Aplikace matematiky

Miloslav Feistauer; Josef Rimének
Solution of subsonic axially-symmetric stream fields

Aplikace matematiky, Vol. 20 (1975), No. 4, 266-279

Persistent URL: http://dml.cz/dmlcz/103592

Terms of use:

© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/103592
http://dml.cz

SVAZEK 20 (1975) APLIKACE MATEMATIKY CisLo 4

SOLUTION OF SUBSONIC AXIALLY-SYMMETRIC STREAM FIELDS

MiLosLAV FEISTAUER and Joser RiIMANEK

(Received August 8, 1974)

In this paper we follow the results from [1] where we have formulated the boundary
value model problem describing three-dimensional, axially-symmetric, irrotational,
subsonic stream fields of ideal compressible fluid. Here we shall study solvability
of this problem. We shall not deal with ““classical” (i.e. smooth) solutions, but we shall
devote ourselves to the problem of existence and uniqueness of the so called ‘‘general-
ized” (weak) solutions, making use of functional analytic methods.

1. FUNDAMENTAL ASSUMPTIONS, NOTATION AND FORMULATION
OF THE PROBLEM

First, let us summarize the fundamental assumptions, notation and results from [1],
where we have shown that the problem of irrotational, subsonic, adiabatic, axially-
symmetric channel flow can be transformed to a nonlinear elliptic boundary value
problem in the domain P < E, (E, denotes the plane).

P is a bounded domain with the Lipschitz boundary 0P which consists of four
arcs L, L,, I'*, I'*. I'! and I'? are segments parallel to one of the coordinate axis z
or r. The closure of P in the Euclidian topology of E, will be denoted by P. Let
r > 0 for every (z, r) € P. If we put

(1.1) R, = min {r; 3ze E,((z, r) e P)},

R, = max {r; 3z€ E,((z, r) e P)},

Z, = min {z; 3re E\((z, r) e P)},

Z, = max {z; Ire E((z, ) e P)}
(E, is the set of all real numbers), then Ry > 0and P = D = <{Z;, Z;> x {Ry, R,).
Let us assume that the arcs I'! and I'? lie on the boundary of the rectangle D.

In paper [1], we have studied the dependence of the fluid density on the gradient
of a stream function and introduced the function B(r, {) with the following properties:
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a) The domain of § is
2(B) = <Ry, Ry> x 0, + ).

b) There exist constants £, C,, C, > 0 such that

(12) 0< Ri <BrO) <Cy,

2

ogg’g(r,c)gcz for every (r,{)e 2(B),
Lrn=0 it re® R and (ed +e),

c) e C(2(B)) (i.e. B has continuous partial derivatives of the first order on its
domain).

The “classical” problem (A) which describes subsonic irrotational compressible
channel flow (formulated in [1]) consists in finding a function Y which satisfies
the equation

0 0 0 0

(1) 2 (b ) 22) + 2 (80 o) L) = 0
0z 0z or or

in the domain P, and the boundary value conditions on dP:

o
(1.4) *

(1.5) V|L =0, y[L,=0Q.

Here, Vy = grad y = (dy[0z, ay[or), (V¢)* = (oy/dz)* + (oy/or)?, o[on is the
derivative in the direction of the outer normal to I'* with respect to P, Q is a given
constant (see [1]).

We do not specify the smoothness of  because, as we have already emphasized,
we are concerned with the study of “weak” solutions. We shall not discuss the ques-
tion in which measure the “weak” solutions give a true picture of real stream fields,
but we know from experience (gained especially in the theory of elasticity) that
problems formulated in a ‘““weak’ sense describe actual problems often better than
their ““classical”” formulations.

For the solution of the ‘“‘generalized” problem we shall use the monotone operators
method.

