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1. INTRODUCTION

This paper deals with the existence of equilibrium states of a thin elastic plate
under penpendicular loading, where the edge of the plate is subjected partly to
boundary equations of the type studied by Hlavagek and Naumann [4], and partly
to certain unilateral constraints.

The present Part I is devoted to systems of boundary conditions which imply that
any motion of the plate is eliminated, if the elastic energy of the plate bending and
of the elastic clampings vanishes (this means that the bilinear form representing
the energy of the plate bending and of the elastic clampings is coercive on the associat-
ed energy space).

In [2], Duvaut and Lions have studied the existence and uniqueness of equilibrium
states of an elastic plate (linear case) under various types of unilateral conditions.
These boundary value problems are restated in terms of variational inequalities
to which abstract results directly apply. Unilateral boundary value problems for the
nonlinear system governing the equilibrium of a thin elastic plate (formulation
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in displacements) are studied by the same authors in [3]. Here only the coercive case
(coerciveness with respect to the associated energy space) is considered. A method
of Galerkin’s type is used to solve the problems under consideration in their unified
form. ‘

In Section 2 we give the formulation of unilateral boundary value problems which
we shall investigate. The following Section 3 is devoted to the preliminaries needed
as well as to the variational formulation of our unilateral problems. We then show
in Section 4 in which sense the equations are satisfied by a variational solution.
Further, assuming appropriate regularity properties of the variational solution
and using a result from [5], we are able to give an interpretation of some unilateral
boundary conditions.

Section 5 presents the unification of all variational formulations introduced as well
as our main existence result. The uniqueness of the variational solution can be proved
in the case of sufficiently small deflections. The proof of the existence theorem which
will be given in the following section, uses directly an abstract result. The last Section
7 concerns the passage to limit with respect to certain parameters. It turns out that
one obtains in this way a variational solution of some types of boundary value
problems discussed in [4].

2. SETTING OF THE UNILATERAL BOUNDARY VALUE PROBLEMS

Let Q be a bounded domain in the x,y-plane (constituting the middle. plane of the
plate) with boundary I'.!) Then the equilibrium states of a thin elastic plate subjected
to a perpendicular loading are characterized by solutions of the following system
of partial differential equations (the so-called von Kdrmdn equations): :

(2.1) Af = —[ww] in Q,
(22 o Aw= [fiw]+g inQ. A

> RS v o
Here the function f S(x, y) denotes.the stress functlon while-w = w(x, y) means

the deflection of the plate. A? is the biharmonic operator with respect to.the variables
x and y, and ‘ : !

[u,v] = u,v,, + u,w, — 2u,v,,. o

The perpendicular load is represented by the function q.
We impose upon f the boundary conditions

(2.3) . f=f,=0 on r.

The subscript n denotes the derivative along the outer unit normal n = (n,, n,)
with respet to Q. ‘

1y Precise conditions upon ‘I"'will be stated at the beginning of the next section.
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The boundary conditions (2.3) 1mply, in a certain sense, that the edge of the plate
is free of lateral tractions.')

Remark 2.1. We have restricted ourselves to the homogeneous boundary condi-
tions (2.3) only for the sake of simplicity. The inhomogeneous boundary conditions
f = 4o, f» = g, can be treated by applying the method of reformulation presented
in [4] (if corners are permitted on I', certain compatibility conditions upon g, and
g, are necessary; cf. [4] for details).

Before we turn to the formulation of the unilateral boundary conditions, we intro-
duce the boundary operators

M(u) =pdu+ (1 - y) (upxn? + 2ugnen, + uynl),
T(u) = — — Au +(1 - y) [unn n, — u,(n2 —n2) —u,nn],

where u = const (0 < p < })is the Poisson ratio of the plate material, s = (—n,, n,).
. M(w) may be interpreted as the bending moment of the plate along the edge I,
while T(w) may be understood as the shearing force.

2.1. Conditions with respect to a rotation on I". We consider the boundary condi-
tion w = QO on I, i.e., the plate is supported along I'. If under this condition the elastic
energy of the plate bending vanishes then it follows w = 0 (cf. [4]).

Further, let us introduce the boundary condition

T(w) + egw =m, on I
where
ep,moe L'(I'?), e =0 ae.on TI.

This condition corresponds to a plate whose edge is elastically supported and loaded
by the transversal force m, (cf. [4]). The inequality e, = 0 is based on the fact that
the deformation energy of the elastic supports cannot be negative, i.e., [ eow? ds = 0.

In the present Part I, the above boundary condition will be considered under the
following additional assumption:

1y In order to make this point clearer, let us consider an example of boundary conditions upon
f which lead to (2.3), namely :

fyynx —fxyny =0, fn y fxynx =0 onrl,
i.e., the lateral tractions vanish along I". An easy calculation yields
f=A+Bx+Cy, f,=Bn,+Cn, onTl

where A, B, C are arbitrary real constants (cf. [4]). Putting A = B = C = 0 one gets (2.3).
2) We refer to the book [8] for the definition of the spaces LP(I").
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* f eopids = 0 implies p, =0 for all polynomials of the degree
r

<linxandy.

The latter condition guarantees that if both the energy of the plate bending and that
of the elastic supports vanish, then w = 0 (cf. [4]).

