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SVAZEK 20 (1975) APLIKACE MATEMATIKY ČÍSLO 6 

WEAK SOLUTION OF BOUNDARY VALUE PROBLEM 
FOR THE ORTHOTROPIC PLATE REINFORCED 

WITH STIFFENING RIBS 

JAN LOVISEK 

(Received May 8, 1974) 

The present paper is a continuation of the paper [4] dealing with the existence 
of solution of Boundary value problem for thin isotropic plate stiffened with ribs. 
It is intended to prove by methods of the abstract variational calculus the existence 
and the uniqueness of the weak solution of an orthotropic plate with stiffening 
ribs for the same class of boundary conditions in the subspace V(Q) c W\(f$). 

Let Q be a bounded region in the plane x, y with the boundary dQ. 
Let us study in Q a system of partial differential equations 

(1) L(w) = Dxwxxxx + 2D3wxxyy + D2wyyyy = p(x, y)1) 

(2) Lxk s = Qk Lnk — mk(s), Lnk s = —Qk Lxk + Vbk , 

where 
Lxk, Lnk are the internal forced of the rib yk: 

(3) Lxk = Ck(9tks — Qk 6nk), Lnk = Ak(9nks — Qk 9xk), 

Qk is a variable radius of curvature of a sufficiently smooth curve yk for k = 
= 1,2,...,/, 

Ck is the torsional rigidity of the rib, 
Ak is the bending rigidity of the rib with respect to the axis n, where 
n is the normal to the tangent T of the curve yk on the section 5, 
V^is the shearing force on the section 5 of the stiffening rib yk defined by the 

equations 
Vbk = "" Jo Pk(s) ds + const., and 
Pk(s) = Pok(

s) ~ Pkk(
s) i s the vertical load (shearing forces), which acts on the k-th 

rib and which according to the definition is equal to the difference of the shearing 
forces p0k(

s), Pkk(
s) on the fc-th lib yk from the side of the regions Q0, Qk respectively. 

n dw dLtk > Hence forth we shall denote — = wx ; Ltk - = . 
dx x tKs ds 
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Analogously, the k-th stiffening rib yk will be acted upon by the resulting moment 
load (bending moments) mk(s) = m0k(s) — mkk(s), where m0k(s), mkk(s) are individual 
bending moments acting upon the k-th rib from the side of the regions Q0 and Qk, 
respectively. 

9xk, 0nk are the deformation parameters of the k-th rib defined by 

n dAk _ dAfc , 
Ork = - — > °nk = — and Ak = w0 = wk 

on as 

is the deflection ordinate on the yk axis of the k-th rib, w0, wk are the deflection ordi-
nates of the plate in the regions Q0 and Qk and for each k = 1, 2 , . . . , / it holds 

(0 ~ + ~T = °rk ~ Onk • 
on cs 

i 

The curve F = \J yk divides the region Q into / + 1 subregions. Then Q = Q0 + 
fc=i 

+ Qt + Q2 + .. . + Qt. For the sake of simplicity let us suppose that regions 
Qk (k = 1, 2, ..., I) are simply connected while Q0 is a multiple-connected region 

m+l 
bounded by the set of curves F and by dQ = \J dQ*. The curve dQm+i encircles 

1=i 
all the other curves dQ* and the curves F and dQ do not touch or intersect each other. 

The given vertical load of the plate applied to the region is defined by a function 

P = p{*> y)-

The following notation is introduced for the constants: 

D = D1X, D2 = D22, D3 = D12 + 2D66, where Dtj are the rigiditiets of an ortho-
tropic thin plate. 

The physical reality, i.e., the non-negativity of work of the internal forces of an 
orthotropic plate with stiffening ribs implies that the matrix of coefficients 

is positive definite. Taking into account the Silvester Theorem we obtain from the 
positive definiteness of the quadratic form of the five unknown quantities wxx, wxy, 
Wyy> Lxk, Lnk 

(2°) D!>0; D2>0; D66 > 0 ; D,D2 - D\2 > 0 (see [7 ] ) . 

Equations (1), (2) will be examined in the bounded region Q which is a multiple-
-connected region with a Lipschitzian boundary dQ. It is assumed that dQ consists 
of two disjoint parts dQ1 and dQ2 such that 

dQ = dQx u dQ2 , 
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where mes (dQx) > 0. The boundary conditions are considered in the form 

A \ <^W _ „ 

4 j w = — = 0 on dQl , 
dn 

42) w = 0 , 

™„ = ~w x x (LV 2 + D12n
2) - wyy(Dl2nl + D2n

2) -

- 4wxyD66nxny = m2 on dQ2 , 

where w = (nx, ny) is the external normal with regard to Q, mn is a statical quantity, 
the bending moment on the surface of the boundary dQ2 with the normal n. 

