follows:
(2:2) 2;
A3

KO(NO(u) + ), (i =1,2),

ﬂONg(u) >

@2) uy= (- ) [51'—2(‘11'(1) +F) + V—&Z“ (a;4:(7) + Fj+1):|’ (=12

152

Moreover, it holds
2
() e = €S IF].

Proof. Existence. We can show that the vector i, defined in (2.2), belongs
to A and satisfies (2.1). In fact, we may write

3
(2.4) Y kit = NOu) + oy, (=1,2,3),
i=1

(2.5) af2) = 2;; + Z3,j+1 — ah = kG, (N2(u) ; + oy ;) +
+ Ko Ng(u),j+1 - ‘xijk?s(Ns(") + o) =
= —F; + djju;; — dj; N?(“) — (a"kat)j uy, =

= —F;, — &u; + A Eu;, (j = 1,2, n0 sum over j),
where we used (1.8), (1.17) and the Lamé’s equations (1.1) in the form

k9 N2(u),; + po N3(u) ;41 + F; =0, (j=1,2,nosum).

1) Henceforth ||w|, and ||w| denote the usual norms in W*2(Q) and in L,(£), respectively.
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Inserting (2.4), (2.5) into (1.18), we obtain

(2.6) B(A, ) = (1 - “"2)_1]_; ((Cj_sz + é% Fiiy, “j(l‘)) + (g, a(w) +

2
3
+ ZI(N;)(“) 1) + (ottio 1) -
&

Integration by parts yields

2 2
2.7 (), a)(n) = Zl(“j’ it Mo — ) = — Zl(uj'j’ 1) =
=

=
3

— Uy, + uy 45 1t3) — (akjuj: ) = — Z(N?(U), 1) — (ojathy, ) -
i=1

Finally, from (2.6) and (2.7) it follows that 4 is a solution of (2.1).

Uniqueness. Let 2', 2" be two solutions of (2.1) in 5. By subtraction we find that
(2.8) B(l,p) =0 Vpex,

where 1 =1 — 2 es#.

Let us consider the solution w(Z) e [ W'"2(Q)]? of the problem (1.1) for the body
forces F; = a(7), (i = 1,2) and the corresponding vector A (1) € # with the compo-
nents

3
A7) = ,Zlk"j(NJq(w(z)) +azwd)) (i=1,23).
=
From the proof of existence we conclude that

Be0L0 = (1= )% (57 0l +

152

a;y (7). aj(,u)> Yues .
Inserting 1 = 1 and using (2.8), we obtain

0= B0 = (1= &) [0 +2 7 (ol )| 2

=152

1 — || .- &
e o Y
consequently a,(1) = 0, (j = 1, 2).
Therefore inserting i = 1 into (2.8) and using the latter result, we derive
3
0=BLY=Y (kj'2,1)=1=0.

ij=1

The formulae (2.2') follow from (2.5), (2.6).
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The estimate (2.3) is a consequence of (2.2), (2.5) and of the well-known a priori

estimate

2 2
¥l s L IFL

3. A MIXED FINITE ELEMENT MODEL AND ITS CONVERGENCE

Following the approach of Section 3 of [1], we set

(3-1) &y zézzfzfoh—l_e,
where

O<h=s1l, (>0, ¢>0

are parameters and transform 4, 4, into

(3-2) . Z; =d;;'2; (j=1,2,nosum)

where
2 0 0 0 |kol 12 0

(3.3) d; =3 Ko, = &d? | «:(F) &= —d
s=1 11

Substituting (3.2) into (1.18), introducing

I = (Il’ 12’ ’13) ’ ﬁ = (ﬁl’ .HZ’ “3)

and using (3.3), (1.17), we have

2
(3.4) a)(2) = @) = iy + Jayes = il =

Ji%tisi

=djidj ;i + Az o1 — (arkoa)j,- ;=

Ji%ti.g

0
1 -

=&V + Ay ey — EP2; + AE Xy (J=1,2,n0sum),

2
B(2, ) = B(L i) = ¥ léz(k?jd?L, A7) + 1o '(As, ps) —
ij=

2

=Y (L= ) EHEdVT A+ Ay — EX + AT +

= J%isi
j=

+ A0 Ay jor + Ay — Xy + HET),

Edia; j + ps o — S + A0 0) -
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After some calculations, we come to the formulae
2 2