1° Unilateral rotation on I'. Let us suppose that if the plate rotates from its
support, then there are no bending moments, i.e., w, > 0 implies M(w) = 0 on I
On the other hand, if the bending moments are positive, then the plate is forced
onto the support, i.e., M(w) > 0 implies w, = 0.

Thus, we have the conditions

(24)
(cf. [2]. [3]), on
(2.5)

{w =0 on I,
w,=0, M(w)=20, w,M(w)=0 on TI,!)

{w,, 20, Mw)20, w,Mw)=0 on I,
T(w) + egw = my, on I.

In the presence of corners on I', (25) has to be completed by the conditions
(+) H(w) = H(w*) = 0
at the corners, where

H(w) = (1 — p) [weenon, — wo(nk — nl) — wyn.n,]

(see [4] for details)?) The condition (+) may be interpreted as the vanishing of the
jump of the twisting moment at the corner under consideration.

Remark 2.2. We introduce the subsets
Ir'={(x,y)elr:w,=0}, Ir"={(x,y)erl:w,>0}.
Thus I'=T"uTI”, and one gets from (2.4)
w=w,=0 on I" (clamped part),

w= M(w)=0 on I" (simplysupported part).

1) Note that the direction of the corresponding inequalities converse to that in [2], [3] is due
to our different notation.

2y It is readily seen that our existence theorem (see Section 5) still holds, with the same proof,
for inhomogeneous conditions (4-).
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However, the subsets I'" and I'” are unknown in (2.4).

2° Rotation with friction. Let k be a positive constant (connected with the plate
material). We assume that if the absolute value of the bending moment M(w) is less
than k, then there is no rotation of the points of I, i.e., ]M(w)l < k implies w, = 0
on I'. But if |M(w)| attains the value k, rotation of the plate on I' may take place
provided there is a small perturbation.

Describing the situation considereed we obtain the following conditions upon w:

r w=0 on I,
’ [M(w)| <k on TI:
(2.6) ' { [M(w)| < k implies w, =0,
M(w) =k implies w, <0,
M(w) = —k implies w, =0,
(cf. [2],[3]), and
1 - [M(w)| £k on I:
[M(w)| < k implies w, =0,
(2.7 { M(w) =k implies w, =<0,
| .M(w) = —k implies w, 20,
T(w) + ew=m, on I,

where in the latter system conditions of the type (+) have to be included if the boun-
dary is permitted to have corners.

It is readily verified that the system of inequalities in (2.6) (and (2.7) may be replaced
equivalently by

(2.6) [M(w)| < k, w,M(w) + klw,| =0 on T.
Remark 2.3. Turning back to (2.6), we define .
‘ re = {(x, y)’e r:w,=0},
Ir'® ={(x,y)er:w,>0}, Ir®={(x,y)el:w,<0}.
ThenI’ = T v I® uT®, and : ‘ .
w=w,=0 on I'V,
w=0, Mw)= -k on I'?,
w=0, M(w) = k on F(3”,
i.e., the plate is clamped on I'V), and supported and l;)aded by a moment distribution

on I'® U '™, As above, the decomposition of I' is unknown.

2.2 Conditions with respect to a displécement on a part of I. In this section we
also subject w to boundary conditions such that w = 0 if the energy of the plate
bending vanishes (cf. [4]). -
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To this end, let I be decomposed into two mutually disjoint (measurable) subsets
I'yand I'y,ie., I’ = I'y u I';. We introduce the conditions

w=w,=0 on Iy, M(Ww)+ew,=my on I,
where

e,mel(I')(1<p<wo), 20 aeon I,.

These conditions mean that the plate is clamped along I'y, while along I'; it is elastic-
ally clamped and loaded by a moment distribution m,. The inequality e, = 0 is
based on the fact that the deformation energy of the elastic clampings is non-negative.
Moreover, we suppose that the following condition is fulfilled:

(**) mes (Iy) > 0.

If (**) holds then the vanishing of the energy of the plate bending implies w = 0.
Without further reference, in the presence of corners on I'y, the boundary condition
(+) is assumed to hold at the corners.

We complete the boundary condition on I’y by various unilateral conditions upon
w and T(w).

1° Unilateral displacement on I';. Let the plate partially lie on a rigid support.
In more detail, if the plate can move from the support then there are no shearing
forces, i.e., w > O implies T(w) = 0. On the other hand, if the shearing forces become
positive then the plate lies on the support, i.e., T(w) > implies w = 0.

Thus, one obtains the system of conditions

w=w,=0 on TI,, ,
(2.8) w0, T(w)zo0, wT(w):O}

M(w) + eyw, = m, onl.

2° Displacement with friction on I'y, Let a positive constant g be given (depending
on the friction properties of the plate material). We then assume that no motion of the
plate (along I';) takes place if the absolute value of T(w)is less than g, i.e., |T(w)| < g
implies w = 0. But if |T(w)| attains g, a motion of the plate may occur provided
there is a small perturbation on I';. : -

Describing such a boundary configuration, we state the conditions * .

w,=0 on I,
g on I;:

(
; ' I |T(w)| g implies w =0,
(29) | {l g implies w <0,
L

=
)
ATA I

i.]
P
E

I

T(w) = —g implies w20,
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The system of inequalities in (2.9) is equivalent to
(2.9) IT(W)I <g, wT(w)+g|w| =0 on T,.

