
Aplikace matematiky

Nirmal Kumar Basu; Madhav Chandra Kundu
Polynomial approximation and the quadrature problem over a semi-infinite
interval

Aplikace matematiky, Vol. 20 (1975), No. 3, 216–221

Persistent URL: http://dml.cz/dmlcz/103585

Terms of use:
© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103585
http://dml.cz


SVAZEK 20 (1975) A P LI K A C E M ATE M A T I K Y ČÍSLO 3 

POLYNOMIAL APPROXIMATION AND THE QUADRATURE 
PROBLEM OVER A SEMI-INFINITE INTERVAL 

N. K. BASU and M. C KUNDU 

(Received April 16, 1974) 

INTRODUCTION 

The polynomial approximation to a function in a semi-infinite interval is generally 
obtained by using Laguerre polynomials together with a suitable weight function of 
the form co(x) = e~x. In the 1st part of this paper the authors have obtained a similar 
expansion of the function f(x) over (0, oo) in terms of a variant of Chebyshev poly-

oo 

nomials of the form f(x) = ~~* am T*(e~x) where T*(e~x) = cos m6 with 2e~x - 1 = 
m-0 

= cos 69 the corresponding weight function being a>(x) = ^[(e~x) (1 — e~x)~l~. 
In the 2nd part of this paper methods for numerical evaluation of the integral 

jo° e~xf(x) d* have been developed. The above integral which is usually solved 
by Laguerre Gauss quadrature method requires the use of Laguerre polynomials. 
However, in the present method the function f(x) is first expressed in a series of 
a variant of Chebyshev polynomials as above and then the final evaluation is 
completed by integrating term by term. Also integrals of the form j !?^ e"x f(x) dx 
which may be reduced to the form j * ^ e~x2 f(x) dx can be treated similarly. It may 
be mentioned in this connection that the method for solving the aforesaid integral 
over (-co, oo) which is evaluated with the help of Hermite polynomials is known 
as Hermite Gauss quadrature method. Numerical examples have been included 
to show the practical applications of the present method and to compare and 
contrast the results with the corresponding Laguerre Gauss and Hermite Gauss 
methods [1]. 

POLYNOMIAL APPROXIMATION 

Let f(x) be continuous over (0, oo) and let Tm(e~x) be a variant of Chebyshev 
polynomials of degree m, where T*(e~x) = Tm(2e"x — l) = cos mO with 2e~x — 
— 1 = cos 6. 
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Then the Chebyshev-Fourier expansion of f(x) is 

(1) f(x) = £'amTm(e-*), 0 < * < * , , 
m = 0 

where the prime indicates that the 1st term is to be halved. The polynomials Tm\e~x) 
are orthogonal with respect to the weight function co(x) = yf[(e~x) (l — e~x)~l] 
and we get the following relations 

(2) r V [ ( ^ 1 ( l - e - r 1 ] T : ( e - ) T n * ( e ^ ) d x = 0 for m + n, 

= n for m = n = 0 , 

= \TI for m = n + 0 . 

The coefficients am of (1) are given by 

(3) am = 2- rV[(<r*) (1 - e"*)-'] T ; (e- ) / (x) dx . 
T tJo 

Assuming that the series (l) has faster rate of convergence an approximation to / 
may be taken as 

(4) f(x)*£'akTk*(e-*). 
Jfc = 0 

The coefficients could be calculated from (3) but in practice even for quite simple 
functions it may be difficult to calculate exactly the integral involved. The approximate 
computation of the coefficients is done as follows. 

The substitution 2e~x = 1 + cos 0 in (3) gives 

(5) 
2 r°° 

ak=-\ cos fc0/(log sec2 £0) á9 
71 Jo 

By using the mid-point quadrature formula in which the abscissae are taken mid-way 
between the equidistant points 9t = nij(N + 1) gives 

2 N 

(6) ak « ak = }~ cos k9J(\og sec2 J0f) 
N + 1 i = 0 

where 
6i = (2i±Jh itm(K1 Nm 

2(N + 1) 

Thus 

(7) ak*«k=-?—iTk*(e-*<)f(Xt). 
N + 1 f=0 
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Again substituting this approximate expression for ak in (4) we get the polynomial 
approximation to 

(8) /(*)*£'a, T V ) 
fc = 0 

i.e. 

/w * £ r ~ r -r(o Irvolfw • 
» = o LN + 1 fc = 0 

Also 
(9) 4e~* T*(e~x) = Tr*_x(e~x) + 2T*(e~x) + Tr*.x(e~x) . 

Putting 

(io) +(x) = £' rV" ) -TOO 
k = 0 

and employing (9) we obtain 

(11) 4e~* *(x) = £ ' 4e~* TV*) TV") = 

= 2e~* + £ [Tfc*+1(e-) + 2 I ? ( 0 + -T2-i(0] -?(«-") 
fc=l 

and 

(12) 4e"*< ^(x) = 2 e - - + £ [l?+1(e—) + 2 T . V " ) + T ^ e " * ' ) ] - T ? ( 0 -
k=l 

Now subtracting (12) from (11) we get 

(13) ^ ) = W^T>Z). 
V ' V ' 4(e~* - «-*') 

Again 

(14) e*< T*i .(e—) T*(e--) = -2(iV + 1). 