‘=0, i=12,

2. GENERALIZED FORMULATION OF THE PROBLEM

First, let us briefly recall several important concepts from functional analysis.
More detailed information can be found e.g. in [2] or [3].
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By integral we mean, in the whole paper, the Lebesque integral.
Let Q < E, be a bounded domain with a Lipschitz boundary. Let &(Q) denote
the linear space of all (real) functions infinitely differentiable in Q.

Further, let
2(Q) = {ueé(Q); suppu = Q} .

supp u is defined as the closure of the set
{x € E;; u(x) % 0}

in the Euclidian topology of E,. Hence 2(2) is the space of all infinitely differentiable
functions with compact support in Q.

We define a scalar product on &(&2)

2.1) (u,v)=ﬂ<uu+a—“?3+a-‘ia—”>dzdr,

0z 0z  Or or

which induces a norm on &(2):

(2.1) Ju = )1

Let W3(Q) and W 3(Q) be the well-known Sobolev spaces, which we get by the
completion of &(Q) and 2(Q), respectively in norm (2.1'). It is known that W3(Q)
is the space of all (equivalence classes of) u € L,(€2) such that the derivatives in the
sense of distributions du/dz, dufor e L,(Q). WA(Q) and W1(Q) are Hilbert spaces.

Now, let us pass to our problem. The set P < E, is a bounded domain with
a Lipschitz boundary. Let us define the set

A ={ueé(P); suppun (L; uL,) =0}.

9 is a linear subset of &(P). The closure of 2 in the space Wj(P) will be denoted
by W;(P). It is evident that W}(P) is a Hilbert space. Let u, € W)(P),

(2.2) u0|L1 =0,
uo|L2=Q,

where Q is the constant from the condition (1.5). (In practical cases it is possible
to construct the function u,.)

Problem (B) The “generalized” problem to (A) is to find u € W}(P) which satisfies
the conditions

1) u — uge Wy(P),
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2) for every v e Wy(P),

f f e (7)) (5—“ P o 93) dz dr = 0 %)

0z 0z Or Or

The function S has been defined in [1] and has the properties (1.2). The function
u € W3(P) which satisfies 1) and 2) will be called a “‘weak” solution of Problem (A).

Since f is continuous and bounded and u, v with their first partial derivatives are
elements of L,(P), the finite integral in 2) exists.

Remark 1. Let us outline the relation between the ‘“‘generalized” and the ‘“‘clas-
sical” formulations. If u is a “‘sufficiently” smooth solution of Problem (B), then
B(r, (Vu)*) € C'(P) (see the property c) of B in (1.2)). By virtue of the Green theorem
we get from the condition 2) of Problem (B) the equality

- ([ 42 (s o 22 ) 2 (e ) )tz ar +
¥ j e (V) 32 vds =0

for every v € . (f,p ... dS denotes the line integral along the boundary oP).
* In view of the properties of the set 2 and with the help of standard considerations
about integrals of continuous functions, we get

%(ﬂ(r, (Vu)?) Z_Z> - %(p(r, (Vu)?) g‘;‘) ~0 in P,

ou

=0, i=1,2.
on

Further, condition 1) of Problem (B) yields
u|L =0, u|L,=Q.

It means that a “sufficiently’” smooth solution of Problem (B) is a “‘classical "’solu-
tion of Problem (A).

*) This can be written more simply:

J] Br, Va)?) (Vu . Vv) dzdr =0,
P
where Vu . Vo denotes the scalar product of vectors Vu and Vo.
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3. MONOTONE OPERATORS

In this paragraphs, we introduce several concepts and theorems which will be
necessary in the following considerations. A complete theory of monotone operators
can be found in Vajnberg’s monograph [4].

If we say Banach space, we always mean a real Banach space. If ¥” is a Banach
space, then ¥™* denotes its dual, i.e., the Banach space of all real linear continuous
functionals defined on ¥, with the norm

171 = sup [<f, 03|
It

for every f € ¥"*. The symbol {f, v) denotes the value of the functional f at an element
v e ¥ . Under the symbol ;

F:X-Y

we understand the map F of the set X into the set Y with the domain 9(F) =

Definition 1. Let ¥~ be a Banach space. An operator T : ¥~ — ¥* is monotone, if

(3.1) {T(uy) — T(uy), uy —u,> =0

for every u,, u, € ¥". If the equality holds in (3.1) if and only if u; = u,, we say
that T is strictly monotone.

