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1. INTRODUCTION 

This paper deals with the existence of equilibrium states of a thin elastic plate 
under penpendicular loading, where the edge of the plate is subjected partly to 
boundary equations of the type studied by Hlavacek and Naumann [4], and partly 
to certain unilateral constraints. 

The present Part I is devoted to systems of boundary conditions which imply that 
any motion of the plate is eliminated, if the elastic energy of the plate bending and 
of the elastic clampings vanishes (this means that the bilinear form representing 
the energy of the plate bending and of the elastic clampings is coercive on the associat­
ed energy space). 

In [2], Duvaut and Lions have studied the existence and uniqueness of equilibrium 
states of an elastic plate (linear case) under various types of unilateral conditions. 
These boundary value problems are restated in terms of variational inequalities 
to which abstract results directly apply. Unilateral boundary value problems for the 
nonlinear system governing the equilibrium of a thin elastic plate (formulation 
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in displacements) are studied by the same authors in [3]. Here only the coercive case 
(coerciveness with respect to the associated energy space) is considered. A method 
of Galerkin's type is used to solve the problems under consideration in their unified 
form. 

In Section 2 we give the formulation of unilateral boundary value problems which 
we shall investigate. The following Section 3 is devoted to the preliminaries needed 
as well as to the variational formulation of our unilateral problems. We then show 
in Section 4 in which sense the equations are satisfied by a variational solution. 
Further, assuming appropriate regularity properties of the variational solution 
and using a result from [5], we are able to give an interpretation of some unilateral 
boundary conditions. 

Section 5 presents the unification of all variational formulations introduced as well 
as our main existence result. The uniqueness of the variational solution can be proved 
in the case of sufficiently small deflections. The proof of the existence theorem which 
will be given in the following section, uses directly an abstract result. The last Section 
7 concerns the passage to limit with respect to certain parameters. It turns out that 
one obtains in this way a variational solution of some types of boundary value 
problems discussed in [4]. 

2. SETTING OF THE UNILATERAL BOUNDARY VALUE PROBLEMS 

Let Q be a bounded domain in the x,}!-plane (constituting the middle plane of the 
plate) with boundary F.1) Then the equilibrium states of a thin elastic plate subjected 
to a perpendicular loading are characterized by solutions of the following system 
of partial differential equations (the so-called von Karman equations): 

(2.1) A2f = - \ w , w] in Q, -

(2.2) '? A2w = [f,w] -¥ q in Q. r̂ < , ,/^ 
.'. 1 , / ' . . , • • • ;~' :-" • •*"' • . .•/," ; ' . : l T . . ' • ! • ; . • ' , ' ' ••'•>"•'' r . j - ' V- : r ; v ; '• 

Here the function f = f(x, j ) denotes the; stress function, whiles = w(x, y) means 
the deflection of the plate. A2 is the biharmonic operator with respect to the variables 
xandy, and , . . !• ; 

\u,v\ s= uxxvyy + uyyvxx - 2uxyvxy. ~„y.~"~ 

The perpendicular load is represented by the function q. s ; 

We impose upon f the boundary conditions 

(2.3) f = fn = 0 on r . , , t ] . ; : . 

The subscript n denotes the derivative along the outer unit normal n = (nx, ny) 
with respet to Q. 

*) Precise conditions upon F will be stated at the beginning of the next section. 
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The boundary conditions (2.3) imply, in a certain sense, that the edge of the plate 
is free of lateral tractions.1) 

Remark 2.1. We have restricted ourselves to the homogeneous boundary condi­
tions (2.3) only for the sake of simplicity. The inhomogeneous boundary conditions 
/ = go> fn = 91 c a n De treated by applying the method of reformulation presented 
in [4] (if corners are permitted on F, certain compatibility conditions upon g0 and 
gl are necessary; cf. [4] for details). 

Before we turn to the formulation of the unilateral boundary conditions, we intro­
duce the boundary operators 

M(u) = fi Au + (1 - fi) (uxxn
2

x + 2uxynxny + uyyn
2), 

T(u) = - — Au + (l - ix) — \uxxnxny - uxy(n
2

x - n2) - uyynxny] , 
on os 

where/i = const (0 < \i < i) is the Poisson ratio of the plate material, s = ( — ny, nx) . 
. M(w) may be interpreted as the bending moment of the plate along the edge F, 
while T(w) may be understood as the shearing force. 

2.1. Conditions with respect to a rotation on F. We consider the boundary condi­
tion w = 0 on F, i.e., the plate is supported along F. If under this condition the elastic 
energy of the plate bending vanishes then it follows w = 0 (cf. [4]). 

Further, let us introduce the boundary condition 

T(w) + e0w = m0 on r 
where 

e0, m0 e l}(r)2) , e0 ;> 0 a.e. on P. 

This condition corresponds to a plate whose edge is elastically supported and loaded 
by the transversal force m0 (cf. [4]). The inequality e0 _ 0 is based on the fact that 
the deformation energy of the elastic supports cannot be negative, i.e., j r e0w

2 ds -t 0. 
In the present Part I, the above boundary condition will be considered under the 

following additional assumption: 

J) In order to make this point clearer, let us consider an example of boundary conditions upon 
f which lead to (2.3), namely 

fyynx-fxyny=0, fxxny~fxynx=0 on F, 

i.e., the lateral tractions vanish along F. An easy calculation yields 

f=A + Bx+Cy9 fn=Bnx+Cny on F 

where A, B, C are arbitrary real constants (cf. [4]). Putting A = B = C = 0 one gets (2.3). 
2) We refer to the book [8] for the definition of the spaces LP(F). 
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(*) j^oPÌ 2 ds = 0 implies pt = 0 for all polynomials of the degree 

—̂ 1 in x and y . 

The latter condition guarantees that if both the energy of the plate bending and that 
of the elastic supports vanish, then w = 0 (cf. [4]). 

1° Unilateral rotation on F. Let us suppose that if the plate rotates from its 
support, then there are no bending moments, i.e., wn > 0 implies M(w) = 0 on F. 
On the other hand, if the bending moments are positive, then the plate is forced 
onto the support, i.e., M(w) > 0 implies wn = 0. 

Thus, we have the conditions 

f w = 0 

l wn = 0, 

= 0 on r, 

M(w) = 0 , wn M(w) = 0 on F ,*) 

(cf.[2],[3]),on 

( wn ^ 0 , M(w) ^ 0 , wn M(w) = 0 on F, 
(2.5) \ 

I T(w) + e0w = m0 on F. 

In the presence of corners on F, (2.5) has to be completed by the conditions 

(+) H(w~) = H(w+) = 0 

at the corners, where 

H(w) = (1 - ii) \wxxnxny - wxy(n
2

x - n2) - Wyynxny1 

(see [4] for details)2) The condition (+) may be interpreted as the vanishing of the 
jump of the twisting moment at the corner under consideration. 

Remark 2.2. We introduce the subsets 

r = {(x, y)er : wn = 0} , F" = {(x, y)eT : wn > 0} . 

Thus F = r u r", and one gets from (2.4) 

w = wn = 0 on r (clamped part) , 

w = M(w) = 0 on r (simply supported part) . 

1) Note that the direction of the corresponding inequalities converse to that in [2], [3] is due 
to our different notation. 

