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1. INTRODUCTION

In recent numerical praxis, various relaxation methods were applied to certain
nonlinear problems although their convergence were not proved as yet. Some pro-
blems of this kind are, for example, studied in works of S. SCHECHTER [5], [6]. This
paper is concerned with the convergence of modified relaxation methods for non-
linear problems which are described in section 2 in detail. The modified relaxation
is considered as an extension of the so-called overrelaxation. The results which are
reached in this paper contain, as special cases, many important results already
known for linear problems [4], [7], [1], [2], [3]

2. NOTATIONS AND DEFINITIONS

Let n be a fixed positive integer. Let E" denote the n-dimensional Euclidean space.
This space will be also interpreted as a normed space over the field of all real numbers
and its points as n-dimensional column vectors. Let f : E" > D(f) — E be a finite
real function, twice continuously differentiable, where the domain D(f) of f is a non-
empty open subset of E”. Let G be a nonempty subset of D(f). Then the problem
A(f, G) is defined as the problem of seeking a vector & € G of the global minimum
of fin G, i.e. the seeking a vector & such that it holds: if x e G, then f(x) = f(&).

Let r(x) denote the gradient of f at the point X, i.e. the column n-vector (f{(x));cz,
where f; denotes the partial derivative of f with respect to the i-th coordinate and Z
the set of the positive integers {1, 2, 3,..., n}. Let H(x) denote the Hessian of f
at the point x, i.e. the n x n-matrix (f7;(x)); jez-

Let {Q}i> o be a sequence of n x n real matrices and {g,}i~, a sequence of subsets
of Z. We denote by Q; = Qi[gx | 9x] the principal submatrix of the matrix Q, with
respect to the multiindex gy, i.e. the submatrix (¢{)); ., of the matrix @, = (¢{9)); jcz-
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Similarly Hy(x) = H(x) [qy | 9,] denotes the principal submatrix of H(x). Analogously
for every vector ue E" we denote by u,= u[g,] the subvector of u with respect to the
multiindex g, and similarly u; = u[Z — g,]. Let X, € G. We define the sequence
{x,}P-0 by the relations

(2.1) X4 =X, —¢, k=0,1,2,..,p—1,
where

22) Hi(x) ¢ = Qiri(x)

(2.3) ¢, =0,

and p denotes a positive integer or the symbol co.

Then the recursive construction of the sequence {x,}f_, by (2.1), (2.2), (2.3) is
called the modified relaxation method for solving the problem //(f, G) correspond-
ing to the relaxation process {Xo, Q4> gi}ero- This relaxation method will be called
convergent if and only if the sequence {x,}, converges to the solution of .#(f, G).

It should be noticed here that we put H, = Hy(x,), r, = r,(x,) in what follows.
Our further considerations will be based on

Theorem 2.1. Let G = D(f) be a convex set and let the Hessian H(x) of f be
a positive definite matrix at every point x € G. Let a point f € G be such thatr(ﬁ) = 0.
Then R is the unique solution of the problem JM(f, G).

3. LEMMA ON THE MONOTONICITY

For all following considerations we introduce lev (f(u)) = {x e D(f) : f(x) £ f(u)}
and suppose that the following assumptions are satisfied:
(a) The function f satisfies all of the assumptions of section 2.

(b) The Hessian H(x) of f is a positive definite matrix for every xe G = D( 1),
where G is a convex set.

() lev (f(xo)) is a subset of G.

(d) Let A(W), resp. A(W) denote the smallest, resp. the greatest proper value
of any real matrix W and H” the euklidean vector norm. Let

(3.1) b = 2 sup [r(x)| (A(H(x)) (A(H(x)) )",

where the supremum is taken over all x € lev (f(x,)). Then the set B = {x : there
exists a w € lev (f(xo)) such that |x — w|| < b} is contained in G.