Definition 2. Let 7~ be a Banach space. The operator T : ¥~ — ¥"* is hemicontinu-
ous, if for arbitrary u, he ¥~

t— 0= T(u + th) — T(u).

Here — denotes the convergence in a weak topology of ¥™* (i.e. hm {T(u + th),
vy = (T(u), v) for every ve ¥).
Tis coercive, if
im IO

- +o00.
lel=reo o]

The fundamental assertion of the monotone operators theory is the following
Browder-Minty theorem.

Theorem 1. Let ¥~ be a reflexive Banach space, let T : ¥ — ¥™* be monotone,
coercive and hemicontinuous. Then T maps ¥ onto ¥"* and hence the equation

T(u) = f

has a solution for every fe ¥°*.

270



For the proof of Theorem 1 see e.g, [4].

Remark 2. If the operator Tfrom Theorem 1 is strictly monotone, then the equa-
tion T(u) = f has exactly one solution for every f e ¥™*.

Now, we shall introduce a simple concept which has not been used so far. Never-
theless, as we shall see, it may be useful in our considerations.

Definition 3. Let ¥~ be a Banach space, T': ¥~ — ¥™* an operator, u e ¥ . For
every v, w € ¥~ let there exist finite

PTW) (0 w) = £ <T@ + 1), ) o,

let VT (u) (v, .) be a continuous linear functional defined on the space ¥ for every
ve ¥, and thus
VT(u): ¥ - v*.

Then we call I7T(u) the weak Gdteaux differential of the operator T at the point u.
We say that T has the weak Gateaux differential on ¥, if VT(u) : ¥ — ¥°* exists
ateveryue v .

Remark 3. If ¥ is a Banach space,u € ¥, T : ¥" — ¥* is an operator and if the
Gateaux differential ¥T'(u) of the operator T at the point u exists (VT(u) : ¥~ — ¥°*),
then the weak Gateaux differential ¥'T(u) exists and

VT(u) = VT(u).

Conversely, the existence of the weak Gateaux differential does not imply the exis-
tence of the Gateaux differential in general.

Remark 4. Let ¥ be a Banach space, T: ¥ — ¥*, u,v, he ¥ and let T have
the weak Giteaux differential at the point u. It follows from Definition 3 that the
function t - {T(u + th), v} has finite derivative at the point #, = 0 and thus it is
continuous at t, = 0.

It means that
lim {T(u + th), v) = {T(u), v)
-0
for every v, he ¥".
Hence, if T has the weak GAateaux differential on ¥, then T is hemicontinuous.
The following lemma is a mean value theorem for operators which have the weak
Gateaux differential. We shall use it in the proof of Lemma 2 where we give a crite-

tion of monotonicity.

Lemma 1. Let ¥" be a Banach space, T : ¥~ — ¥"* an operator which has the weak
Gateaux differential on ¥", u, v, h € ¥". Then there exists t, € (0, 1) such that

(T(u + h) — T(u), vy = VT(u + t,h) (v, h).
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Proof. For te 0, 1), let us put
@ (t) = {T(u + th) — T(u), v) .

From the assumption that T has the weak Gateaux differential on ¥~ we can easily
deduce that ¢, is continuous on the interval <0, 1> and

d .

” @,(t) = VT(u + th) (v, h)

t

for t € (0, 1). By the Lagrange theorem there exists 7, € (0, 1) such that

CT(u + h) = T(), 05 = p1) — p(0) = (—(il;(pv(r,,) = PT(u + ,h) (0, h).