2) It is readily seen that our existence theorem (see Section 5) still holds, with the same proof, 
for inhomogeneous conditions (-{-). 
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However, the subsets F' and F" are unknown in (2.4). 

2° Rotation with friction. Let k be a positive constant (connected with the plate 
material). We assume that if the absolute value of the bending moment M(w) is less 
than k, then there is no rotation of the points of F, i.e., |M(w)| < k implies wn = 0 
on F. But if |M(w)| attains the value k, rotation of the plate on F may take place 
provided there is a small perturbation. 

Describing the situation considereed we obtain the following conditions upon w: 

(2.6) 

(cf. [2], [3]), and 

(2.7) 

w = 0 on F , 
|M(W)| = k on F: 

|M(w)| < k implies w„ = 0 , 
M(w) = k implies wn ^ 0 , 
M(w) = — k implies wn = 0 , 

|M(w)| S k on F : 
|M(w)| < k implies wn = 0 , 
M(w) = k implies w„ ^ 0 , 
M(w) = —- k implies wn = 0 , 
T(w) + e0w = m0 on F, 

where in the latter system conditions of the type (+) have to be included if the boun­
dary is permitted to have corners. 

It is readily verified that the system of inequalities in (2.6) (and (2.7) may be replaced 
equivalently by 

(2.6') |M(w)| = k , wn M(w) + k|w„| = 0 on F . 

Remark 2.3. Turning back to (2.6), we define 

F(1) = { (x , } ; )GF :w / J -0} , 

F(2> = {(x, y) e r : wn > 0} , F(3) = {(x, y) e F : wn < 0} . 

Then F = F(1) u F(2) u F(3), and 

w = Wn = 0 on F(1), 

w = 0, M(w) = -k on F(2), 

w == 0, M(w) = k on F(3), 

i.e., the plate is clamped on F(1), and supported and loaded by a moment distribution 
on F(2) u F(3). As above, the decomposition of F is unknown. 

2.2 Conditions with respect to a displacement on a part of F. In this section we 
also subject w to boundary conditions such that w = 0 if the energy of the plate 
bending vanishes (cf. [4]). 
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To this end, let F be decomposed into two mutually disjoint (measurable) subsets 
F0 and rl9 i.e., F = F0 u Fx. We introduce the conditions 

w = wn = 0 on F0 , M(w) + exwn = mx on Fx , 

where 

ei, mx e Lp(rt) (1 < p < oo), ei = 0 a. e. on Fx . 

These conditions mean that the plate is clamped along F0, while along Fx it is elastic-
ally clamped and loaded by a moment distribution mx. The inequality et — 0 is 
based on the fact that the deformation energy of the elastic clampings is non-negative. 
Moreover, we suppose that the following condition is fulfilled: 

(**) m e s ( F o ) > 0 . 

If (**) holds then the vanishing of the energy of the plate bending implies w = 0. 

Without further reference, in the presence of corners on F1? the boundary condition 

(+•) is assumed to hold at the corners. 

We complete the boundary condition on Tt by various unilateral conditions upon 

w and T(w). 

1° Unilateral displacement on Fi. Let the plate partially lie on a rigid support. 
In more detail, if the plate can move from the support then there are no shearing 
forces, i.e., w > 0 implies T(w) = 0. On the other hand, if the shearing forces become 
positive then the plate lies on the support, i.e., T(w) > implies w = 0. 

Thus, one obtains the system of conditions 

w = wn = 0 on F0 , 

°} 
(2.8) \ w = 0, T(w) = 0 , w T(w) = w 

M(w) + eiW„ = mx 

2° Displacement with friction on F1? Let a positive constant g be given (depending 
on the friction properties of the plate material). We then assume that no motion of the 
plate (along Fi) takes place if the absolute value of T(w) is less than a, i.e., |T(w)| < g 
implies w = 0. But if \T(w)\ attains g, a motion of the plate may occur provided 
there is a small perturbation on Fx. 

Describing such a boundary configuration, we state the conditions 

(2.9) 

w = wn = 0 on F0 , 
\T(w)\ ^g on Fx : 
\T(w)\ < g implies w = 0 , 
T(w) = g implies w g 0 , 
T(w) = — g implies w = 0 , 

L M(w) + eiW„ = m\ on Fi . 
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The system of inequalities in (2.9) is equivalent to 

(2.90 \TH\ = 9> * TH + *M = 0 on F! . 

3° Plate elastically constrained on Tv We suppose that the plate can move freely 
on Fj if the absolute value of the deflection on Fx remains bounded by a constant, 
say 1, i.e., T(w) = 0 (no shearing forces) if \w\ ^ 1. Beyond the bound 1 there are 
elastic constraints, i.e., T(w) = — crw(l — l/|w|) if \w\ > 1 (here a is a given positive 
constant). 

We get the system of conditions 

w = wn = 0 on F0 , 

(2.10) T(w) = ° * M - 3 1. ] 
T(w) = -aw(\ - l/|w|) if \w\ > 1 , \ on Tt . 

M(w) + etw„ = mt . J 
The second group of the conditions in (2.10) corresponds to (13) (second line) and 
(19) in [3] (e. = m, = 0). 

Remark 2.4. The conditions w = wn = 0 on F0 represent only one case of boun­
dary conditions to which the edge of the plate can be subjected along F0. Other 
conditions are 

w = 0 , M(w) + gxwn = rt on F0 

(F0 is not a segment of a straight line) , 

or 

M(w) + kxwn = tx , T(w) 4- k0w = t0 on F0, 

Í k0pi ds = 0 implies px = 0 for all polymomials of the degree 
r0 

^ 1 in x and y 

(cf. [4]). Each of these conditions implies w = 0 if the energy of the plate bending 
vanishes. 

As will be seen in the following section, the variational formulation of (2.1)—(2.3), 
(2.8) (or 2.9), (2.10)) can be extended in a straightforward manner to the above 
boundary conditions. 

Remark 2.5. If we are given a decomposition of F into disjoint parts, various 
mixed unilateral boundary conditions of the types stated above can be investigated. 
Moreover, one can combine unilateral boundary conditions with inhomogeneous 
boundary conditions (equations) in [4]. For example, if the decomposition T = 
= Fi n F2 n F3 is given one may introduce the conditions 
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W = W„ — 0 OП T! , 

w = 0, Г(w) = 0 , w Г ( w ) = 0 1 

M(w) + fc.w. = ř. } °П Л 

M(w) + eiW,, = m^ , T(w) + e0w = m 0 on Г 3 

The variat ional formulat ion of all these m o r e general b o u n d a r y value problems 

is included in our unified setting introduced in Section 5. 

3. NOTATION. VARIATIONAL FORMULATION 

Let the boundary F of the domain Q be Lipschitzian (i.e., T is permitted to have 

corners).1) 

We denote by If(Q) (1 ^ p < oo) the space of all real functions which are inte­

grate with power p on Q (with respect to the Lebesgue measure dx dy). 

Using the notation 

d{a{ 

Da = , lal = a i + a 2 , 
dxaidya2 M 

we define for any integer m = I 

Wm'p(Q) = {u e LP(Q) : Dau e U(Q) for | a | ^ m} 

(the derivatives are taken in the sense of distr ibutions). Wm,p(Q) is a B a n a c h space 

with respect t o the n o r m 

) i l p 

T h e scalar p r o d u c t 

M«.p-if H'àxdy+ Z f \Dau\pdxdyY 
Us» 1*1==mJn ) 

t 

(u, v)mt2 = \ uv dx dy + £ DauDav dx dy 
Jfí .« I^J f l 

turns Wm'2(Q) a Hilbert space. 