43) Within the region Q the following geometric conditions are formulated for the 
function w(x, y): 

dw+ dw 
= on yk lor k = 1, 2 , . . . , / . 

dn dn 

The superscript plus or minus indicates that the quantity in question refers to the 
region Q0 or Qk, respectively. The mechanical meaning of these conditions is as 
follows: in dQ1 the plate is clamped, in dQ2 it is simply supported and the de­
flection surface is smooth over the region Q. 

Terminology. Let Q be a bounded region in the plane x, y whose boundary is 
Lipschitzian (see [6]). 

Lp(Q) denotes the space of all measurable functions which are integrable with the 

power p on Q (with regard to the Lebesque measure dx dy). 

Let us adopt further the notation 

2 (7 M 

a = £ a i ; Da 
£ i " dxaidy«2 

Let us define the Sobolev space W2
2(Q) by 

W2
2(Q) = {u | u e L2(Q) ; Dau e L2(Q) for |a| = 2} , 

(the derivatives are taken in the sense of distributions). 

W2
2(Q) is a Banach space with respect to the norm 

( í | u | 2 d x d y + Z f |D a u | 2 dxd j ; 
l 1/2 

I I L.I2 A * , .4,. i V 1 I na..12 A \ . A*, ( 
\W2

2(0) 

423 



The space W2
2(Q) with a scalar product 

(u>v)W22W = \ uvdxdy + Y, D"uD*v dx dy 

is a Hilbert space. 

W2
2(Q) denotes a subspace Wl(Q) which is obtained as the closure of the space @(Q) 

in the norm ||*||^22(D) (@(Q) = [cp \ q> are infinitely differentiable functions with 
a compact carrier in Q}). The scalar product defined in Wl(Q) by 

(u, V)W2HQ) = Z DauDav dx dy 
M = 2j.O 

generates in W2
2(Q) the norm ||'||wv(a) which is equivalent to the norm || ' | |^(O) 

in Wl(Q). 

For the purpose of studying the boundary value problem (l) , (2), (4 l5 42, 43) 
let us define a space V(Q) in the following way: 
Let 

r(Q) = \u\ue e(Q) ; u = — = 0 on dQi9 u = 0 on dQ2\ ; 
I ^w j 

then V(:Q) is the closure of f"(Q) in the norm 

(iO ll«lk«) = (l«|iT,-(0) + tZ f [i4(«) + I4(")l ds)1'2 = 

= (II»IIW) + I««I(D)1/2, 

where 
i 

MHO = E(lL»122(rk) + IM-OI-UJ 

(e(.Q) is a set of functions infinitely differentiable in O, whose all derivatives may be 
continuously extended to the boundary). 

Let us further denote by C0(Q) the space of all real functions which are continuous 
in Q and equal to zero on dQ, CC(Q) being the space of real functions which are 
continuous in Q and equal to zero outside a certain compact subset of Q. From the 
Sobolev theorems on imbeddings (see [6]) we obtain that V(Q) <= C0(Q) both 
algebraically and topologically. 

Because CC(Q) is dense in C0(Q), each of the elements in (C0(&))* may be identified 
by means of a transposition with the element in (CC(Q))*. Hence in our further 
considerations the Dirac measure 8 = d(xo,yo)((

xo> yo) e Q) represents singular vertical 
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load in (l). If p e (C0(Q))* ana cp e C0(Q) then the value of p for the function cp 

will be denoted by <P, (p>. Let us note that LX(Q) cz (C0(Q))* implies 

<P> <P> = P(x> У) Ф> У) áx áУ -
Jß 

It follows from the Sobolev theorems on imbeddings and from the theorems 
on traces that for each u e V(Q), u = 0 pointwise in dQt u dQ2 (see [5]; [6]) and 
dujdn in the sense of traces in dQx. 

For the study of our boundary value problem it is necessary to introduce a new 
scalar product in V(Q) by means of a bilinear form of the form 

-» 
(5) a(u9 v) = [ D n M x , + 2D12uxxvyy + D22uyyvyy + 

JQ 

+ 4D66uxyvxy] dx Ay + £ \Ltk(u) Lxk(v) + Lnk(u) Lnk(v)] ds . 
* = 1 Jy . 