Lemma 2. Let ¥~ be a Banach space, T : ¥ — ¥'* an operator which has the
weak Gdteaux differential on ¥". If for arbitrary u,ve ¥

VT(u)(v,v) 2 0,
then T is monotone.
Moreover, if VT(u) (v, v) = 0 if and only if v = 0, then T is strictly monotone.

Proof. Letu;, u, € ¥". By Lemma 1, there exists 7 € (0, 1) such that
(T(uy) — T(us), uy — uy) = VI(uy + t(uy — uy)) (uy — uyy uy — uy).
From this equality, we get immediately the assertion of Lemma 2.

4. APPLICATION OF THE MONOTONE OPERATOR METHOD
TO THE SOLUTION OF PROBLEM (B)

In order to be ablé to apply the monotone operator method to the study of Problem
(B), we shall reformulate it in the following way.

Problem (C). Let the operator
T WAP) » (WY = WD)
be defined by the equality
(4.1) ‘ T,(1), v> = _
I B(r, (V(uo + u))?) (6(u0 W + Ot + 1) @> dzdr =

62 or or

- j B(r, (V(uo + w)?) (V(uo + u) . Vo) dz dr
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(u, v € W3(P)). It is easy to see that the integral in (4.1) is convergent and T, is a map
of W3(P) into its dual.
Problem (C) is to find & € W;(P) which is a solution of the equation

(42) T,(7) = ©

© denotes here the zero element of the space (W3(P))*. Hence we have to find i e
€ W(P) such that

Tuo(ﬁ), vy =0
for every v e Wj(P).

Remark 5. If @ is a solution of Eq. (4.2), then the function W = & + u, is a solu-
tion of Problem (B). Conversely, every solution W of Problem (B) gives a solution
of Problem (C). It is sufficient to put & = W — u,.

The following lemma will be important in the proof of Theorem 2 on the unique
solution of Problem (C).

Lemma 3. If we put

(4.3) [u* = (ﬁ P(Vu)z dz dr>”2

for every u e Wi(P), then |...|" is a norm defined on W;3(P) and the norms (2.1')
and (4.3) are equivalent.

Proof. We have to prove that (4.3) is a norm on W} (P) and there exist constants
K,, K, > 0 such that
(44) Kyfu] = [u]” = Ksfu]

for every u € Wj(P).
It is evident that if « € E; and u € W)(P), then

u]" 20,
o™ = Jod [u]™ .
In view of the Minkowski inequality,
[u + o™ < Ju]™ + o
for u, v e Wj(P). If (4.4) is valid, then |u|* = 0if and only if u = 0. The right-hand
inequality in (4.4) is satisfied if we pute.g. K, = 1.

Now it remains to prove the existence of K, > 0 and the validity of the left-hand
inequality in (4.4). It is sufficient to prove the existence of K > 0 such that

oo oo
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for every u € U (see Paragraph 2). Following the notation from Paragraph 1, we have
Pc D =(Zy,Z,) x (R, Ry> .

Let u e A. If we put u = 0in D — P, we get the extension of u to the rectangle D.
With respect to the geometry of P (see Paragraph 1) and the properties of the set 2,
the extended function u is infinitely differentiable on D. For every (z, r) € D we have

u(z, r) =J ou (z,7)dr.
R, O

If we square this equality and use the Cauchy inequality, we get

(u(z, r)>2=(j' 2 r)dr) j de j ( (z.9) ¢

< (R, - R,)J <—qt—‘ (z, ‘c)) dr.
R, \OT
Integrating the inequality

(u(z, ) < (R, — Rl)j ( (z f))

ll/\

with respect to r on the interval (R, R,), we obtain
R2 R2 ou 2
J' (u(z,r))?dr £ (R, — R1)2j (— (z, r)) dr.
R R, \OT

Integration of this result with respect to z on the interval (Z,, Z,) yields

ﬁpu dzdr—”u dzdr < (Rz—Rl)zﬂ (6“> dz dr
(RZ—R)ZJ“ )dzdr,

which completes the proof of Lemma 3.