We shall use the following notation in our considerations. Let x, € G be the k-th
member of a sequence {x,}f_, constructed by the relaxation process {Xo, Oy, gk}i> -
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We denote by |wl,, resp. ||, the Hy '-norm of the vector w, resp. H '-norm of the
matrix W, which is subordinated of the vector H; '-norm. Then |w]k = (w [ H 'w)l/?

where (... | ...) denotes the scalar product of vectors. The index k will be omitted
if the ambiguity is excluded.
We set
Yo = {ue D(f): |w — x| < 2|H ! |nil, wi = xi},
X, = Y. nlev (f(x)
and
o = sup|I,". - H,’((u)H,:II , uey,,

of = sup |} — Hy(w) Hy'|, we Xy,

where Hy(u) = H(u) [g, | 9] and I} = I[g | 9], I denoting the n x n unit matrix.
It holds that x; € X,.

We can easily prove the following

Lemma 3.1. Let x, € lev (f(x,)) and |Q,;i < 2. Then (a) Y, = B; (b) for every 3,
0< 9 =1 it holds that w = 9%, 1 + (1 — 9) x, € Y,, where X, is defined by

(2.1), (2.2), (2.3).

Further we prove
Lemma 3.2. Let x, be the k-th member of the sequence {x}0-, constructed by

the relaxation process {Xo, Oy, gi}i=o- Let lev (f(x,)) = lev(f(xo))- Let %, be a real
number satisfying the following conditions of monotocity:

(i) 0<n =<1,
(ii) i — Qi) < (1 —3)'72,
(iii) |Qi| o/? < 2.

Then the (k + 1)-th member of the sequence {x}E_, is well defined and it holds

Y, c B,
lev (f (xi+1)) <= lev (f(x))
and
(3'2) T(esr) = f(x) = = %ﬁk'rlélz =0,

where B, = x, — ap| Q> = 0.

Proof. In accordance with the assumption x, €lev(f(x;)) = D(f) and H, is
a nonsingular matrix. Then the vector X+, is defined by the relations (2.1), (2.2),
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(2.3). Lemma 3.1 implies x,.; € D(f). By means of Taylor’s formula we obtain
from (2.2)

(33) (1) = (%) = —(r l ) + Hex ] Hi(wy) ),

where w, = 9, X4, + (I — 3)x,0< 9, < 1and d w, e Y, by the lemma 3.1.
It follows from (3.3) and (2.1) that

(4) 2(f(xex1) — S(x)) < ([Ii — Q> — 1+ | Qi |l — Hi(w) H ) mi]?

Since w; € Y, we obtain from (3.4), from the definition o, and the condition of
monotonicity (i) that

(3-5) 2(f(xk+1) - f(xk)) = (IQ;;IZ Oy
It follows from the condition of monotonicity (iii) that
(3'6) f(xk+1) = f(xk)

and therefore X, € lev (f(x)), X+ 1 € X, and lev (f(x441)) < lev (f(x)).

Now we prove that w, € X,. Since we have proved above that the segment with
the endpoints x, and w, is contained in Y, < B, we obtain by using Taylor’s formula
that

(3.7) W) = f(x) 2 =i | &) + 3(ei | Hi(vi) <) »

where v, = 1,91 + (1 — £,9;,) %, 0 < 1, < 1. From (3.7) we obtain that f(w,) <
< f(x,). Therefore we have w, € lev (f(x;)).

Since w, € X, it follows from the conditions (ii), (iii) and from the definition
of B, that (3.2) holds.

Now we prove a lemma on the monotonicity of the sequences {f(x,)}f-, and

{lev (f(x)}E=0-

Lemma 3.3. Let {x,}{_, be a sequence constructed by the relaxation process
{X0, O Gi}izo- Let a sequence {3}, exist satisfying the following conditions
of the monotonicity: if x, is a member of the sequence {x,}f-,, then

(i) 0<x =<1,
(ii) i — i = (1 = )'?,
(i) U2 < pli2

Then the sequence {x,}0-, is infinite, i.e. p = oo and it holds

(a) lev (f(Xe+1)) < lev (f(x)) < B,
(b) Y, < B,
(C) f(xk+ 1) - f(xk) S —‘l‘ﬁk|r1'c|2

for every k =0,1,2,..., where B, = x, — og|Qi|* 2 0.
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Proof. By the definition of B we have lev (f(x,)) = B. The matrix H, is nonsingular
since H(x) is a positive definite matrix for every x € B. Therefore lemma 3.3 holds
for k = 0 in compliance with lemma 3.2. To finish the proof, the principle of ma-
thematical induction should be applied.