(3:5) B(Z m) = Zld:‘j(zi’ i) + Z;‘“Jsj(’tb i) +
i =

2
+ _Zldﬂ('{j’ :“3) + ‘d33(/13, ﬂs) >
=
where
(3.6) (A ity) = —(L— )7 (d))* (4 o ;.5) + S[(R iy ) +
+ (4 #)s (j=1,2,n0sum),
A (A, o) = — A1 = %) dd3(4 40 12 0)
A 31(Z2s y) = o 15(Hy, 12)
(Q/3j(}t3, ﬁj) = — (1 — le)ﬂ g—l{LQ{d;)(b,j, ﬁj,j) + (;'3~f+1’ d})ﬁj,j _
-1 — ) @), (j=1,2,n0sum),
A 325 iz) = A3 )([13, 1) -

2
4?/33(13’ 1ts) = l‘gl(lsaﬂs) - (1 - JZVZ)q QWZZI(%JH + A3 s jay) -
j=

Let us define another bilinear form

(3-7) E(Z, ﬁ) = B(Zx, Ao gy — iy — [y, #3) =
2 2 2
= -2 1«91",-;(1,-, 1) = Z;"fsj('{s’ i) + _Zldﬂjs(%, 13) + o 33(23, i3) .
L= J= J=
Defining

(3-8) Ho = {Te[L(Q)] &), + A5 ju1 € Ly(Q),j = 1, 2},
Ho = {2e[L(QF, —&d}A; ; + A3 ja1€ Ly(Q),j = 1,2},
it is easy to see that the problem (2.1) is equivalent with the problem to find ] e Hy
such that
2

(3-9) B(Z, ﬁ) = (1 - JJZ) g:_22(1:j + ”Q‘{FJ'H’ _éd?ﬁj,j t f3 41 + 62,‘71' -

i=1

— AEf;yq) VREH, .
To define a Galerkin procedure, we shall assume that two families of finite-definite
subspaces V}, V;, exist') such that forany 0 < h < 1,0 < h, £ 1

() Ve WAQ), Vie W)

1y All standard finite element spaces satisfy (i)— (iii).
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(i) (Approximability) integers x = 2, %, = 2 and a constant C exist such that
Voe W**(Q) 3y e Vv — i < ch v, (i=0,1),
Ywe W2 (Q)n Wy (Q) W eV, : |w — yf; £ Cho~|w],,
(i=0,1)
(iii) (Tnverse inequality) a constant C exists such that
Il = ch ]

holds for any y € V, and sufficiently small h.
Denoting V(ho, h) = [V,.]* x Vi,
we deduce from (i) that

V(ho, h) = [WSAQ))P < #o, V(ho h) < #; .

Next we shall prove the following
Lemma 1. For any 1€ V(hy, h) and sufficiently small h
2
6.10) B2 = 1| + [l
holds, where C is independent of h, hy and 1.

Proof. From (3.6) it follows that

A 34y, 2s) = 3(0s, ) (J=1,2).
Further we have

‘Q{jj(zj’ Ij) = “(1 - JZ“'Z)_I (d;'))z “11,1”2 (f =1 2),

because

225 4,5 = f

Q

(73, dx = j By, dl =0 VIe V.

r

Altogether we may write
(3-11)B(Z, 7) = (1 — &)1 (d9)? liHZ,-‘,HZ +2o(1 — ) dVdS(Ay 4, Ao ) +
+ oo AP = (U= )7 (|25 4]+ A + 29250, 252) 2
z(1—a)! (d?)iﬂzf,jﬂz + g A2 = (1= )7 c“‘zjillis,,-llz-
The inverse inequality (iii) yields
612 b Pl = (1 = ) S 2
Z [ 2a]* (o' = (1 = a2)" ' &5 7 Ch™) = €52
for sufficiently small h. Inserting (3.12) into (3.11) we obtain (3.10).
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Lemma 2. Let us introduce the norms
2 2
lslls = Jss] + 0 3 s +jz_‘31Hﬁf,;H ;
i= <

2 = Wl + 0 S+ 3 0 + b
Then it holds
1) (B = Al Lals Ve Vo, AW @P
where C is independent of 1, fi, h, hy.

Proof. The inequality (3.13) can be proved for each term of (3.7) separately,
inserting (3.1) for ¢ and using also the equality

(Fp Big) + (G ) = 0 Vg €V, -
For the estimate for .«75 (A3, ji;) we make use of the Friedrichs inequality
[o] = Clos| Yoe we* (@) (i=1,2).

Definition 3.1. We say that 2" e V(h,, h) is a Galerkin approximation to the
solution 1 = (14, X5, 43) of (3.9) if
(3.14) B(" i) = (1 — )V EXF; + AF oy, a(—iy, —iy ti3) Vi€ V(ho, h) .