Il

Lemma 4. The operator T, is strictly monotone and hemicontinuous.

Proof. Let us show that the weak Gateaux differential of the operator T,, on the
space W3(P) exists. If u, v, w e W}(P) are given, the function f is defined on the set
2(f) =P x (—1,1) by

f(zr, 1) = B(r, (V(uo + u + tw))? (z,7)) (V(up + u + tw) . Vo) (z, 7).
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With respect to Definition 3,

PTafi) 0 0) = 5 T + 1) 01 =

=d£t<ﬂf( t)dzdr)

if the derivative exists and is finite.
The partial derivative 0f [0t on 2(f) exists and

’
t=0

I e o n
gz(’ )

- 2??(., (V(uo + u + w))?) (Vo + u + tw). Vw) (V(uo + u + tw). Vw) +

+ B(s (V(uo + u + tw)*) (Vw. Vo).

We shall denote
hy(z,r, 1) =

- zg_g (r, (Vo + u + W) (2 7)) (V(uo + u + tw). Vw)

x (V(uo + u + tw). Vo) (z, 7),
hy(z, 1, 1) = B(r, (V(uo + u + tw))* (z, 7)) (Vw . Vo) (2, 7)

((z, r. 1) e 2(f)) and
A, ={(zr)eP; (Vo +u + w)*(z,) <8}, B,=P— 4,
(te (=1, 1)). { is the constant from Paragraph 1.
If t e (—1, 1), then it holds in view of (1.2):

(4.5) 0= —Zg(r, (V(uo +u + tw)*(z, 1)) £ C, for (z,r)eA,,

g?(r, (V(wo +u +tw))*(z.r) =0 for (z,7)eB,,

O(uo + u + tw) (z 1)

Py < (Y* for (zr)e4,,

ottt 5@y o rjes,

0< Ri S Pl (Vo + u + w))* (2 7)) < €4 for (zr)eP.
2
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Now, if we put

g1 =2C,¢ .alv + 2‘1’ @ @ ,
z or 0z or
ow| | dv ow| | ov

—J C —_— - —— —_— N
92 1( 0z | |0z or||or >

then in view of (4.5) we have

‘g (z )] < lh1(2, r, t)| + Ihz(z, r, t)| < 9i(z, 1) + gi(z, 1)

for all (z, r, t) € 2(f). Moreover, the integrals

-” gz, r)dzdr, i=12
P

are convergent. Since for every ¢ € (—1, 1) the integral

J j Ser)dzdr

is convergent, the use of the theorem on differentiating under the integral sign is

justified and we can write
= J.J~ g(z, r,0)dz dr.
t=0 p Ot

(% ( J j Seri)a dr)

Here the right hand side integral is convergent and thus

PLL () (0, %) = j j P Z_f; (2, 7, 0) dz dr

for arbitrary u, v, w e W3(P). Further, we can see that WT, () (v, *) is a continuous
linear functional defined on the space W;(P).

We have proved the existence of the weak Gateaux differential of T, on W3(P).
It follows from Remark 4 that T, is hemicontinuous.

If we put v = w, we get

PLL(0, v) = J‘ j P{2%(r, (Vo + 0))?) (V(uo + 1) . Vo) +
+ B(r, (V(uo + u))?) (Vv)? } dzdr = J:L{ﬂ(h (V(uo + u))?) (Vv)*} dz dr.
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In view of (4.5) and Lemma 3 (see (4.4))
VL) (09) 2 (o] 2 50 o

for all u, v € W3(P). This implies that the inequality
P)(00) 2 0
is valid for all u, v e W;(P), and
VT,(u) (v,0) =0

if and only if v = 0. Consequently, in virtue of Lemma 2, the operator T, is strictly
monotone.

Lemma 5. The operator T, is coercive.