4. RESIDUALLY ORDERED RELAXATION METHOD

Let {m}-o be the sequence of the coverings of the set Z, i.e. m, = {h{}}<, is

(k)
J

a sequence of the subsets h{" of Z such that U h{ = Z for every k =0, 1,2, ....

j=1
Let a positive integer v exist such that 1 < v, < v holds for every k =0, 1, 2, ....
Let {||...[|*}o be a sequence of vector norms for vectors in the space E". Let

{1} o be a sequence of real numbers such that 0=y, <1 holds forevery k=0,1,2,....

Let {Xo, Qi gi}i=o0 be a relaxation process for solving the problem .#(f, G) and
let it hold : if x, is the member of the sequence {xk},fzo constructed by the relaxation

process {Xo, Q4 gi}izo then

(4'1) ge = hg((z) )

where (k) is the smallest, resp. greatest element of the set
(010 2 s 1)

i denoting a vector for which r’[h{"] = r(x,) [h{"] and r’[Z — K] =0
foreveryj = 1,2, ..., v,.

Then we call the relaxation process {Xo, i, gi}izo the residually ordered relaxa-
tion process with respect to the sequences {m}7- o, {||.-.|| '} 0» {1e}i=o- The relaxa-
tion method corresponding to this process is called the modified residually ordered
relaxation method.

Remark 4.1. If §,, 0, are such real numbers that

0 <, < [x|* =
holds for every x € E", x # 0, then we call = 6,/0, the limit quotient of the norm
|Ix]| on the vector space E".

Further we will introduce and prove a theorem on the convergence of the modified
residually ordered relaxation method.

Theorem 4.1. Let the function f and the vector X, satisfy the assumptions of the
section 3. Let {Xo, Qi di}i=o be a residually ordered relaxation process with
respect to the sequences {m}io, {||---|[}ilos {ifizo- Let a sequence {x}
exist with these properties:
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(a) If x, is a member of the sequence {x,}f_, constructed by the relaxation process
(X0, Q> Gi}izo- then x, satisfies the conditions of monotonicity (i), (ii), (iii) of lemma
3.3.

(b) If {8,}%-0 is a sequence of real numbers where 5, is the limit quotient of the

k-th member of the sequence {“} ... H'(")},:‘;O then the series
(4.2) Z Bibiity
: K=o

is divergent.

Then the sequence {x,}i-, constructed by the relaxation process {Xo, Qs gy}
converges to the solution % € lev (f(x,)) of the problem .(f, G).

If all assumptions introduced above are satisfied but the assumption of the diver-
gence of the series is replaced by the following stronger assumption that the sequence
of the members of (4.2) is bounded by a positive number from below, i.e. there
exists a number y > 0 such that

(4.3) Bibuty = v

holds for all k = 0, 1, 2, ..., then there exists a real number
O<n<1

such that

(4.4) ka - ﬁ“w =0(n*) for k-

holds for the sequence {x,}7-o constructed by the relaxation process {Xo, Qi gi}i=o
where “”w denotes the 1, norm.

Proof. It follows from lemma 3.3 that the sequence {x,}/—, is infinite, i.e. p = oo.
If we denote A, = max A(H(u)) for u e lev (f(x,)), we obtain by (3.8), (4.1) and the
remark 4.1 that

1 2
(4.5) () = f(s1) 2 oA ﬁk‘sk.uk||l'k“~ for k=0,1,2,....
0

The sequence {f(x,)}i%o is nonincreasing and bounded from below; therefore it is
convergent. From (4.5) we obtain that lim B,ﬁkukurkllz = 0for k — oo. The divergence
of the series (4.2) implies the existence of a subsequence {z,};2, of {x,}iZ, such that
limr(z;) = 0 for I - . ‘