Let @(Q) denote the space of all infinitely continuously differentiable functions 

in Q which together with all their derivatives can be continuously extended onto Q. 

Putting 

ir
1 = {u 6 9{Q) : u = 0 on F} , 

r 2 = {ue®(Q) : u = un = 0 on F0} , 

where F = F0 n Fx is the decomposi t ion according to Sect ion 2.2, we introduce 

the spaces 

x) Using the terminology of [8] we write: Q e 5 l ( 0 ) A . This is sufficient for the Sobolev Im­
bedding Theorem and the Trace Theorem to hold. 
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V! = closure of *TX in W2,2(Q) , 

V2 = closure of r2 in W2,2(Q) . 

Observing the Sobolev Imbedding Theorem and the Trace Theorem, one obtains 

u = 0 pointwise on F , Vu e Vt , 

u = 0 pointwise on F0 , | Vu e V2 

un = 0 a.e. on F0 (in the trace sense) .} 
For treating the boundary value problems stated in Section 2, it is convenient 

to introduce another product on Vl9 W2,2(Q) and V2. To this end, we define for 
u, ve W2,2(Q) the bilinear form 

A(u, v) = [u^v** + 2(1 - fi) uxyvxy + uyyvyy + fi(uxxvyy + uyyvxxJ] dx dy 

(recall that fi denotes the Poisson ratio of the plate material). 

From [4] we obtain: 

There exist constants ct and c\ (i = 1, 2, 3) such that 

(3.1) cx\u\2
2a^A(u,u)^c\\u\2

2i2 V u e V x ; 

(3.2) c2\\u\\l2 ^ A{u, u)+ \ e0u
2 ds ^ c2||u||2j2 Vu e W2,2(Q) ; 

(3.3) c4u\\2
2t2^A(u.u)^c'3\\u\\2

2t2 VueV2. 

From (3.1) or (3.3) we conclude respectively 'that Vt and V2 are Hilbert spaces 
with respect to the scalar product A(u, v). By (3.2), the scalar product A(u, v) + 
+ JY e0uv ds turns W2,2(Q) a Hilbert space. Henceforth, Vx as well as W2,2(Q), V2 

will be understood to be furnished with the scalar product mentioned. 
We denote by @(Q) the space of all infinitely continuously differentiable functions 

having their support in Q. Let W0'
2(Q) be the closure of 2(Q) in Wm,2(Q). W0'

2(Q) 
is a Hilbert space with respect to the scalar product 

(",f)m,2:o = I D*uD*váxdy 

(cf. [8]). The norms ||-||Wj2 and ||-|fw>2;0 = (/,*)m%0 are equivalent on W?>2(Q). 
In particular, the equivalence of | |* | |2 2 ; 0 to ^{A(*,*)}1/2 on the space W0

,2(Q) is 
readily seen. 

Thus, we have 

W2'2(Q)cz Vtcz W2,2(Q), (i = 1,2) 

where each injection is continuous. r. 
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For our discussion we also need the spaces WS,2(T) (s > 0, real). However, we 
omitt their detailed definition, and refer to [8] (cf. also [7]). 

Let C(Q) be the space of all continuous functions in Q which have a continuous 
extension onto Q. Then by [C(.Q)]; we denote the dual space of C(Q) and by <m, <p> 
the dual pairing between m e [C(-2)]' and cp e C(Q). Unless otherwise stated, through­
out the paper we assume q e [C(O)]' (let us refer to [4] for some particular cases 
of,«j). 

We introduce finally the sets 

Ki = {u e W2'2(Q) : w„ = 0 a.e. on F} , 

K2 = {u e W2'2(Q): u ^ 0 on FJ 

(F = F0 u F! denotes the decomposition according to Section 2.2). It is readily 
verified that Kt (i = 1, 2) is a closed convex cone in W2,2(Q). 

Definition 3.1. 

1° The pair {f w} is called a variational solution to (2.1) -(2.3) , (2.4) iffe W2a(Q) 
w e V! n Kl9 and if 

(3.40) (/, ̂ . o = - f [w> w ] * dx &y ^ e Wo'2(Q) > 

(3.4) A(w, v -• w) }> \ [f w] (v - w) dx dy + <q, v - w> Vv e Vx n Kx . 
Jft 

2° The pair {/, w} is ca//ed a variational solution to (2. l)-(2.3), (2.5) if f e 
e WQ'2(Q), W e Ki, {/, w} satisfies (3.40), and if 

(3.5) A(w, v — w) + e0w(v — w) ds ^ 

= [ / w ] iv - w) dx dy + m0(v - w) ds + <q, v - w> Vv e Kx . 

3° The pair {/, w} e WQ*2(Q) X Vi is ea//ed a variational solution to(2.i)-(23), 

(2.6) if {/, w} san's/?e5 (3.40), and i / 

(3.6) 4 w , v - w) + fc |v„|ds - k \wn\ds ^ 

= [/» w] (u ~ W) d x d>! + <q, v — W> Vv 6 Vi • 
J*2 

4° The pair {/, w} G FPO2,2(£) X *V2,2(-3) is called a variational solution to (2.1) -
(2.3), (2.7) if{f, w} satisfies(3A0); and if 
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is > (3.7) A(w,v - w) + e0w(v - w) ds + k\ \vn\ds - k |w„|ds 

^ I [/> w] (» ~ w) dx dy + j wo(*> - w) ds + <q, v - w> Vv e W2t2(Q) . 

In order to motivate the definitions introduced let {/, w} be a sufficiently regular 
solution to (2A)~(2.3), (2.4), and let q e I}(Q). Moreover, suppose that the boundary 
T is infinitely differentiate. 

Multiplying (2.1) by the test function \J/ and integrating by parts the expression 
A2f\//9 the integral identity (3.40) is easily obtained. 

Next, w = 0 on F implies we Vx (see Section 4), and since w„ ^ 0 on F, it holds 
we Vt nKv We now multiply (2.2) by v - w and integrate by parts A2w(v - w). 
We get ..,-, 

A(w9 v — w) = 

= A2w(v - w)dxdy + T(w) (V - w) ds + M(w) (i?„ - wn) ds = 

= [/, w] (v — w)dxdy + q(v - w) dx dy + 

+ j T(w) (v - w) ds + M(w) (t>B - w„) ds 

for arbitrary v e W2>2(Q) (cf. [8]). By (2.4), 

j T(w) (v - w) ds + j M(w) (vn - w„) ds = j M(w) vn ds ^ 0 Vv G Vj n Kt, 

and (3.4) is obtained immediately. 
If {/, w} is a sufficiently regular solution to (2.1) —(2.3), (2.5), we have 

T(w) (v - w) ds + M(w) (v„ - wn) ds ^ (-e0w + m0) (t; - w) ds Vv G K! 

which implies (3.5). 