Proof. If v e W;(P) then, by (1.2),

(o), 0> = j J (B (900 + ) (o Vo Vo V) dzdr 2

> Rizﬂp(w)z dzdr - C, HP[(V% Vo)| dz dr.

By means of the Cauchy inequality we get

[ j (7 Vo) dz r 5 o] |41

It follows from Lemma 3 that there exist constants K,, K, > 0 such that (4.4) is
valid for all u € W;(P) and thus,

(Tfv), 0> 2 EI; (lol™)* = Caluol™ ol” 2% ol = CukEuo] [o] -

Hence we get
2
im Tl S KL 1) = CR2uo] = +o0,

e ol T Re pesee

Q.ED.

Theorem 2. Problem (C) has exactly one solution.

Proof. The operator T,, : Wj(P) — (W(P))* is strictly monotone, coercive and
hemicontinuous. By Theorem 1 and Remark 2, Eq. (4.2) has exactly one solution

i e Wi(P).
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Remark 6. The operator T,, depends on the function u,. Problem (C), as we have
proved, has for the given u, the unique solution . It follows from this that Problem
(B) has also the unique solution w = u, + #. Let us show that the solution w of Pro-
blem (B) does not depend on the function u, satisfying conditions (2.2).

Let uy, u, € Wj(P) satisfy (2.2). Let T,, and T,, be operators defined by (4.1),
where we write u, and u,, respectively, instead of u,. If we put

q = U; — Uy,
then g € W3(P). Let ii, be a solution of the equation

T, (i) =0©.

Then @, = @i, — q is a (unique) solution of the equation
T,(i,) =©.

The functions w; = u; + i, (i = 1, 2) are the solutions of Problem (B) (where we use
u; instead of u,). But

Wy, =up, +il, =u, +i; —qg=u +i; =w,

which we wanted to prove.

This also guarantees the uniqueness of solution of the “classical” Problem (A),
provided the first derivatives of solutions of Problem (A) are elements of the space
L,(P). This assumption is physically well-founded because it is equivalent to the
requirement that the total energy of the moving fluid, which fills up the channel,
is finite.

Let u € W)(P) be the solution of Problem (B). We can easily find out that the
functions

b= B T 2y = (V)

are elements of L,(P). We shall call the vector V = (v,, v,) the “‘generalized” velocity
field of compressible irrotational flow. It follows from Theorem 2 that for the given
total flow through the channel, determined by the constant Q, there exists exactly
one ‘“‘generalized” velocity YV of compressible irrotational channel flow. By V the
fluid density ¢ and the pressure p are uniquely determined, which completes the solu-
tion of the channel flow.

In conclusion, let us add that in practice it is required to determine the solution,
the existence and uniqueness of which we have proved. The only way possible is to use
an appropriate approximate method. In this case, where we have used the monotone
operators method, it would be convenient to solve the problem approximately by the
finite element method. However, the solution of equations on appropriate finite-
dimensional spaces and the estimates of convergence remain an open problem.
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Souhrn

RESENI PODZVUKOVYCH OSOVE SYMETRICKYCH
PROUDOVYCH POLI

MiLosLAV FEISTAUER a JOSEF RiIMANEK

Timto Elankem navazujeme na vysledky z [1], kde jsme formulovali okrajovou
modelovou ulohu, kterd popisuje tfirozmérnd osové symetricka proudova pole
stladitelné tekutiny. Zde se zabyvame feSitelnosti této ulohy. Nestudujeme vsak
feSeni ,,klasické®, ale v€nujeme se otdzkdam existence a jednoznacénosti ,,zobecné-
nych* Feseni, které vySetfujeme pomoci metody monoténnich operatorti.

Hlavnim vysledkem je véta o existenci a jednoznacnosti feSeni tlohy (C), odkud
plyne, Ze je-li dan celkovy pritok tekutiny kandlem, pak v daném kandlu existuje
pravé jedno nevifivé proudové pole stladitelné tekutiny.
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