3° Plate elastically constrained on I';. We suppose that the plate can move freely
on I'; if the absolute value of the deflection on I'; remains bounded by a constant,
say 1, ie., T(w) = 0 (no shearing forces) if [w| < 1. Beyond the bound 1 there are
elastic constraints, i.e., T(w) = —ow(1 — 1/|w]) if [w| > 1 (here o is a given positive
constant).

We get the system of conditions

w=w,=0 on TI,,
Tw)=0 if |w/=1,
2.10
(210) T(w)= —ow(l — 1|w|]) if |w|>1, } onTy.
M(w) + e,w, = m; .

The second group of the conditions in (2.10) corresponds to (13) (second line) and
(19) in [3] (e, = my = 0).

Remark 2.4. The conditions w = w, = 0 on I'y represent only one case of boun-
dary conditions to which the edge of the plate can be subjected along I'y. Other
conditions are

w=0, M(w) +gw,=r;, on I,

(T is not a segment of a straight line),
or
M(w) + kyw, =t;, T(w)+ kow=1, on I,,

j kop?ds = 0 implies p, =0 for all polymomials of the degree
To

<linxandy

(cf. [4]). Each of these conditions implies w = 0 if the energy of the plate bending
vanishes.

As will be seen in the following section, the variational formulation of (2.1)—(2.3),
(2.8) (or 2.9), (2.10)) can be extended in a straightforward manner to the above
boundary conditions.

Remark 2.5. If we are given a decomposition of I' into disjoint parts, various
mixed unilateral boundary conditions of the types stated above can be investigated.
Moreover, one can combine unilateral boundary conditions with inhomogeneous
boundary conditions (equations) in [4]. For example, if the decomposition I' =
= I'y n I', n I'; is given one may introduce the conditions
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w=w,=0 on Iy,

w20, Tw)20, wT(w)=0

M(w) + kyw, = t, on Iz,
M(w) + e;w, =my, T(w)+ ew =m, on I'y.

The variational formulation of all these more general boundary value problems
is included in our unified setting introduced in Section 5.

3. NOTATION. VARIATIONAL FORMULATION

Let the boundary I of the domain Q be Lipschitzian (i.e., I is permitted to have
corners).)
We denote by I?(Q)(1 < p < ) the space of all real functions which are inte-
grable with power p on Q (with respect to the Lebesgue measure dx dy).
Using the notation
olel
o0x™ 0y™

(-3

s o] = + s,

we define for any integer m = 1
WA (Q) = {ue I/(Q) : D'ue I?(Q) for [af < m}

(the derivatives are taken in the sense of distributions). W™?(®) is a Banach space
with respect to the norm

1/
], = {j [uPdxdy + ¥ | |D®ul?dx dy} ’
2 lal=m J o
’lfhe' scalar product

() V)2 = f uvdxdy + Y J D*uD* dx dy
2 2

laj=m

turns W™2(Q) a Hilbert space.
Let 2(Q) denote the space of all infinitely continuously differentiable functions
in Q which together with all their derivatives can be continuously extended onto .

Putting
Vi={ue2(Q):u
¥V, ={uec2(@):u

0 on I},
u, = 0 on Iy},

where I' = I'y n I'y is the decomposition according to Section 2.2, we introduce
the spaces

1) Using the terminology of [8] we write: 2 € R(®):1, This is sufficient for the Sobolev Im-
bedding Theorem and the Trace Theorem to hold.
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V; = closure of ¥, in W>}(Q),
V, = closure of ¥, in W»*(Q).

Observing the Sobolev Imbedding Theorem and the Trace Theorem, one obtains

u =0 pointwisesonI', YueV,,

u = 0 pointwise on Iy, YueV,.
u, = 0 a.e. on Iy (in the trace sense)

For treating the boundary value problems stated in Section 2, it is convenient
to introduce another product on ¥;, W*%(Q) and V,. To this end, we define for
u, ve W»?(Q) the bilinear form

Au, v) = J‘ﬂ[ux,‘v,ch + 21 = p) Uy, + oy, + (U, + uy,.)] dxdy

(recall that u denotes the Poisson ratio of the plate material).
From [4] we obtain:

There exist constants ¢; and c; (i = 1, 2, 3) such that

(3.1) Cl”“”iz < A(u,u) < c}[]u”%z YueV,;
(32)  ofulis < A ) + f e ds < c3ul2, Vue W)

. r . . : B
(3.3) eslul3. £ A(u.u) £ cé,"u”% , YueV,.

From (3.1) or (3.3) we conclude respectively‘that V; and V, are Hilbert spaces
with respect to the scalar product A(u, v). By (3.2), the scalar product A(u, v) +
+ [ eouv ds turns W**(Q) a Hilbert space. Henceforth, V; as well as W*%(Q), V,
will be understood to be furnished with the scalar product mentioned.

We denote by 2(Q) the space of all infinitely continuously differentiable functions
having their support in Q. Let Wg"*(Q) be the closure of 2(Q) in W™ Z(Q) We i (Q)
is a Hilbert space with respect to the scalar product

(4, V)m2so = 2. | DuDwdxdy
lal]=mJQ
(cf. [8]). The norms || [,> and ||*[lma0 = (*,*)3/2.,0 are equivalent on W 2(<).
In particular, the equivalence of ||*||,,,.0 to{A(+,")}!/* on the space Wj'*(Q) is
readily seen. , . , :
Thus, we have C o C
W Q) = Ve W2XQ), (i=1,2)

where each injection is continuous. ., ce . e
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For our discussion we also need the spaces W*(T) (s > 0, real). However, we
omitt their detailed definition, and refer to [8] (cf. also [7]).