In order to obtain the inequality in (3.6) we remark that the system of inequalities 
in (2.6) (and (2.7)) is equivalent to 

k\h\ - k\w.\ > {-M{wj\ (h - w„) 

a.e. on F, for any h e L2(F) 

(cf. also (2.6')). Therefore, if w satisfies (2.6) one obtains 
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f T(w)(v - w)ds + f M(w)(vn - w„)ds = -fc f |v„|ds + fc i |w„|ds VveV!, 

and if w satisfies (2.7), 

T(w) (v - w) ds + J M(w) (vn - wn) ds Z 

= f (-eQw + m0) (v - w) ds - fc J |v„| ds + fc | \wn\ ds Vv e W2'2(Q) . 

Thus, (3.6) and (3.7) are satisfied by a sufficiently regular solution to (2A) —(2.3) 
with (2.6) and (2.7)), respectively. 

Definition 3.2. 

1° The pair {/, w} is called a variational solution to (2.1)-(2.3), (2.8) iffe WQ'2(Q) 
w eV2 n K2, {/, w} satisfies (3.40), and if 

(3.8) A(w, v - w) + e!Wn(v„ - wn) ds ^ 
JE! 

= [ / w] (v ~ w)dxdy + m^v,, - wn) ds + <q, v - w> Vv e V2 n K2 . 
J a Jn 

2° The pair {/, w} e JV0
2,2(;Q) x V2 is called a variational solution to (2A)-(2.3), 

(2.9) if {f, w} satisfies (3.40), and if 

(3.9) A(w, v - w) + eiW,,(v„ - wn) ds + a |v| ds - a jw| ds ^ 
Jr t Jr , J r t 

= [ / w] (*> - w) dx dj + m^v,, - wn) ds + <q, v - w> Vv G V2 . 
J« JE! 

3° The pair {f, w} e WQ
,2(Q) X V2 is called a variational solution to (2A)-(2.3), 

(2A0) if {/, w} satisfies (3.40), and if 

(3A0) ^(w, v - w) + eiW^v,, - w„) ds + a\ jt(v) ds - a J ^(w) ds = 

= [ / w] ( r - w) dxdy + mx(vn - w„) ds + <q, v - w> yv e V2 . 
Jfl J A 

In (3.10) we have used the notation 

(r(ir + 1) if r< - 1 , 
IiW = j ~ i if - l | r . 5 1 , 

( r ( i r - 1) 1f r > 1 • 
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The conditions upon T(w) in (2*10) are then equivalent to 

°Ji(v) - <JJi(w) = [-T(w)] (v - w) 

a.e. on Fl5 for all v e L2(Fj). 

Indeed, we have 

Observing that 

and 

o(w + 1) if w < - 1 , 
-T(w) = <J 0 if - l ś w . i l , 

<г(w — 1) if w > 1 . 

r + 1 if r < - 1 , 

IІ(~)H° if - l = r ^ l , 
r — 1 if r > 1 , 

Áv5) - Л(r) = /i(r) (s - r) Vs, r є K1 , 

one obtains the desired assertion. 

The Definitions 3.2, 1°, 2°, 3° originate from (2A)-(2.3) and (2.8), (2.9), (2.10), 

respectively, by similar considerations as above. 

4. INTERPRETATION OF THE EQUATIONS AND 
THE UNILATERAL BOUNDARY CONDITIONS 

In the present section, we discuss the problem in which sense the equations (2.1), 

(2.2) and the boundary conditions in (2.4) —(2.7) are satisfied by the corresponding 

variational solution. 

Let {f, w} be a variational solution to (2.1) —(2.4) (cf. Definition 3.1, 1°). Since 

[u, v\ e Ll(Q) for any U,VEW2'2(Q), the integral identity in (3.40) immediately 

yields 

A2f = - [w, w ] in the sense of 9'(Q) -1) 

Let <p e@(Q) be arbitrary. It holds v = w -f q> e Vx n Ku and the inequality 

in (3.4) implies 

A(w, q>) = [f, w] cp dx dy + (q, cp} . [ 
JQ 

In virtue of q e [C(-3)]' it follows 

1) Q)(Q) denotes the space of distributions in Q. — Note that the equation A2f = — [w, w] 
in fact holds in the subspace W~2>2(Q) (= the dual of W2

0>
2(Q)) of &(Q). This follows from the 

imbedding Ll(Q) cz W~2>2(Q). 
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(4A) A2w = [f, w] + q in the sense of 2\Q) . 

In order to proceed to the discussion of the (unstable) boundary conditions, we 
make the following assumptions: 

(a) F is infinitely differentiable;1) 

(b)[f,w-]eL2(Q), qeL2(Q). 

Remark 4.1. Assuming (a), the application of the elliptic regularity theory to the 
Dirichlet problem A2f = - [w, w] in Q, f = fn = 0 on F (where w e W2>2(Q)) 
yields fe W3>\Q), 1 <: r < 2 (cf. [5]). This implies D*fe L2rK2~r)(Q) for |a| = 2, 
and thus [f, w] e U(Q). 

Regularity results for the variational solution to (2.1), (2.2) in the case of the 
boundary conditions w = M(w) = 0 and M(w) = T(w) = 0 on F, respectively, 
have been obtained in [5]. In particular, [f, w] e l}(Q) is obviously satisfied. 

However, analogous regularity results for variational solutions of our unilateral 
problems are unknown (even in the linear case A2w = q). Therefore, to give an 
interpretation of the unilateral boundary conditions stated in Section 2.1, we are 
forced to assume the regularity property [f, w] e I}(Q). 

Let the assumptions (a), (b) be satisfied throughout the present section. 
We have 

weW2>2(Q), A2weL2(Q). 

From [7, Chapter 2] one concludes that 

(4.2) M(w)eW'1/2>2(r), T(w)eW-3l2>2(r),2) 

(4.3) A(w, v) = \ A2wv dx dy + {T(w), v)3/2 + {M(w), vn}1/2 Vv e W2>2(Q) . 
Jn 

Remark 4.2. In order to obtain (4.2), (4.3) the proper ellipticity of A2 and the 
normality of the system M, Tare necessary. This is verified in detail in [5]. 

Observing (4A) (which in fact is true in l}(Q)) one derives from (4.3) 

{T(w), v)3/2 + <M(w), vn - w„>1/2 = 

= A(w, v — w) — [f, w] (v — w) dx dy — q(v — w) dxdy 
J Q J f l 

*) We refer to [7] for the definition. — This assumption enables us to apply results from [7]. 
2) One defines W~S'2(T)=- dual of WS'2(T) (s > 0, real). From [7, Chapt. 1] we conclude 

that WS'2(F) is continuously and densely imbedded in L2(F). Identifying L2(F) with its dual we 
obtain WS'2(F) c L2(F) cz W~S'2(F) (where the latter imbedding is also continuous and dense). 
If <u, v>s denotes the dual pairing between ue W~S '2(F) and v G WS'2(F) it holds <h, v>s = 
J r hv ds for all h e L2(F), v G WS'2(F). 
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forallvGW2'2(;Q). By (3.4), 

M(w), v„ - an>1/2 = 0 V v e V . f l ^ i . 
Thus, 

i w = 0 pointwise on F, 
wn = 0 a.e. on F (in the trace sense), 
<M(w), vn>1/2 = 0 V v e ^ n K , , <M(w), wn>1/2 = 0 . 

We may consider the conditions upon M(w) in (4.4) as a generalization of the 
corresponding conditions in (2.4) (second line). Indeed, let M(w) e L2(F). We then 
have 

í M(w) vnds = 0 Vv e V! n Ki , í M(w) wn ds = 0 . 