In the case of a rectangular plate the bilinear form (5) may be taken in a simpler 
form 

a(u, v) = [Dyuxxvxx + 2D3uxyvxy + D2uyyvyy~\ d.x dy 

£ f [L,k(u)LTk(v) + L„k{u) Lnk(v)-] ds . 
--On. 

+ 

+ 
fc = 

Lemma 1. There exist positive constants cuc2 > Ofor which 

(6) c- | |M|H ( 0 ) ^ a(w, u) S c2\\u\\l(Q) 

holds for all u e V(Q) 

Proof . The first inequality in (6) follows from 1°, 2° and from [2; Theorem 2.1] 
while the other inequality is evident. 

Lemma 2. The bilinear form a(u, v) is symmetric in the space V(Q). 

Proof. It is easy to prove by integration by parts — the Green Theorem, the integral 
identity 

(7) a(u, v) = (L(u)9 v)Ll{Q) - (mn(u)9 vn)Ll{dQ) + 

+ t \ [ M M ) Lxk(v) + Lnk(u) Lnk(v)] ds 
k=1Jyk 

for each u, v e i^(Q). 
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The identity (7) shows that the bilinear form a(u, v) is symmetric in ir(Q) if the 
linear operator L(w) is symmetric in the space ^(Q). The symmetry of the operator 
L(w) is, however, proved by a usual application of the Green Theorem under the as­
sumption that the boundary dQ is smooth. After a simple rearrangement we obtain 

( 8 ) (L(u)> V)L2(Q) - (™n(u), vn)Ll(dQ) = (u, L(v))L2(Q) -

- (un, mn(v))Ll{0Q) 

which substituted into (7) yields 

a(u, v) = (L(v), u)Ll{Q) - (mn(v), un)Ll{dQ) + 

+ I I lLrk(V) Lrk(U) + Ljv) Lnk(uj\ d s . 

fc=1Jy, 

In view of the identity (8) we obtain 

(9) a(v, u) = (L(w), v)Ll(Q) - (mw(w), vn)Ll{dQ) + 

+ £ lLrk(U) LTk(V) + Lnk(U) Lnfc(^)] <*S - a(u, V) . 
fc=1Jy,< 

In this way, the symmetry of the bilinear form a(u, v) in the space i^(Q) is proved. 

Lemma 1,2 implies that V(Q) with a scalar product defined by 

(10) (u, v)v{Q) = a(u, v) 

is a Hilbert space. Hence the inclusion V(Q) cz W\(Q) is evident, the bedding being 
continuous. 

The weak solution is introduced by the following 

Definition. A function w(x, y) will be called a weak solution of the boundary value 
problem (1), (2), (4 1 ? 4 2, 43) if 
a) we V(Q), 
b) the integral identity (the equation of virtual work) 

(11) a(w, ę) = <p, ę} + m 2 — ás 
en2 дn 

holds for all q> e V(Q). 

The integral identity ( l l ) can be obtained formally multiplying, ( l) by the test 

function q> e V(Q), integrating by parts and making use of the boundary conditions 

(4 1 ? 4 2). Then we multiply second and the first equation from (2) by the test function 

Ck(pk e V(Q) and Ak(d(pkjdn) respectively. After integration by parts over a closed 

curve yk for k = 1,2, ...,l with regard to (i),the Clebsch's and KirchhofTs relations-

ships [8], we obtain finally the integral identity (11). 
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Lemma 3. A functional g(cp) = <T, <p> + jdD2 m2 (dcpjdn) ds represents a bounded 
linear functional in V(Q). 

Proof. It is obvious that the functional g(cp) is linear in the space V(Q). In virtue 
of the continuity of operators of traces in W%(Q) and of the Sobolev Theorem on im-
beddings, the following estimate for g(cp) is obtained 

m2 - ^ ás + (p, <p} 
\Jsa2 8n 

^ const (Im2flj^G) + ||JP||(CO(0))*) \\<P\\VW 

from which the boundedness of the functional g(cp) in V(Q) follows. So we have 
according to the Riesz-Frechet representation theorem 

(12) g((p) = (p*9 <p)vw 

where p* e V(Q) and ||^||F*(.Q) = ||P*||V(«)- Hence g(cp) is a continuous functional in 
V(Q) such that \g\v*{n) S const (||m2||L2(afl2) + ||jp||(co(O))0- Nevertheless, the integral 
identity (11) yields the following identity in virtue of Eq. (10): 

(13) a(w9 <p) = (w, <p)vw = g((p) for all <p e V(Q). 