Hence from (8), (10), (13) and (14) we obtain 

<i5> **>4[o-^l(«-'iK 
QUADRATURE PROBLEM 

The evaluation of the integral Jo° e~xf(x) dx can be done in two ways. In the first 
case the function f(x) is replaced by the expression contained in (4), whence we get 

/•oo N /•oo [N /2] 

(16) 
»oo N /-co [N/2] 

e" */(*) dx * S'«» *"* - ? ( 0 <** = ~' 7^7-; > 
0 *=° Jo P=° 1 - 4P 
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where [N/2] means the largest integer contained in N/2 for a given N, the coef­
ficients ak being calculated from (7). 

In the other case we replace f(x) by (15) so that 

M V-^Иdx. 
e ' — e 

(17) fYv(x)d .x*i—5 
Jo »=oe ' r_v + 1 (e 4) 

Applying (10) and (13), (17) reduces to 

(18) f V V W dx « £ [ - 1 - £ I f ( e - 0 f V " i f («-") dx] f(xf) = 
Jo i = o|JV + 1 * = o J 0 J 

- I cj(xf), 
» = o 

where 
9 [N/2] T * / _x,\ 

(19) C, - - ^ - r - ^ ^ - j • 
V ; iV + l P =o 1 - 4 / 
The same result is obtained if the function f(x) in the previous integral is replaced 
by (8). 

NUMERICAL EXAMPLES 

We consider the following numerical examples: 

(a) / = f Y * * d * = 1-2337005 , 
W Jo I-*"2* 

< ь ) ' - / ; 

(c) , _ 

e * sin x dx = 0-5 , 

e~*2 cos x dx = 1-3803884 

The numerical details of the above examples are contained in table 1, 2 and 3 respec­
tively. 

Remarks 

(i) It may be seen from the above tables that to achieve the desired accuracy in 
some case larger number of points are required to evaluate the integral in the present 
method than in the corresponding Laguerre-Gauss quadrature and Hermite-Gauss 
quadrature methods. This is the only drawback of this method. But owing to the easy 
availability of a computer now-a-days such a defect should not be taken into account 
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Table 1 Table 2 

Present Method Laguerre-Gauss 
Method 

N I IV I 

3 
6 
8 

10 
11 
12 
13 
14 
15 

1-2392836 
í-2346744 
1-2343299 
1-2341360 
1-2341142 
1-2340182 
1-2340000 
1-2339420 
1-2339276 

3 
6 
8 

10 
11 
12 
13 
14 
15 

1-2345388 
1-2336694 
1-2336918 
1-2337020 
1-2337010 
1-2337016 
1-2337000 
1-2337014 
1-2337008 

Present Method Laguerre-Gauss 
Method 

jv I jv I 

3 0-4605961 3 0-49603015 
4 0-4757321 4 0-50487947 
5 0-4839439 5 0-49890318 
7 0-4951350 7 0-50003902 
8 0-4979664 8 0-49998787 
9 0-4996647 9 0-50000151 

10 0-5007259 10 0-50000014 
11 0-5013793 11 0-49999969 
13 0-5019106 13 0-49999988 

Table 3 

Present Method Hermite-Gauss 
Method 

jv I jv I 

3 1-3705233 3 1-3820330 
6 1-3820518 6 1-3803886 
9 1-3803933 9 1-3803885 

10 1-3803559 10 1-3803885 
13 1-3803824 13 1-3803884 
15 1-3803874 15 1-3803880 
16 1-3803887 16 1-3803887 

so seriously because it involves only a little more computing time in comparison to 
other methods. On the other hand the existing methods require the use of precompiled 
weight coefficients and the abscissae which should be known in advance, either in the 
form of a table. But no such previous data are required in the present method which 
is the advantage of it. 

(ii) In the evaluation of the integral the formula (18) should be preferred to formula 
(16) because the weight coefficients Ct in (18) can be calculated beforehand from (19) 
for specified values of N and can be supplied in the form of a table. This saves a lot 
of computing time for a particular evaluation of an integral. 

(iii) It appears from the above tables that although in some cases larger number 
of points are required in the present method as compared to Laguerre-Gauss of 
Laguerre-Hermite methods, as the case may be, the results obtained by the present 
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method deviate less from the actual values than those of other methods. Thus by 
taking a few more points more accuracy in the solution is achieved. 

(iv) No attempts have been made to obtain the error estimates both for the poly­
nomial approximation and the integral evaluation. But simple estimates in these 
cases, if necessary, can be easily obtained by the methods given in [2]. 
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S о u h r n 

APROXIMACE POLYNOMY A PROВLÉM KVADRATURY 
NA POLONEKONEČNÉM INTERVALU 

N . K . BASU, M . C KUNDU 

V článku je vypracován způsob aproximace funkce na polonekonečném intervalu 
(0, co) polynomy, při čemž je užita jistá modifikace Čebyševových polynomů. Metoda 
je aplikována na problém kvadratury na tomtéž intervalu. 
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