Since lev (f(x,)) is a compact set, there exists a subsequence {u;}72, of {z,}i2,
such that lim u; = uelev(f(x,)) for j — oo and therefore limr(u;) = r(u) =0
for j — oo. Hence u = & and lim f(x,) = f(&) for k — co. If z is an accumulation
point of the sequence {x,};%,, then it follows from the continuity of f on lev (f(x,))
that lim f(x;) = f(z) for k — oo and therefore f(z) = f(&). In accordance with
theorem 2.1 we obtain z = &. Hence lim x, = & for k - 0.
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If the assumptions of the second part of the theorem 4.1 are satisfied then it follows
from (4.3) and from the first part of the theorem 4.1, which we have just proved, that
the sequence {x,}iz, converges to the solution %€ lev (f(x0)) of the problem
J(f, G). Then there exists a ko such that x, belongs to the closure S~ of the open ball
S with the radius b and the centre % for every k = k. It holds that S™ < B. We
obtain by means of Taylor’s formula that

(4.6) M|x — &* = f(x) = FR) = $]x, — &2
for every k = ko, where A = max A(H(u)) for ue S~ and 1 = min A(H(u)) for
u € S™. Further we obtain by means of Taylor’s formula that

(47 I - %] £ 771 ]n]

for every k = k.
By (4.6), (4.7), (4.5) and (4.3) we have

(4.8) J0a) = 1) = L/ (xi-0) = (%)

for every k > k,, where { = AA4y(1y)"'v>0.
It follows from (4.8)

(4.9) fx) = f&) = (1 + )7 (f(%e-r) = [(R))

for every k > ko. If we put n = {"/?(1 + {)”'/2, we obtain the assertion (4.4) from
(4.9).

5. FREELY ORDERED RELAXATION METHOD

A relaxation process {Xo, Q. gi}izo is called a freely ordered relaxation process
if and only if it has this property: for every i € Z there exists an infinite subsequence
{h (i)}~ of the sequence {g,};>, that i € h,(i) for every j = 0, 1, 2, .... The relaxa-
tion method for solving the problem .#(f, G) corresponding to this process is called
the modified freely ordered relaxation method.

We introduce and prove the following theorem on the convergence of the modified
freely ordered relaxation method.

Theorem 5.1. Let the function f and the vector X, satisfy the assumptions from
the section 3. Let the relaxation process {Xo, Oy, grli-o be a modified freely ordered
relaxation process. Let the following conditions be satisfied:

(a) The members of the sequence {Q,"},f;o have the lower pseudonorms uniformly
bounded from below, i.e. there exists a real number q > 0 such that

m(Qy) Z q
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for every k =0, 1,2, ..., where m(Qy) is the square root of the smallest eigenvalue
of the matrix QF Q;, OF being the transpose of Q.

(b) There exists a sequence of real numbers {%,‘},‘f’;o which posses this property:
if X, is the k-th member of the sequence {x,};>- , constructed by the relaxation process
{X0, Q> gi}izo> then x, satisfies the conditions of monotonicity (i), (ii), (iii) of lemma
3.3.

(¢) The sequence {B,}i-o from the lemma 3.3 is bounded by a positive number B
from below, i.e. there exists a number > O such that

Bz B
for every k =0,1,2,....

Then the sequence {X,}i>-, constructed by the relaxation process {Xo, Q> Ji}io’
converges to the solution X € lev (f(x,)) of the problem J(f, G).

Proof. We only outline the proof. It follows from the assumptions of the theorem
5.1 and (3.8) that the sequence {f(x)};%, is nonincreasing. Since it is bounded from
below it is convergent. Let z be the accumulation point of the sequence {x,};%,. It
holds that z e lev (f(x,)) and lim f(x,) = f(z) for k - co. The proof that r(z) = 0
is, to a certain extent, more difficult. Then we prove that lim x, = % for k - o
using the same consideration as in the proof of the theorem 4.1, where % is the solu-
tion of the problem .#(f, G).