Let C(2) be the space of all continuous functions in € which have a continuous
extension onto Q. Then by [ C(2)]’ we denote the dual space of C(2) and by {m, ¢}
the dual pairing between m € [ C(2)]’ and ¢ e C(Q). Unless otherwise stated, through-
out the paper we assume g € [C(2)]' (let us refer to [4] for some particular cases
of q).

We introduce finally the sets

Ky ={ue W»¥Q): d,, 2 0ae. onl},
K, ={ue W»*(Q):u=0o0nT,}

(I = I'p v I'y denotes the decomposition according to Section 2.2). It is readily
verified that K; (i = 1, 2) is a closed convex cone in W?*(2).

Definition 3.1.

1° The pair {f, w} is called a variational solution to (2.1)—(2.3), (2.4) if f e W**(Q)
weVy nK,, and if

(3-40) (f ¥)2,20 = — J'H[w, wlydxdy YyeW3(Q);

(34) Aw,v—w) ;J‘[f,w](v—w)dxdy+ (g, v —w) YveV,nK,.
2 .

2° The pair {f,w} is called a variational solution to (2.1)—(2.3), (2.5) if fe
e W3'¥(Q), we Ky, {f, w} satisfies (3.4,), and if

(3.5 A(w,v — w) + J.reow(v - w)ds >

;J.[f,W](v—w)dxdy+.[mo(v— w)ds + {q,v — w) YvekK,.

3° The pair {f, w} € WZ**(Q) x V, is called a variational solution to(2.1)—(2.3),
(2.6) if {f, w} satisfies (3.4,), and if

(3.6) A(w, v — w) + kJ- |va| ds — kf |wa| ds =
r r

éj[ﬁw](v— w)dxdy '+ (g, v — w) VveV;.
o

4° The pair {f, w} e WZ**(Q) x W**(Q) is called a variational solution to(2.1) -
(2.3), (2.7) if {f, w} satisfies (3.4,), and if
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(7)Ao —w) + L_eow(v —w)ds + k frlunlds - kfr|w,1ds >

gf[f,w](v — w)dxdy +Imo(v— w)ds + {g,v — w) Yve W>¥(Q). |
(7]

r

In order to motivate the definitions introduced let {f, w} be a sufficiently regular
solution to (2.1)—(2.3), (2.4), and let 4 € L'(2). Moreover, suppose that the boundary
T is infinitely differentiable. /

Multiplying (2.1) by the test function y and integrating by parts the expression
A*fy, the integral identity (3.4,) is easily obtained.

Next, w = 0 on I' implies w € V; (see Section 4), and since w, = 0 on T, it holds
we V; 0 K;. We now multiply (2.2) by v — w and integrate by parts 4>w(v — w).
We get 0

Aw, v — w) =

= anZW(” — w)dxdy + frT(w) (0 — w)ds + er(w) o ) = 
+ J;T(W) (v —w)ds + er(w) (6 — w,) ds

for arbitrary v e W**(Q) (cf. [8]). By (2.4), o
_ frT(w) (v — w)ds + er(w) (v, — wy) ds = J;M(w) v,ds 20 YveV;nK,,

and (3.4) is obtained immediately.
If {f, w} is a sufficiently regular solution to (2.1)—(2.3), (2.5), we have

LT(W) (0 — w)ds + LM(W) (0, — w,) ds 2 L(_eow +mo) (v — w)ds VoeK,

which implies (3.5).
In order to obtain the inequality in (3 6) we remark that the system of inequalities
in (2.6) (and (2.7)) is equivalent to

] — K] 2 [~ MO] ( — )
a.e. on I, for any h e IX(I)

(cf. also (2.6")). Therefore, if w satisfies (2:6) one obtains
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j rT(w)(v — w)ds + LM(W) (g — W) ds = —k Llu,,] ds + k j r|w"‘| ds VYoeV,,

and if w satisfies (2.7),

[ 70— was & [ Moo, — myas 2

= J. (—eow + mg) (v — w)ds — kj |v,] ds + kf [w,| ds  Voe W(Q).
r r r

Thus, (3.6) and (3.7) are satisfied by a sufficiently regular solution to (2.1)—(2.3)
with (2.6) and (2.7)), respectively.

Definition 3.2.

1° The pair {f. w} is called a variational solution to(2.1)—(2.3), (2.8) if f € W3"*(Q)
weV, n Ky, {f, w} satisfies (3.4,), and if

(3-8) . Aw, v — w) + '[ €Wy (v, — w,) ds >

Iry
EJ'[f,W](U‘" W)dXdY+J my(v, — w,)ds + {g,v — w) YveV,nK,.
Q Iy

2° The pair {f, w} € W**(Q) x V, is called a variational solution to (2.1)—(2.3),
(2.9) if {f, w} satisfies (3.4,), and if

(39)  Aw,v—w) + J’ e wy(v, — w,) ds + gf o] ds — gf |w] ds =
! r, Iy

Iy

zJU,WJ(va)dxdy+f my(v, — W) ds + (g, v — w) VveV,.
]

Iy

3° The pair {f, w} € W3"*(Q) x V; is called a variational solution to (2.1)—(2.3),
(2.10) if {f, w} satisfies (3.4,), and if