Theorem 3.1. Let the solution u of (1.1) belong to [W™*(Q)]?, where m =
> max (% + 1, %)

Then, for sufficiently small h, the Galerkin approximation 1" is determined
uniquely and it holds

(1) S 1R =l + 1 = o NG + 31 % (62, — by M@ 5

2
S Ot + b7+ e+ )Y i
i=1

Proof. Note that (3.14) is equivalent with (3.9), where #, and #; is replaced
by V(ho, h). Then Lemma 1 and the Friedrichs inequality imply the existence and
uniqueness of 1%,

By virtue of the equivalence of (3.9) with (2.1), the problem (3.9) has a unique
solution 1 € # for any fixed h, as follows from Theorem 2.1. The definition 3.1 and
(3.9) imply that :

(3.16) B(M" — 1,i) = VieV(hy h).
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Henceforth let y € V(h,, h) be arbitrary. Denote for brevity

2
1ls = 2020 + 14 -
By virtue of Lemma 1, (3.16) and Lemma 2 we may write

(3.17) CI =z =B -2 =)+ B -5, 2" -y <
< 7= 2 ]2 - Al

From the inverse inequality (iii) for p; € ¥}, we conclude that

(19 Ll = Dl 0+ 20) + Sl ] S Clals ie Vo ).
Inequalities (3.17), (3.18) result in

(3.19) 17" = xls = C|A = xlu VieV(ho, h)

For the error of the Galerkin approximation, we may write, making use of (3.

(620) -2l s =+ = Pl = €l = sy Vre Vit )
From Theorem 2.1 and (3.1)—(3.3) we deduce that

(321)  Z=u; + (&d)) PR kY N9(u) (i = 1,2, no sum over i)

23 = o N3(u).
Thus using the assumptions (i) and (3.12), we have

(3.22) "}-"i - X;”k = ””i - Xi”k + ChHijZl”“jJ”k =

2
< O udeo + 1S ) (= 1.2k = 0.1),

(23) A= ala= 14—l + h‘lélﬂzi — i +j§1(”/13J — 23] +

2
+ |4 = 154l £ Sl as] + AL + h“‘_Zl(hS“ il +

+ h‘”j; lu;]2) +j§l(’13°71”“j”xo + h”:i luil2)} = o,

where
2 2
Q = Wt Y Juilews + (07U 4 BT ) L [y -
i=1 =
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From (3.21), (3.20), (3.23) we obtain

(3.24) HZ?_,. - “i,i” = I,Zf',,- - /T,-_,.|| + (fod?)_l htte Z /<?,-[|N})(u),,~]| =
j=1
2
< |7~ 2y + Y e
ji=1

< (2= x

W+ hl”.‘; lull.,) = €O (i =1,2,n0sum).
=

Using (3.20), (3.23), the Friedrichs inequality for (2! — u;) and also the estimate

ll

Jji=1

MN

2
(k575 = ki Ny @) = C X 55 —u;] (= 1.2),
i<

J.J

we derive (3.15).

Remark 3.1. Choosing the linear triangular elements for V,, V,, we have x =
%o = 2. Then it is suitable to set ¢ = 1, hy = Ch to obtain from Theorem 3.1, that
the right hand side of (3.15) is O(h) if m > 3.

In case of a smooth boundary I', the curved elements along the boundary may be
employed (cf. [2].

Remark 3.2. The choice (3.1) with equal parameters &, and &, corresponds with
the situation that both u, and u, are of the same importance. The method can be
adjusted to the case that e.g. u, is more interesting than u,, setting &, > &,.
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Souhrn

SMISENA METODA KONECNYCH PRVKU, BLiZKA
ROVNOVAZNEMU MODELU, V ROVINNE PRUZNOSTI

JArROSLAV HASLINGER, IVAN HLAVACEK

Na zdklad& postupu, uvedeného v &lancich [1], [2], odvozuje se nové variaéni
formulace druhé zdkladni okrajové ulohy rovinné statické pruznosti. Vychozim
bodem je neklasicky rozklad diferencialnich operatort a Friedrichsova transformace.
Novy varia¢ni princip je ovéfen dilkazem existence, jednoznacnosti a spojité zavis-
losti feSeni na danych veli¢inach. Déle je ukdzana moZnost aplikace principu k sestro-
jeni smiSeného modelu koneénych prvkdt a odvozeny odhady chyb. Dvé slozky
vektoru priblizného feseni konverguji ke slozkdm posunuti, zatimco tfeti slozka
konverguje k smykovému napéti. Nova metoda ptedstavuje tedy model mezi skupinou
kompatibilnich a hybridnich modelt koneénych prvki. Vskutku, novy model ma
tii nezndmé (uy, u,, 7), zatimco kompatibilni, resp. hybridni modely maji dvé& (u,, u,),
resp. pét (u,, u,, o, 0,, T) neznamych funkei.
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