6. ALMOST CYCLIC RELAXATION METHOD

A relaxation process {Xo, Oy, gi}rzo is called a s-almost cyclic relaxation process
if and only if it possesses this property: there exists a positive integer s such that
it holds

k+s—1

Z<c U g,
t=k
for every k = 0,1, 2, ..., i.e. every index from the set Z is a member of a set g,,
when t=kort=k+1lor...ort=k+s—1 for every k =0,1,2, .... The
relaxation method for solving the problem .#(f, G) corresponding to this process
is called the modified s-almost cyclic relaxation method.

Now we present and prove this theorem on the convergence of the modified
s-almost cyclic relaxation method.

Theorem 6.1. Let the function f and X, satisfy the asssumptions of the section 3.
Let for the s-almost cyclic relaxation process {Xo, Oy, gi}i=o there exists a sequence

{3} 0 with these properties:
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(a) If x, is @ member of the sequence {x,}i_, constructed by the relaxation process
{Xo0, Qs> Gx}i-0, then the number %, satisfies the conditions of monotonicity (i),
(i), (iii) of lemma 3.3.

(b) Let {Bi}o be the sequence from lemma 3.3. If we denote
ve=min{f}, sk<j<sk+s+1,

for every k =0, 1,2, ..., then the series

(6.1) i Xk

diverges.

Then the sequence {X,}i-o constructed by the relaxation process {Xo, Ok, di}i=o
converges to the solution % € lev (f(x,)) of the problem #(f, G).

If all assumptions introduced above are satisfied but the assumption (b) is replaced
by the assumption that the sequence {B.}io is bounded by a positive number
from below, i.e. there exists a number > 0 such that

Bz B
holds for all k = 0, 1,2, ..., then there exists a real number n
(6.2) 0<n<l
such that
(6.3) % = %], = O(n*) for k— oo

holds for the sequence {X,};-o constructed by the relaxation process {Xo, Qi gi}i=0>
where “Hw denotes the 1, norm.

Proof. We only outline the proof. It follows from the assumptions of the theorem
6.1 and (3.8) that the sequence {f(x,)}s-, is nonincreasing. Since it is bounded from
below, it is convergent. By (3.8) we have

(6.4) f(xy) — .]imf(xi) = %i BlrF=0.

d s—=1
It follows from (6.4) that the series Y yi( Y.
k=0 m=0

T +m|?) is convergent. Since the series
s—1

(6.1) is divergent, there exists a subsequence { Y |ri;in|*}i2o of the sequence
s—1 m=0

{X

m=0 .

(6.5) lim _Z |Fiam]® = 0.
0

20 m=

Tesm|*}izo such that
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It follows from (6.5) that

(6.6) lim r;,+m| =0 for m=0,1,2,...,s — 1.

-
From (2.3) and from the condition of monotonicity (ii) of lemma 3.3 we can prove
that

(6.7) lim Hst,,, - xsl“oo =0 for m=1,2,...,5s.
-

By (6.7) and (6.6) we prove that

(6.8) limr, = 0.

I->©

There exists a convergent subsequence {u;} 7, of the sequence {x} ;% o. Let lim u; = u.
j—

Then u € lev (f(x,)) and r(u) = 0. Therefore u = &. The proof of the assertion that

lim x, = & for k — oo is the same as in the proof of the theorem 4.1.

New we outline the proof of the second part of theorem 6.1. Assume that the
sequence {B;}i-o is bounded from below by a positive number f. It follows from
the first part of theorem 6.1 that the sequence {x,};>, converges to the solution &
of the problem .#(f, G). By lemma 3.3 we have

(69) 1) = F®) 2 13 Bl
Applying Taylor’s formula, we obtain

(6.10) f(x) = f(8) = H(x — %) I H(z) (x, — %))

where

=18+l —1)x, 0<t <.