(3.10) A(w,v— w) + J

r,

ei(o, = ) ds + o j ) ds - o j Ji(w) ds 2
r,

r,
gJ.[fs""](” — w)dxdy +J my(v, — wa)ds + g, v — w) VveV,.
2 I
In (3.10) we have used the notation
r3r+1) if r< -1,

() =14 -4 if ~1<rs1,
rdr—1) if r>1.
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The conditions upon T(w) in (2.10) are then equivalent to

aji(v) — aji(w) 2 [~ T(W)] (v — w)
a.e. on I'y, for all v e IX(T,).
Indeed, we have
olw+1) if w< -1,
—T(w) =40 if —1swgtl,
olw—1) if w>1.
Observing that
r+1 if r<-1,
ji(r) =40 if —1<r<1,
r—1 if r>1,

and .
Ji(s) = ji(r) 2 ji(r) (s = r) Vs,reR',

one obtains the desired assertion.
The Definitions 3.2, 1°, 2°, 3° originate from (2.1)—(2.3) and (2.8), (2.9), (2.10),
respectively, by similar considerations as above.

4. INTERPRETATION OF THE EQUATIONS AND
THE UNILATERAL BOUNDARY CONDITIONS

In the present section, we discuss the problem in which sense the equations (2.1),
(2.2) and the boundary conditions in (2.4)—(2.7) are satisfied by the corresponding
variational solution. ,

Let {f, w} be a variational solution to (2.1)—(2.4) (cf. Definition 3.1, 1°). Since
[u, v] € LYQ) for any u, ve W>*(Q), the integral identity in (3.4,) immediately
yields ‘

4*f = — [w, w] in the sense of 2'(Q) .!)

Let ¢ €2(Q) be arbitrary. It holds v = w + ¢ e ¥; n K, and the inequality
in (3.4) implies , :

A(w, 9) =J [f,w] e dxdy + <q, ).

Q
In virtue of g € [C(Q)]’ it follows
1y 2'(@) denotes the space of distributions in 2. — Note that the equation Azf = — [w, w]

in fact holds in the subspace W ~22() (= the dual of W3:2(2)) of 2'(£2). This follows from the
imbedding L1(Q) = W~ 22(Q).
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(4.1) A*w = [f,w] + q in the sense of 2'(R).

In order to proceed to the discussion of the (unstable) boundary conditions, we
make the following assumptions:

(a) I is infinitely differentiable;")
(b) [fiw]e IX(Q), qeIXQ).

Remark 4.1. Assuming (a), the application of the elliptic regularity theory to the
Dirichlet problem 4% = — [w,w] in @, f=f,=0 on I' (where we W>*(Q))
yields fe W3'(Q), 1 < r < 2 (cf. [5]). This implies D*f € I**~"(Q) for |o| = 2,
and thus [f, w] e ().

Regularity results for the variational solution to (2.1), (2.2) in the case of the
boundary conditions w = M(w) =0 and M(w) = T(w) =0 on I, respectively,
have been obtained in [5]. In particular, [ f, w] € [*(Q) is obviously satisfied.

However, analogous regularity results for variational solutions of our unilateral
problems are unknown (even in the linear case A%w = q). Therefore, to give an
interpretation of the unilateral boundary conditions stated in Section 2.1, we are
forced to assume the regularity property [f, w] € I*(Q).

Let the assumptions (a), (b) be satisfied throughout the present section.

We have

weW>3(Q), A*welX(Q).
From [7, Chapter 2] one concludes that
(4.2 M(w)e W=Y2XT), T(w)e W™3*XT)?)

(4.3) A(w,v) = J. A*wodx dy + (T(w), vD3,, + <M(W), 0,04, Yve WH3(Q).
2

Remark 4.2. In order to obtain (4.2), (4.3) the proper ellipticity of 4% and the
normality of the system M, T are necessary. This is verified in detail in [5].
Observing (4.1) (which in fact is true in I*(Q)) one derives from (4.3)

<T(W), V)3 + <M(W)a U, = Wiz =
= A(w,v — w) —j [fiw](v — w)dxdy — J. g(v — w)dxdy
e 2

1y We refer to [7] for the definition. — This assumption enables us to apply results from [7].

2). One defines W ~S%(I')= dual of WS2(I") (s > 0, real). From [7, Chapt. 1] we conclude
that W2(I') is continuously and densely imbedded in L2(I). Identifying L*(I") with its dual we
obtain WS2(I") ¢ L*(I") © W ~S%(I") (where the latter imbedding is also continuous and dense).
If {u,v), denotes the dual pairing between ue W=2(I') and v € WS2(I') it holds {h, vDs=
§rho ds for all k € LA(I"), v € WS(I').
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for all ve W»%(Q). By (3.4),

M(W)’ U, — qp1220 YoeV,NK;.
Thus,

w = 0 pointwise on I,
(4.9) w, =2 0 a.e. on I (in the trace sense),
(M(W), vn)l/l 20 WYweV,nKk,, <M(W)a Wn>1/2 =0.

We may consider the conditions upon M(w) in (4.4) as a generalization of the
corresponding conditions in (2.4) (second line). Indeed, let M(w) e I*(I'). We then
have

fM(w)v,,dng YoeV,nK,, IM(w)wnds=0.
r r

By a standard argument one concludes that M(w) = O a.e. on I', and that w,M(w) = 0
ae.onrl.