Hence the formula (12) together with the equality (13) imply w = p*. This means, 
however, that the following theorem is a consequence of Lemma 3. 

Theorem 1. There exists a weak solution of the boundary value problem (l), 
(2), (4 l5 42, 43) in space V(Q). 

Furthermore, it is directly evident that a(w9 w) = 0 implies w = 0. Flence the 
uniqueness of the weak solution of the boundary value problem follows from the 
V(&)-ellipticity of the bilinear form a(w9 cp) in V(Q). 

General theorems on the regularity of the weak solution [ l ] show that if p e 
e(C0(Q))*9 the solution w of the boundary value problem (l), (2), (4 l5 42, 43) is 
only from the space V(Q). A smoother solution exists only if p e C°°(.Q) and if the 
curves yk are smooth. 

Classical Galerkin's method. Definition. Let {cp^f^ x be a set of base functions where 
cpi e Mn(Q) <= V(Q)9 i = n and {(pt}f is a complete system in V(Q). Mn(Q) is a closed 
subspace of V(Q). Galerkin's approximation of the exact solution w in Mn(Q) is 
a function wn e Mn(Q) such that 

(14) wn = Y ani(Pi 
Í = I 

fl(w„, <Pt) = <P, (Pi> + m2 -p ds ; cp{ e Mn(Q). 
Jdíi2 dn 
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The unknown parameters ocni are found from the integral identities (13) for i = 

= 1,2,.. . , n. 

n n 

(15) Y, <*nia((p» (Pk) = E *ni(<Pi> (Pk)v(Q) = <P> <Pk> + 

0>fc J + m 2 - ^ d s , 
)ôfì2 дn 

for k = 1, 2,. . . , n. 

The determinant of the system (15) is the Gram determinant which for a linearly 

independent system {(pt}T is different from zero. Hence the system (15) has just 

one solution (for m 2 = 0, p = 0 it has the zero solution). 

Theorem 2. A sequence of Galerkin's approximations converges strongly 

to a weak solution w of the boundary value problem (l), (2), (4 1 ? 4 2, 43) in the space 

V(Q) and the estimate 

(16) ||w - wn\\vm ^ inf ||w - (p\\v(Q) 
<peMn(f2) 

holds. 

Proof . A sequence of functions {wn} in V(Q) is uniformly bounded in virtue 

of the inequality 

sup |<p*, q>y\ S sup |<p*, <py\. 
<p e Mn (Q) <pe V(Q) 

I M I M M L G ) = i I I P I I K ( 0 ) = l 

This, however, means that 

hn\vm = \p*\\MnWr -§ I-P*llcK(w f o r a 1 1 n -

Further, let us have a sequence {wn} such that wn e Mn(Q) and ||w — wn | |F ( f l ) -»0 

for n -> co. The existence of such a sequence follows from the completeness of the 
n 

system {(Pi}f. The subspace Mn(Q) consists of elements ]T dt (Pi(x, y) with arbitrary 

coefficients, hence, with regard to Eq. (14), the identity (17) holds for each (p e 

sMn(Q), 

(17) a(wn, (p) = <p, (py + \ m2 ~~ As . 
Jea2

 8 n 

Now if we subtract the identity (17) from ( l l ) we obtain the formula 

(18) a(w - wn, (p) = 0 for all <p e Mn(Q). 

Let us put 

(p = wn — wn e Mn(Q) . 
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Hence we have with respect to (18) 

(19) a(w — wn,w — wn) = a(w — wn,w — wn) . 

The uniform boundedness of the norms ||w„||K(fi) in the Hilbert space V(Q) and 
00 

\J Mn(Q) = V(Q) implies that {wn} converges to w weakly in V(Q). On the other 
M = l 

hand, {wn} converges to w strongly in V(Q), which shows that the right hand term 
in (19) for n -> oo converges to zero. The first part of the theorem is thereby proved. 

The bilinear form a(u, v) is V(Q)-elliptic in the space V(Q) and thus (see (10)) 

(20) ||w - wn\\v(Q) = a(w - wn,w - wn) = 

= a(w - wn, w - (p) + a(w — wB, p — w„) 

where the function <p e M„(.Q) is arbitrary. 
The second summand in (20) is zero because (p — wn e Mn(Q) and, hence the for­

mula (18) is valid. Thus we have 

Ik - Wn\\v(Q) = | k ™ Wn\\v{Q) ||W ~ q>\\vm . 