By a standard argument one concludes that M(w) ^ 0 a.e. on F, and that wnM(w) = 0 
a.e. on F. 

Let now {/, w} be a variational solution to (2.1) — (2.3), (2.5) (cf. Definition 3A, 
2°). As above, (4.1) fbllows immediately. By virtue the assumptions (a) and (b) 
we have (4.2) and (4.3). Taking into account (3.5) we obtain 

<F(w), v - w>3/2 + <M(w), vn - wn>1/2 + e0w(v - w) ds -

— J m0(v — w) ds = A(w, v — w) + I e0w(v — w) ds — 

— I [/, w] (v — w) dx dy — m0(v — w) ds — I q(v — w) dx dy = 0 Vv e Kt . 
JQ Jr JQ 

In order to proceed further we suppose 

(4.5) e0,m0el}(r)}) 

By means of (4.5) the above inequality can be written in the form 

(4.6) <T(w) + e0w - m0, v - w>3/2 + iM(w), vn - wn>1/2 = 0 Vv e Kx . 

Let ft G TV3/2'2(F) be arbitrarily given. By the surjectivity of the trace mapping 
(cf. [7]), there exists a veW2f2(Q) such that v = h, vn = 0 on F. Set v = v + w. 
Then veKi, and (4.6) changes into 

iT(w) + e0w - m0, h>3/2 = 0 Vh e W^3/2'2(F) . 

J) Since w e C(D) it holds e0w e L2(F). Therefore, e0w and m0 may be identified with an 
element in W~3/2'2(F). 
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We obtain 

wn ^ 0 a.e. on F (in the trace sense) , 

<M(w), vn}l/2 = 0 VveKl9 <M(w), wn>1/2 = 0 , 

T(w) + e0w - m0 = 0 in the sense of W3l2'2(r). 

These conditions represent a generalization of (2.5): if M(w)ell(r) then it holds 
M(w) = 0, wn M(w) = 0 a.e. on F, and if T(w)eL2(r) one gets T(w) + e0w - m0 = 0 
a.e. on P. 

Let {/, w} be a variational solution to (2.1)-(2.3), (2.6) (cf. Definition 31, 3°). 
We discuss the intepretation of the system of inequalities in (2.6). 

By (3.6), 

iM(w)9 vn - wn>1/2 + fc |t?n| ds - fc |w„|ds = 

= A(w, v - w) + fc |vn| ds - fc |wn| ds — 

- [/, w] (v - w) dx dy - q(v - w) dx dy = 0 Vv e Vx . 
J Q Jo 

Hence 

(4.7) fc f |vn| ds - fc f |wn| ds = < -M(w)9 vn - wn>1/2 Vo e Vt . 

An easy calculation yields that (4.7) is equivalent to 

|<M(w), vny1/2\ = k f |vB| ds V»6Fi, 

<Af(w), w„>1/2 + fe J |w„| ds - 0 . 

The latter may be regarded as a generalization of (2.6'). To make this clearer, 
let M(w) e l3(r). Then (4.7) turns into 

k f |».| ds - fe f |w„| ds = f [-M(w)] (». - w„) ds \fveVt. 

To proceed we note that 

Vx= W2-2(Q)n Wt-2(Q).1) 

x) Ladyženskaja O. A. and Uraltseva, N N: Linear and quasilinear equations of elliptic type 
(Russian), 2nd ed., Moscow 1973; p. 218. 
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Since the vn\r fill the whole space W1/2>2(f) if v runs over Vl9 and since JV1/2,2(F) is 
dense in L2(F) (see [7]) we get 

k f \h\ ds - k f |wn| ds ^ f [-M(wj\ (h - wn)ds Vh e L2(F) . 

This is equivalent to 

k\h\~k\wn\^[-M{w)](h-wn) 

a.e. on F, for all h e L2(F) 

(cf. [1, Appendix l]); we have an equivalent formulation (a.e. on F) of (2.6'). 
Finally, if {/, w} is a variational solution to (2.1) —(2.3), (2.7) we derive from (3.7) 

<T(w), v - w>3/2 + <M(w), vn - wn>1/2 + 

+ eQw(v — w) ds — m0(v — w) ds + k |vn| ds — k |wn| ds = 

= A(w, v — w) + e0w(v — w) ds + k |vn| ds — k |wn| ds — 

— [/, w] (v — w) dx dy — m0(v — w) ds — q(v — w) dx dy ^ 0 
JQ Jr Jn 

Vv e W2'2(Q) . 

Assuming again (4.5) one finds 

(T(w + e0w - m0, v - w>3/2 + 

+ (M(w), vn - wn>1/2 + k f |vn| ds - k f |wn| ds = 0 Vv e W2'2(0) . 

Thus 

k f |vn| ds - fc f |wn| ds = <-M(w), vn - wn>1/2 Vv e W2'2(0) , 

T(w) + e0w - m0 = 0 in the sense of JV~3/2'2(F). 

As is readily seen by repeating our above arguments, one may consider this system 
a generalization of (2.7). 

5. UNIFICATION. STATEMENT OF THE MAIN RESULT 

We now introduce a unified variational formulation of the unilateral boundary 
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value problems for the system (2A), (2.2) which are considered in Section 2. This 
unified setting includes also the variational formulation of the homogeneous cases 
of the boundary value problems studied in [4]. 

Suppose we are given the following data: 

(5.1) 

a bilinear boundary form 

a(u,v) = e0wvds + e1unvnds (u,ve W2,2(Q)) 

L where e0 e L*(F) , e1 e 1F(T) (1 < p < oo) ; 

(5.2) f a Hilbert space V whose scalar product is defined by (w, v) = A(u, v) + 
< + a(u,v) such that WQ,2(Q) c Vc W2,2(Q) where each injection is 
[ continuous;1) 

(5.3) a convex, lower semi-continuous functional <P: V -» (— oo, + oo], # =f= + oo 
(Vaccordingto(5.2)); 

(5.4) m0 e L^F) , mx e LP(T) (l < p < oo) ; 

(5.5) qe[C(n)]>. 

We introduce 

Definition 5.1. The pair {/, w} e WQ,2(Q) X V is called a variational solution 
to the system (2.1), (2.2) w/ider fhe boundary conditions (2.3) and associated with 
the functional <P if 

(5.6) (/, il/)2t2;0 = - f [w, u] iA dx dy Vi/r e W0
2'2(O) , 

J« 

(5.7) A(w, v — w) + a(w, v — w) + #(v) - #(w) ^ [/, w] (v — u) dx Ay 

m0(v — w)ds + m^Vn — un) ds + (q, v — w> Vv e V. 

+ 

+ 

Note that (5.7) includes the following facts: The equation (2.2) is satisfied in the 
sense of distributions in Q. Further, w e Vimplies stable boundary conditions upon w. 
The functional <P involves stable and unstable unilateral boundary conditions upon u, 
T(u) or un, M(u), respectively, completed by conditions arising from the boundary 
form a. Inhomogeneities with respect to the unstable boundary conditions are 

*) A(u, v) denotes the bilinear form (cf. Section 3) 

A(u, v) -£= [uxxvxx + 2(1 — u) u^v^ + uyyvyy + Kuxxvyy + uyyvxx)] dx dy . 
Jn 
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represented by m0 and mv Finally, if unstable boundary conditions are required 
on a part of P which possesses corners, the Condition (+) (Section 2A) is assumed 
to hold at the corners. 