Let now {f, w} be a variational solution to (2.1)—(2.3), (2.5) (cf. Definition 3.1,
2°). As above, (4.1) follows immediately. By virtue the assumptions (a) and (b)
we have (4.2) and (4.3). Taking into account (3.5) we obtain

{T(w), v — W) + <M(w), Uy — Wo1)2 + j eew(v — w)ds —

r

_ ,[rmO(v — w)ds = A(w, v — W) + J eow(v — w) ds —

r

_ .L[f’ W] (v — w) dx dy — Lmo(u — w)ds —f a(v — w)dxdy 20 Voek,.

(2]
In order to proceed further we suppose
(4.5) " eo, mo € LX) 1)
By means of (4.5) the above inequality can be written in the form
(4.6)  (T(W) + eqw — mg, v — W3, + <M(W), v, — W)y 20 VveKk,.

Let he W¥%I) be arbitrarily given. By the surjectivity of the trace mapping
(cf. [7]), there exists a # € W**(Q) such that 5 = h, 5, =0 on I'. Set v =7 + w.
Then v e K,, and (4.6) changes into

CT(W) + eqw — mg, h)3,, =0 "VYhe W¥>X(I').

1y Since w € C(@) it holds egw € LZ(I"). Therefore, e,w and m, may be identified with an
element in W ~3/2:2(I"), :

110



We obtain

w, 2 0 a.. on I (in the trace sense),
(M(W), vn>l/2 2 0 Vv € Kl Py <M(W), W’I>1/2 = 0 ’

T(w) + eqw — mg = 0 in the sense of W=¥2X(I).

These conditions represent a generalization of (2.5): if M(w)e L*(I') then it holds
M(w) = 0, w, M(w) = Oa.e.on T, and if T(w)e I*(I') one gets T(w) + eow — mg = 0
ae.onT. ‘

Let {f, w} be a variational solution to (2.1)—(2.3), (2.6) (cf. Definition 3.1, 3°).
We discuss the intepretation of the system of inequalities in (2.6).

By (3.6),

<M(W)’ Up — W12 + kJ.

r

|va] ds — k"‘ |wa| ds =
r
= A(w,v — w) + k'[ |va ds — kJ‘ |w,| ds —
r r

—I[f,w](v— w)dxdy—-fq(v— w)ydxdy 20 VYveV;.
2

Q

Hence
4.7) kjl |va| ds — kJ. |wa| ds = <—M(W), v, — w,>,;, VoeV;.
r r

An easy calculation yields that (4.7) is equivalent to

[<M(W), 01)2] < kf v ds VveV,,
r

M(W), Woy2 + kf |wa|ds = 0.
r

The latter may be regarded as a generalization of (2.6'). To make this clearer,
let M(w) € I*(I). Then (4.7) turns into

k J;IU,,I ds — kj.rlw,,| ds = L[-M(w)] (vy — wy)ds VoeV,.

To proceed we note that

Vy = WHH(Q) n W3i(Q).h)

l) Ladyzenskaja O. A. and Uraltseva, N. N.: Linear and quasilinear equations of elliptic type
(Russian), 2" ed., Moscow 1973; p. 218.
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Since the v, fill the whole space W1/2.%(T') if v runs over V;, and since W*/?*(I') is
dense in L*(T) (see [7]) we get

kJ.r]hl ds — kL|w,,|dsg L[——M(W)] (h — w)ds Vhe IXI).

This is equivalent to
kI = klw,| = [—M(w)] (h = w,)
a.e. on I, for all h e IXT)

cf. [1, Appendix 1]); we have an equivalent formulation (a.e. on I') of (2.6').
p q
Finally, if {f, w} is a variational solution to (2.1)—(2.3), (2.7) we derive from (3.7)

<T(W)9 v = W>3/2 + <M(W), Uy — Wppis2 +

+Ieow(v—w)ds —J.mo(v—w)ds+kf|v"|ds—kJ.]wn|ds=

r r r r

= A(w,v — w) +Je0w(v — w)ds + kf |va| ds — kf |w,| ds —
r r r

- [ masar = [ mio=was= [ do-wasarzo

2
Voe W? 2(Q) .
Assuming again (4.5) one finds

{T(W + egw — mg, v — W)y, +
+ (M(W), v, — W>y ), + kJ‘ |va ds — kf |wo|ds 20 Vve W»(Q).
r r
Thus "
kj |va] ds — kJ [wa| ds = <=M(W), v,-— w,>y,, Voe W23(Q),
r r

T(w) + eow — my = 0 _in the sense of W™32%(T).

As is readily seen by repeating our above arguments, one may consider this system
a generalization of (2.7).

5. UNIFICATION. STATEMENT OF THE MAIN RESULT
We now introduce a unified variational formulation of the unilateral boundary
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value problems for the system (2.1), (2.2) which are considered in Section 2. This
unified setting includes also the variational formulation of the homogeneous cases
of the boundary value problems studied in [4].