LetS™ < G bea closed ball of radius b, see (3.1), centred at . Let 4 = max A(H(u))
for ue S™. Let k, be a positive integer such that x, € S~ for every k = k,. It follows
from (6.10) that

(6.11) fx) — f(®)

Al = x|

NS

for every k = k,. By (6.11) and (6.9), we have
85 Il = n 2% - 1.
i= .
for every k = k,. Setting

o= % nl.
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we have

(6.12) I = %)o 22 g k2 ko
n

712
We can prove the following inequality:

(6.13) %6 = &[|o < v1(0x — 04ss) for k= ko,

where y; > 0 is a constant independent of k = ko. We outline the proof of (6.13).
Let 1 = min A(H(u)) for ue S™. Applying (2.2) and using (i) of lemma 3.3, we
obtain

(6.14) o S dns 5 (= o)

Xske+m — XS,‘]

for every k = k.
Now let i € Z be fixed. By (6.1) there exists an index m(k, ) such that i € gy ;)
for every k =0,1,2,.... Let M = max ((max ]f,':,,,(x)[). By means of Taylor’s
l,meZ xeS~
formula we obtain

(6'15) Irsk,i’ = Il'sk+m(k,i),i \[Xsk+m(k,i) - xsk”co

+ nM

forevery k =0,1,2,3,....
By (6.14) and (6.15), we have

(6.16) [tall o0 < 720k — 04sy)'/? for k = ko

where y, > 1. .
Applying Taylor’s formula, Schwarz’s inequality and using (6.16), we obtain

”xsk - ﬁ”w < — (o — oy )? for k =k

>3

and so (6.13) is thus proved.
Now it follows from (6.12) and from (6.13) that

(6.17) Orsy S yo, for k =k,
where
O<y= ! — < 1.
1+ -
y.nA?

By (6.11), (6.13) and (6.17) we have
(6.18) 0 < f(xq) — f(R) < yay*, for k =k,

where y; > 0.
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Since the sequence {f(x,)};~, is nonincreasing it follows from (6.17) and (6.18)
that

(6.19) f(x) = f(8) £ y)°, for k = sko

where y, = Vay(l_sm-

By means of Taylor’s formula we obtain
2 .
(6.20) Ix — &]2 = SU) = f®), for Kz ko
It follows from (6.19) and (6.20) that

2 1/2
Ix, — Rll, < (—;—“) q* forall k = sk,

where g = y/?*. The second part of theorem 6.1 is thus proved.

Remark 6.1. Let n° = {h;}}_, be a covering of the set Z, where v > 1. Let us
set in the definition of the s-almost cyclic process s = v and

gr = h,,
where 7 is congruent with k + 1 modulo v, that is

t=k+ 1(modv), k=0,1,2,...,
for
te’Z.

Then the relaxation process {Xo, Oy, gi}izo is called a modified cyclic relaxation
process with respect to the covering n°. The method corresponding to this process
is called a modified cyclic relaxation method with respect to the covering n°. The-
orem 6.1 holds for the modified cyclic relaxation method but with a slight altera-
tion. The symbol s should be replaced by the symbol v.

Remark 6.2. Let the relaxation process {Xo, O, gi}izo be such that g, = Z for
every k = 0, 1, 2, .... Then we call the relaxation process {Xo, Oy, g;}i=o the modified
Newton’s relaxation process and the corresponding method the modified Newton’s
method. 1t is obvious that the Newton’s modified method is a s-almost cyclic relaxa-
tion method where s = 1.
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Souhrn

O KONVERGENCI MODIFIKOVANYCH RELAXACNICH METOD
PRO ULOHY O EXTREMU

MirosrLAv KRiZEK

V ¢lanku je provedena dosti obecna analysa konvergence modifikovanych relaxac-
nich metod pro urcité nelinearni problémy v prostorech kone¢né dimense. Modifiko-
vana relaxace je pfitom uvaZovana jako rozsifeni tzv. suprarelaxace. Je vysetfovana
konvergence téchto metod: residualni fizené relaxaéni metody, volné fizené relaxacni
metody a skorocyklické relaxa¢ni metody, obsahujici jako specialni ptipady cyklickou
relaxaéni metodu a modifikovanou Newtonovu metodu. Specidlni volbou funkce
zkoumané na extrém obdrzime vétsinu velmi dtileZitych zndmych vysledka pro feseni
soustav linedrnich algebraickych rovnic relaxaénimi metodami.

Author’s address: RNDr. Miroslav KriZek, Vysoka Skola strojni a elektrotechnicka, Nejedlého
sady 14, 30158 Plzen.
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