Passing to the discussion of Definition 5.1,,we remark first of all that it includes 
the basic case of Definition 3.1 in [4]. Indeed, (5.2) is fulfilled by the construction 
in [4]. Putting $ = 0, (5.7) turns into the equation 

A(u, v) + a(u, v) = £/, u]v dxdy + m0vds + mtvnds + <q, v} 
JQ Jr Jr 

which is true for all v e V. Specifying e0, et and m0, m1 in an appropriate manner 
and integrating by parts the expression [/, «] v, the equivalence of the latter identity to 
(3.5) in [4] is easily seen. Obviously, (5.6) is equivalent to (3.6) in [4]. 

We are going to show that Definitions 3.1, 1° — 4° are included in Definition 5.1 as 
special cases. Clearly, it suffices to restrict the attention to (5.7). 

In order to obtain (3.4) from (5.7), we specify the data (5.1)—(5.4) as follows: 

(i) e0 = ex = 0, 

V = Vi, 

m0 == mt = 0 . 

Here we have used the notation 

T , . f0 if u e X , , 
IK,(«) - \ , ., . „ 

{+CO 11 M f K. , 

where ue W2f2(Q). IKl is convex and lower semi-continuous on W2,2(Q). Clearly, 
(5.2) is ensured by (3A). 

By the choice (i), (5.7) changes into 

A(u, v-u) + IKl(v) - IKl(u) ^ 

) dx dy + (qy v - w> Vv e Vx . \tf,u2(v-u 
JQ 

This is equivalent to (3.4). 
Next, we choose the data 

(ii) e0 € Ll(r), e0 satisfies the Condition (*) (Section 2A); et = 0 , 

V= W2>2(Q), 

*=lKt> 

m0 G I}(F) , mt = 0 . 
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Here (5.2) is guaranteed by (3.2). It is readily verified that in the present case, (5.7) 
is equivalent to (3.5), 

Set 

<Ž>(w) = k i \un\ ás for u e W2-2(Q) 

(k = const > 0; cf. Section 2A). <P is convex and lower semi-continuous on W2'2(Q). 
Preserving the remaining data in (i) and (ii), (5.7) is identical respectively with (3.6) 
and (3.7). 

Proceeding in a similar way, it is easy to check that (3.8), (3.8) and (3.10) follow 
from (5.7) by specifying the data (5.1) — (5.4). 

We state the main result of our paper. 

Theorem. Let the data (5A) — (5.5) be given. Moreover, suppose that 

(5.8) V = closure of r in W2>2(Q) where 9{Q) c 1T c ®(Q) . 

Then the system (2.1), (2.2) under the boundary conditions (2.3) and associated 
with the functional $ possesses a variational solution. 

Corollary. For sufficiently small (|w||, the variational solution is unique. 

6. PROOF OF THE THEOREM 

First, we present two estimates which are useful for our further purposes. 
Let u,v,we W2'2(Q) be arbitrarily given. By Sobolev's Imbedding Theorem and 

Holder's inequality, 

(б.i) 
JQ 

wx dx dy\ Š const H - . - H M H I . 4 -

Using again Sobolev's Imbedding Theorem, one obtains for the functions under 
consideration 

(6.2) uxxvyy 
\JQ 

w dx dy\ g const ||w|2>2 ||D||2,2 H k i i ) 

Let us now consider the integral one the right hand side in (5.6). For arbitrary 
u e ir, v e Fand \j/ e W$,2(Q), we obtain by integration by parts 

(6.3) f [M, V] ij/dxdy = 
Jn 

= [("*»», - «yA) ^x + («^x - "xxvy) ij/y] dx dy . 
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Due to the assumption (5.8), the estimates of the type (6.1) and (6.2) imply that (6.3) 
in fact is valid for any ueV, and we conclude 

(6.4) IГ [„,--] \j/ áx áy < (const ||wj|2,2 H I 1,4) IMI2.2.0 

for all u, v e V, \j/ e W0'
2(Q). Thus, there exists a unique element Ct(u, v) e W0'

2(Q) 
such that 

(6.5) (d(ii, v), */y)2,2.0 = - f [u,v] i> dx dy V^ e W2'2(Q) . 

The integral identity (5.6) is now equivalent to 

(6.6) / = Cx(u, u) in W0
2'2(.Q) . 

Repeating our above argument, we get the estimate 

(6.7) ІЇDби]" 
\Ja 

dxdy á(cOП8t|ZJ2iaИl.s) ) 

which is valid for arbitrary x e W0'
2(Q), u,veV. One obtains the existence of a unique 

Ci(x> u)eV such that 

(6.8) (C2(X, u), v) = f [Z, u] v dxdy Vv e V. 
JQ 

Finally, by Sobolev's Imbedding Theorem and the Trace Theorem, the estimate 

m0vds + I m ^ d s + <#, v} ^ const ||v|| 
IJr Jr 

holds for all veV. This implies the existence of a unique w0 e V such that 

(6.9) (w0, v) — I m 0 v d s + m1vnds + <q, v> VvGV. 

We introduce the notation 

C(w) = C2(Ci(w, u), u) for u e V. 

Then: The determination of a variational solution to (2.1), (2.2) under the boun­
dary conditions (2.3) and associated with the functional 0 is equivalent to the 
problem: 

Find u e Vsuch that 

(6.10) (u - C(u) - w0,v - u) + $(v) - <P(u) ^ 0 Vv e V. 

x) Note that in deriving this estimate we have used the density of @(Q) in W2

0'
2(Q) and the 

continuity of the imbedding V c W2'2(Q) (cf. (5.2)); | |. || = (., . ) 1 / 2 . 
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Indeed, let {/, u] be a variational solution to (2.1), (2.2) under the boundary 
conditions (2.3) and associated with the functional <P. With regard to (6.8) and (6.9), 
the inequality in (5.7) can be written in the form . 

(« ~ C2(/, u) - w0, v - u) + $(v) - <P(u) = 0 Vv e V. 

Inserting/from (6.6) one gets (6A0). 

Conversely, if u e Vsatisfies (6A0) we se t / = Cx(u, u). Then 

/ = Cx(u, u) , 

(w ~ C2(/, u) - w0, v - u) + <P(v) - <P(u) = 0 Vv G V. 

But this means that {/, u] is a variational solution to (2.1), (2.2) under the boundary 
conditions (2.3) and associated with the functional #. 

To prove the existence of a u e V which satisfies (6A0), we show: 

(i) It holds 

(u - C(u)9 u) + <P(u) ; „ „ 
v ' ' >--^~>-foo as ii—>oo ; 

llwll 
(ii) if {u7.} c: V is any sequence such that Uj -* u weakly in Vand 

lim sup (uj — C(uj), Uj — u) ^ 0 , 

it follows 

(II — C(w), u — v) g liminf (iij — C(Uj), Uj — v) 

for all v e V. 
Establishing these points, from [6, Chapter II, Theorem 8.5] we obtain the existence 
of a solution of (6A0). 