Suppose we are given the following data:

a bilinear boundary form
(5.1) a(u, v) = j eouv ds + I eyu,v, ds  (u, ve W>*(Q))
r r

whereeo e L'(I'), e;e’(I'(1 < p < );

(5.2 a Hilbert space V whose scalar product is defined by (u, v) = A(u, v) +
+ a(u, v) such that Wg'*(Q) = V.= W>*Q) where each injection is
continuous;*)

(5.3) a convex, lower semi-continuous functional @: ¥ — (—- 00, +00], ® £ +o
(Vaccording to (5.2));

(5.4) moe INI'), me’(I'(1<p< o);
55  qelc@].

We introduce

Definition 5.1. The pair {f,u} e W3'*(Q) x V is called a variational solution
to the system (2.1), (2.2) under the boundary conditions (2.3) and associated with
the functional @ if

(5.6) o V)220 = — J' [u, u] ¥ dxdy e w2 (Q),
(5.7 A(u,bv —u) + a(u, v — u) + B(v) — d(u) = J.Q[f, u]'(u‘ —u) dx dy +

+ I mo(v — u)ds + J my(v, — u,)ds + {q,v —u) VveV.
r r

Note that (5.7) includes the following facts: The equation (2.2) is satisfied in the
sense of distributions in Q. Further, u € Vimplies stable boundary conditions upon u.
The functional @ involves stable and unstable unilateral boundary conditions upon u,
T(u) or u,, M(u), respectively, completed by conditions atising from the boundary
form a. Inhomogeneities with respect to the unstable boundary conditions are

by Ay, v) denotes the bilinear form (cf. Section 3)

A(u, v) ij [t v + 200 — 1) UgyUyy T UV, + u(uxxvyy + uyyvxx)] dx dy.
Q .
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represented by m, and m,. Finally, if unstable boundary conditions are required
on a part of I which possesses corners, the Condition (+) (Section 2.1) is assumed
to hold at the corners.

Passing to the discussion of Deﬁmtlon 5.1, we remark first of all that it includes
the basic case of Definition 3.1 in [4]. Indeed, (5.2) is fulfilled by the construction
in [4]. Putting & = 0, (5.7) turns into the equation

myv ds + J. myv, ds + {q, v)
r

A(u, v) + a(u, v) = L_[f, u]vdxdy + J‘

r

which is true for all v € V. Specifying e, e; and m,, m, in an appropriate manner
and integrating by parts the expression [ f, u] v, the equivalence of the latter identity to
(3.5) in [4] is easily seen. Obviously, (5.6) is equivalent to (3.6) in [4].

We are going to show that Definitions 3.1, 1°—4° are included in Definition 5.1 as
special cases. Clearly, it suffices to restrict the attention to (5.7).

In order to obtain (3.4) from (5.7), we specify the data (5.1)—(5.4) as follows:

(i) eo =€ =0, .
V =Vl’
& =Ig,

m0=m1=0.

Here we have used the notation

Iee) = {

where u € W>*(Q). I, is convex and lower semi-continuous on W?**(Q). Clearly,
(5.2) is ensured by (3.1).
By the choice (i), (5.7) changes into

A(u, v — u) + Ig,(v) — Ig,(u) 2

gJ‘[f,u](v-u)dxdy+ {g,v—u) VveV;.
0

0 if uEKl,
+o00 if uék,,

This is equivalent to (3.4).
Next, we choose the data
(ii) eo € L}(I), e, satisfies the Condition (*) (Section 2.1); ¢; = 0,
V=w>¥Q)),
¢ =I,,
moe LI'), m;=0.
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Here (5.2) is guaranteed by (3.2). It is readily verified that in the present case, (5.7)
is equivalent to (3.5).
Set

d(u) = kf |us| ds for ue W>%(Q)
r

(k = const > 0; cf. Section 2.1). @ is convex and lower semi-continuous on W?3(Q).

Preserving the remaining data in (i) and (ii), (5.7) is identical respectively with (3.6)
and (3.7).

Proceeding in a similar way, it is easy to check that (3.8), (3.8) and (3.10) follow
from (5.7) by specifying the data (5.1)—(5.4).

We state the main result of our paper.

Theorem. Let the data (5.1)—(5.5) be given. Moreover, suppose that
(5.8) V = closure of ¥" in W**(Q) where 9(Q) <« ¥" = 2(%).

Then the system (2.1), (2.2) under the boundary conditions (2.3) and associated

with the functional ® possesses a variational solution.

Corollary. For sufficiently small |ul|, the variational solution is unique.

6. PROOF OF THE THEOREM

First, we present two estimates which are useful for our further purposes.

Let u, v, w e W**(Q) be arbitrarily given. By Sobolev’s Imbedding Theorem and
Holder’s inequality,

(6.1)

s const [u,2 oo []s.0-

J u,v,w, dx dy
2

Using again Sobolev’s Imbedding Theorem, one obtains for the functions under
consideration

(6.2)

< const [uf,2 o],z [wlea -

‘[ u,0,,w dx dy
2

Let us now consider the integral one the right hand side in (5.6). For arbitrary
ue,veVand y € WS'*(Q), we obtain by integration by parts

(63) j [, o] ¥ dx dy =
Q
= J. [(uev, — ) ¥y + (ueyvx — uew,) ¥, ] dxdy.
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“Due to the assumption (5.8), the estimates of the type (6.1) and (6.2) imply that (6.3)
in fact is valid for any u € ¥, and we conclude

(6.4) LMmemr

for all u, ve V, y € Wg*(Q). Thus, there exists a unique element Cy(u, v) € Wf**(Q)
such that o '

(65) (qmqmmm=-Lmﬂ¢mm;WEW%m.