Dividing the inequality by ||w — w„||F(fl) and passing to the infimum in the right hand 
term we obtain the inequality (16). Further, let us associate each he(0, 1> with 
a finite-dimensional subspace Vh(Q) closed in V(Q); hence Vh(Q) c V(Q). 

Let us denote by wh e Vh(Q) Galerkin's approximation w in Vh(Q), i.e. the function 
defined by a relation of the form (17) for each q> e Vh(Q). 

The problem now arises when ||w — wA|F(f2) -> 0 for h -> 0. Let us suppose that 
a projective operator Ph : S(Q) -> Vh(Q) is defined on a subset S(Q) c V(Q) which is 
dense in V(Q). The projective operator satisfies 

(21) ||u — Phu\V(Q) --> 0 , / z - > 0 , for each u e S(Q) . 

The answer to the above question is given by the following 

Theorem 3. Let a continuous bilinear form a(u, v) be V(Q)-elliptic in the space 
V(Q) and let in addition the condition (21) be satisfied. Then 

Ik ~ wh\\nn)-*Qi h->o. 

Proof. The subset S(Q) is dense in V(;Q). Hence there exists w0 e S(Q) for which 

\\w — w0\\v(Q) ^ - for all e > 0 . 

It follows also from Eq. (21) that there exists h0 e (0, 1> such that 

P 

I K - PhWoWnn) = - for h = h0 . 
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As in the proof of Theorem 2 we conclude 

||w - wh\\V{Q) S ||w - Phw0\\V(Q) S 

= [||w ~ WO||F(«) + ||wo - -P/^'olV^)] ^ e 

which proves the theorem. 

So if we do not known anything about the regularity we have 

(22) | | w - w „ | | F O T - + 0 for h->0. 

H, however, w e S(Q), then ||w — vvfc||F(fi) ^ ||w — Phw\\V(Q) . Using the classical 
Galerkin's method, let q>u cp2, ..., cpm, . . . be a base in V(Q), i.e., for every m ^ 1 
wlt w2 . . . . wm are linearly independent elements. 

Denoting Vm(Q) = {<pl9 <p2, ...., (pm) we have (J Vm(Q) = V(O). Note that 

Vm(Q) cz Vm+1(iQ) for every m. In this way, we can apply Theorem 3 with h = 
= \\m, Vh(Q) = Vm(Q), £(&) = V(O) and Ph = Mm, where Mm is the orthogonal 
projection of V(Q) into Vm(Q). This procedure is, however, depreciated by one great 
disadvantage. In more complicated cases it is difficult to find the corresponding 
base of the space Vm(£2). In addition, if {(pi}fLl are not orthogonal, the matrix Am = 
= {a(cpi, (pj)} will be generally full. Hence a numerical analysis of the boundary 
value problem (1), (2), (41? 42, 43) will be preferably carried out by the generalized 
Ritz-Galerkin's method — the method of finite elements. However, this means among 
other to find a space of functions S(Q), i.e. a subspace of approximations which is 
dense in V(Q). Similarly, it is necessary to prove that the corresponding finite ele­
ments (e.g. the polynomials of the fifth order) converge finitely in the norm ||w||K(r) 

which requires to prove the convergence of their second derivatives on the curves yk. 
All these are, however, very difficult problems. 
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S ú h r n 

SLABÉ RIEŠENIE OKRAJOVEJ ÚLOHY 
PRE ORTOTROPICKÚ DOSKU ZOSÍLENÚ TUHOSTNÝMI REBRAMI 

JÁN LOVÍŠEK 

V tejto práci sa metodou abstraktného variačného počtu dokazuje existencia 
a unicita slabého riešenia okrajovej úlohy pre ortotropickú dosku zosílenú tuhostný-
mi rebrami. Okrajová úloha sa rieši na priestore V(Q) c W\(Q), na ktorom je odpo-
vedajúce bilineárna forma V(í2)-eliptická. Pre numerické riešenie sa zavádza klasická 
Galerkinova metoda. Galerkinovské aproximácie silno konverguji! na priestore 
V(Q) ku slabému riešeniu okrajovej úlohy. 

Authoťs address: D o c Ing. RNDr: Ján Lov/šek, CSc, SVŠT, Stavebná fakulta, 884 20 Brati­
slava, Gottwaldovo nám. 52. 
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