Proof of (i). Observing the defining relations (6.5) and (6.8), one obtains, for 
arbitrary x e WQ,2(Q), u,veV, 

(C2(x, ii), v) = [x, ujvdxdy = [w, x~] v dxdy = 

= [(UxyXy - UyyXx) Vx + (uxyXx ~ UxxXy) vj d.X dy 

= l(uxyvy - uyyvx) xx + (uxyvx - uxxvy) xy] dx dy 
Jfi 

= I>> v] X dx dy = -(Ci(ii, v), x)2,2:o • 
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Fort; = w, % = Ci(w, w) it follows 

(6.11) (C(w), w) = -(Ci(w, w), C,(u, w))2j2;0 = 0 Vw e V. 

By the Hahn-Banach Theorem, there exists v0 e Vand a0 e JR1 such that 

<£(w) = (v0, u) + a0 Vw 6 V. 

We obtain 

(w - C(w), w) + $(u) = \\u\\2 - Ivoll ||w|| + a0 Vw e V. 

Proof of (ii). Let w, v e Vbe arbitrary. The definition of Ct implies Ci(w, v) = 
= Ci(v, w). In virtue of this symmetry the estimates (6.4) and (6.7) yield 

(6.12) ||C(«) - C(f)|| S const (|«||2 + ||«,|2) ||H - v\\1A . 

Let {uj} c Vbe a sequence such that Uj -~> w weakly in Vand 

lim sup (uj — C(uj), Uj — w) ^ 0 . 

Let v e V. There exists a subsequence of indices {jk} such that 

lim (-C(wJfc), ujk - v) = lim inf (-C(w,), u} - v) . 

By virtue of Sobolev-Kondrashov's Theorem we may select a subsequence from 
{ujk} still denoted by {wifc} such that ujk -> w strongly in W1A(Q) as k -> oo. The 
estimate (6.12) implies C(wJk) -> C(w) strongly in Fas k -+ ao. Hence 

(w — C(w), w — v) = (w, w — v) + lim inf ( — C(uj), Uj — t;) 

< lim inf.(iiy, Uj — t?) + lim inf (--C(tiy), w7- - v) ^ 

g lim inf (wy - C(wy), Uj - i?) .*) 

Proof of the Corollary. Let uu w2 be two solutions of (6.10). Substitution 
v = ux and i? = w2 in (6.10) yields 

0 ^ (wt - w2 - (C(ux) - C(w2)), wx - w2) 

fc [1 - const (|K||2 + N | 2 ) ] | K - - w 2 | | 2 . 

Thus, ux = w2 for sufficiently small ||wi||, ||w2||-

*) Note that the assumption lim sup (uj — C(uj), Uj — u) ̂  0 is not used. 
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7. SOME LIMIT CASES 

We turn back to the variational formulation of boundary value problem 
(2.1)-(2.3), (2.6). Recall that the pair {/, u] e WQ'2(Q) X Vx is called a variational 
solution to the boundary problem under consideration if {/, u] satisfies (3.40) 
(u = w), and if 

(3.6) A(u, v - u) + k I |v„| ds - fc | |u„| ds = 

= [/ w] (v - u)dx dy + <<?> » - w> Vv e V! . 

The existence of a pair {/, w} with the properties required follows from our general 
theorem presented in Section 5 by specifying the data therein. 

We are going to consider the limit cases fc -> 0 and fc-»+oo(0<fc< + oo). 
To emphasize the dependence of the solution of (3.40), (3.6) on fc, we write/ = fk9 

u = uk. 

A-priori estimate (I). Set v = 0 in (3.6). Since 

- [/*> %] "* dx dy = (/*, A)2,2;0 = 0 

(cf. (6.11)), one concludes from (3.6) 

A(uk9 uk) = A(uk, uk) + fc K „ | ds - [fk, uk] uk dx dy = (q, uk> . 

By (3.1), 

(7.1) IKII2.2 ^ const VO < fc < +co . 

The Trace Theorem yields 

(7.2) f \uktn\ ds S (mes (F))1/2 ||wfc J M r ) g const VO < fc < + co . 

Let fc -» 0. There exists a subsequence {uv} of {uk} such that uv -> w weakly in Vt 

as v -> 0. By passing to a subsequence if necessary, we have uv -* u strongly in 
WiA(Q). Defining/e TV0

2'2(fl)by 

( / ^)2,2.o - - f [w> « ] > d * d y V^ G JV0
2'2(G) , 

J« 

the estimate (6.4) implies /v - » / strongly in W£>2(Q). 
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We replace v in (3.6) by uv + cp, where (p e Vx is arbitrary. Taking into account 
(7.2) the passage to limit v -> 0 in (3.6) yields 

A(u, q>) = [/, u] cpdxdy + <q, tp> 
Jo 

We have obtained 

Proposition 7.1. Let {fk,uk} be a variational solution to (2.1) —(2.3), (2.6) 
(0 < fc < + oo). 

There exists a subsequence {{/v, wv}} of {{fk, uk}} such that: uv -> u weakly in Vt, 
fv -* f strongly in WQ,2(Q) as v -> 0, where the pair {/, u} satisfies the identities 

(/, ^)2,2;o = - f [u, w] <A dx Ay ViA e W2'2(Q) , 
J Q 

A(u, (p) = [/, u] cpdxdy + <q, <p} V(peVt. 
Jfi 

Hence {/, u} is a variational solution to (2A), (2.2) under the boundary conditions 

/ = /, = 0, u = M(u) = 0 on F 

(cf.W). 
A-priori estimate (II). Again putting v = 0, (3.6) yields 

k K,„| ds ^ A(uk, uk) + k\ |wM | ds - [fk, uk~\ uk dx dy ^ <q, uk} . 
J Q J r J D 

Using the estimate (7.1) we obtain 

: k,и|
d* = _ const V 0 < k < + oo 

Jr 
This implies 

(7.3) |wjt,n|ds->0 as fc->+oo. 

We may select a subsequence {un} from {uk} such that un ~> u weakly in Vx as 
rj -> +oo. Arguing as above, one obtains fn-f> f strongly in WQ,2(Q) as rj -> +oo, 
where fe WQ,2(Q) is defined by 

(/> ^)2,2;0 = - f [«, «] ^ dx dy Vtff G Wo2'2(^) -
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Further, the compactness of the trace mapping Wlt2(Q) -> L2(F) (cf. [8]) provides 

\unt„\ ds -> \un\ ds as n -> + oo . 

From (7.3) one concludes JY|W«| ds = 0, i.e., un = 0 a.e. on F, and consequently 
u e W^Q) (see [8]). 

For arbitrary tp e W0'
2(Q) we set v = un + (p. By passing to limit r\ -> +oo, 

(3.6) turns into 

A(u, <p) = [/, u] (p dx dy + <#, <p> . 
J.Q 

Integrating by parts the terms in A(cp, ij/) which involve the constant \i, we get 
A(q>, i//) = (cp, i/t)2,2;0 V<p, *A 6 JF0

2'2(a). 
The above consideration yields 

Proposition 7.2. Let {fk,uk} be a variational solution to (2A)-(2.3), (2.6) 
(0 < k < + oo). 

There exists a subsequence {{fn, un}} of {{fk, uk}} such that: un -> u weakly in Vu 

fn-*f strongly in W0'
2Q) as n -> +oo, where we W0'

2(Q) and the pair {fu} 
satisfies the system of identities 

( / , <A)2.2,o = - f [u, u] i/r dx d j ; ViA 6 W2'2(£>) , 
J f i 

(w? <P)2,2,o = [f "] <?> dx d>! + <a, (p> V(p 6 Pf0'
2(0) . 

JQ 

Remark. It is easy to see that for (3.40), (3.7) the limit cases k -> 0 and k -> + oo, 
respectively, can be studied in the same way as above. 

Furthermore, modifying slightly the above argument, for (3.40), (3.9) the limit 
cases g -> 0 and g -> + oo, respectively, can be discussed. We do not carry out the 
corresponding proofs; let us only note that the passage to limit a -^0 leads to a varia­
tional solution to (2.1), (2.2) under the boundary conditions 

f=fn = 0 onF, 

u = un = 0 on F0 , 

M(u) + etun = mx , T(u) = 0 on Tt , 

while for the limit g -> + oo one obtains a variational solution to (2.1), (2.2) subjected 
to the boundary conditions 

f=fn = 0 onF, 

u = un = 0 on F0 , u = 0 , M(u) + exun = mx on Fx 

(F = F0 u Fx denotes the decomposition according to Section 2.2). 
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Let us consider the system (2.1), (2.2) under the boundary conditions (2.3), and 
(2.10) replaced by 

(2.10.) 

w = w„ = 0 on T0 , 

T(w) = 0 if | w | š í , 

7 » = -aw(í- ~ \ if \w\>e, 

. M(w) + elwn = mí 

o n r 1 } 

where e = const > 0. Here F = F0 u Fi is the decomposition according to Section 
2.2, and the data el9 mt satisfy the conditions therein. 

The pair {fu} GWQ'2(Q) x V2 is called a variational solution to (2A)—(2.3), 
(2A0e) if {/, u] satisfies (3.40) (u = w), and if 

(3A0e) A(u> v - u) + ei«M(i?„ - un)ds + (T je(t;) ds - <x Ie(w) ds = 
Jn Jn Jn 

= I [/> w] (i> - u) dx dy + j m j ^ - un) ds -f <«, t? - u> Vt? e V2 . 
J ft J n 

Here we have put 

!

r ( i r + e) if r < - e, 
- i e 2 if - e = r = e, 

Kir ~ e) if r > s • 
A variational solution to (2.1)-(2.3), (2.10e) will be denoted by / = /c, u = we to 
point out its dependence on e. 

We study the case e -* 0. Set v = 0 in (3.10e). Using 

~ A ( 0 ) = 1B 2 , j e ( r ) = - i e 2 VreR 1 , 

from (3.10e) one derives 

,4(we, we) = A(ue9 ut) + eiU^ds - a f je(0) ds + 
J n Jft 

+ o" JeK) ds - [/e, u j we dx dy = f m ^ ds + <#, we> -
J A J ft J ft 

Hence 

(7.4) 
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Thus, there exists a subsequence of {ue} still denoted by {wfi} such that 

ue -> u weakly in V2 , fB - > / strongly in W£'2(fl) 

as s -> 0, w h e r e / e PV0
2,2(O) is characterized by 

(/, ^2.2,0 = - f 0 ,u] # dx dy Vi/r € W^'\Q) . 
Jn 

Let v e PV2j2(0) be arbitrary but fixed. Then 

(7.5) je(ue + v) ds -> i (w + v)2 ds as s -> 0 . 
J Ti J E! 

Indeed, we have 

J je(ue + v)ds - i J (u + v)2ds = I [je(ue + v) - i(ue + v)2]ds + 
J Ei J Ei J Ti 

+ i I ("2 - " 2 ) d s + I (w* ~u)vds. 
J Ei J Ti 

From the compactness of the imbedding W1,2(Q) <= L2(F) it is easy to see that (by 
passing to a subsequence if necessary) the second and the third integral on the right 
hand side tend to zero as s -> 0. 

Considering the first integral on the right hand side, set 

^i,e = {(*> y) e A : u£ + v < -s} , 

A2,B = {(x, y) e Fi : -s ^ w£ + v = e} , 

^3,c = {(*> y) e F! : ue + v > s} . 

One gets by virtue of (7.4) 

[h(ue + v) ~ i(we + «>)2] d s = e K + A d s = e c 

where c = const > 0, s = 1, 3. Further, 

I f [Je(ue + V) - i(ue + V)2] ds § 
\jA2tE 

^\s2[ ds + \ [ (ue + v)2 ds = s2 mes (r). 

Our assertion is now readily seen. 
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Let cp e V2 be arbitrary, X > 0 arbitrary. Replacing v in (3A0£) by w£ + Xcp and 
letting s ~> 0, one obtains by the aid of (7.5) 

XA(u, cp) + X \ eLun(pn ds + Xcr \ ucp ds + ^,2<r (p2 ds ^ 
J Ti J n JEj 

= A [/, w] <p dx dy + X\ m1cpn ds + X(q, cp} . 
J n JTi 

We divide by X and let /I -+ 0. Then the last inequality turns into 

A(w, cp) + e^nCPn ds + <T w<p ds ^ 
J Ei J Ei 

^ [/> w] <p dx dy + m ^ . , ds + <q, cp} 
Jn JE! 

which in fact is an equality since cp e V2 is arbitrary. 
We summarize the last results in 

Proposition 7.3. Let {/£, w£) be a variational solution to (2.1) —(2.3) (2.10£) (e > 0). 

There exists a subsequence {{/T, wT}} o/{{/£, w£}} swch thaf: wT -> w weakly in V2. 
ft -> / strongly in W2,2(Q) as % -> 0, where fhe pair {/, w} satisfies the system 
of identities 

( / , ^)2,2;0 = ~ f [u , W] lA d * dy VlA G W0
2'2(O) , 

A(w, <p) + o" ucp ds + e1uncpn ds = 
J n Jn 

= [/, ujcpdxdy + mxcpn ds + <q, <p> V<? G V2 . 
J.Q JE! 

The boundary conditions upon w which lead to the latter identity are 

w = un — 0 on F0 , 

M(w) + ejW.. = m1 , T(w) + <TW = 0 on F! 

(cf. [4]). These conditions correspond to a plate whose edge is clamped along F0, 
while along Fx it is elastically clamped and loaded by the moment distribution mt 

on the one hand, and elastically supported and free of shearing forces on the other 
one. 

The author is greatly indebted to Dr. I. Hlavacek for a number of helpful discus­
sions when preparing the material of Section 2. 
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S o u h r n 

O JISTÝCH JEDNOSTRANNÝCH OKRAJOVÝCH ÚLOHÁCH 
PRO VON KÁRMÁNOVY ROVNICE. ČÁST I: 

KOERCIVNÍ PŘÍPAD 

JOACHIM NAUMANN 

Článek pojednává o existenci rovnovážných stavů tenké pružné desky pod příčným 
zatížením za předpokladu, že na okraji desky jsou předepsány částečně podmínky 
pro pootočení a průhyby, částečně klasické okrajové podmínky ve tvaru rovností. 
Zkoumané okrajové problémy jsou převedeny na jistou variační nerovnost ve vhod­
ném funkčním prostoru tak, že lze použít abstraktní existenční věty. 

Authoťs address: Dr. Joachim Naumann, Sektion Mathematik, Humboldt-Universitát zu Berlin, 
Unter den Linden 6, 108 Berlin, GDR. 
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