< (const Jull2,2 [lo]s,4) [¥]2.2:0

The integral identity (5.6) is now equivalent to
(6.6) f=Cu,u) in WS*Q).
Repeating our above argument, we get the estimate

(6.7) j [x u]vdxdy

which is valid for arbitrary x € Wg**(®), u, v € V. One obtains the existence of a unique
C,(%, u) € V such that

(6.8) (Cax, u), v) = f [x,‘u] vdxdy Wve V

< (const [xl2,2 u]s.5) [o]")

Finally, by Sobolev’s Imbedding Theorem and the Trace Theorem, the estimate

< const [|v||

J. mgyv ds + f myv, ds + {q, v
r CJdr ‘

holds for all v € V. This implies the existence of a unique w, € ¥ such that

r

(6.9) (wo, v) = J‘ mev ds + J‘ymlu,, ds + ‘(q, 2 VoeV.
r

We introduce the notation

C(u) = C,(Cy(u, u), u) for ueV.

Then: The determination of a variational solution to (2.1), (2.2) under the boun-
dary conditions (2.3) and associated with the functional ® is equivalent to the

problem: :
Find u € V such that
(6.10) (u — C(u) = wo, v — u) + (o) — Bu) 20 YveV.

1) Note that in deriving this estimate we have used the density of 2(2) in W 3:%(2) and the
continuity of the imbedding ¥ < W22(@) (cf. (5.2); ||| = (., )2
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Indeed, let {f, u} be a variational solution to (2.1), (2.2) under the boundary
conditions (2.3) and associated with the functional . With regard to (6.8) and (6 9),
the inequality in (5.7) can be written in the form

(u — Cy(f, u) — wo, v — u) + D(v) — P(u) 20 YveV.

Inserting f from (6.6) one gets (6.10).
Conversely, if u € V satisfies (6.10) we set f = C,(u, u). Then

f=Cy(u,u),
(v — Co(f, u) — wo, v — u) + D(v) — P(u) 20 VveV.

But this means that {f, u} is a variational solution to (2.1), (2.2) under the boundary
conditions (2.3) and associated with the functional &.

To prove the existence of a u € V which satisfies (6.10), we show:
(i) It holds
(u — C(u), u) + D(u)

Ju]

(ii) if {u;} = V isany sequence such that u; — u weakly in Vand

-+ as |ul| > ;

lim sup (u; — C(u;),u; — u) <0,
it follows
(u — C(u), u — v) < liminf (u; — C(u;), u; — v)
forallve V.

Establishing these points, from [6, Chapter 11, Theorem 8.5] we obtain the existence
of a solution of (6.10).

Proof of (i). Observing the defining relations (6.5) and (6.8), one obtains, for
arbitrary y € Wg'3(Q), u,veV,

(Cz(X, u), v) - ;[X, u] vdxdy = J.ﬂ[u, x] vdxdy =

~

= [(uxyxy - uyyxﬁr) v, + (uxyxX - uxxxy) vy] dxdy
Jo

= [(“Xy y = Uyl x) Xe t (“xyvx UyxV, y) Xy] dxdy

= [u’ U] X dx dy = _(Cl(us U), X)Z,Z;O .
JQ
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For v = u, y = Cy(u, u) it follows
(6.11) (C(u), u) = —(Cy(u, u), Cy(u, u))3,2,0 S0 YueV.
By the Hahn-Banach Theorem, there exists v, € ¥ and a, € R such that

O(u) = (vo, u) + oy VueV.
We obtain

(4 = C) ) + 0u) = [ul = o] Ju] + 20 VueV.

Proof of (ii). Let u, v € V be arbitrary. The definition of C; implies C,(u, v) =
= C,(v, u). In virtue of this symmetry the estimates (6.4) and (6.7) yield

(6.12) () — )] = const ([u]* + [[o]*) [u - o] 1.
Let {u;} = V be a sequence such that u; — u weakly in ¥ and
lim sup (u; — C(u;), u; —u) £ 0.
Let v € V. There exists a subsequence of indices {j,} such that
lim (—C(uy,), u;, — v) = liminf (— C(u;), u; — v)‘.

By virtue of Sobolev-Kondrashov’s Theorem we may -select a subsequence from
{u;,} still denoted by {u,} such that u; — u strongly in W"*(Q) as k — co. The
estimate (6.12) implies C(u;,) — C(u) strongly in Vas k — co. Hence

(v — C(u), u — v) = (u, u — v) + lim inf (— C(u;), u; — v)
< liminf (u;, u; — v) + liminf (= C(u;), u; — v) <

< liminf (u; — C(uy), u; — v) %)

Proof of the Corollary. Let uy, u, be two solutions of (6.10). Substitution
v=u; and v =u, in (6.10) yields

02 (uy — uy — (Cluy) — C(uy)), uy — uy)
2 [1 — const ([lu[[* + [ua*)] ur — we®-

Thus, u; = u, for sufficiently small [Ju,|, [|u.|-

1) Note that the assumption lim sup (uj — C(uy), u; — u) < 0 is not used.
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7. SOME LIMIT CASES
We turn back to the variational formulation of boundary value problem
(2.1)—(23), (2.6). Recall that the pair {f, u} € W**(Q) x V, is called a variational

solution to the boundary problem under consideration if {f,u} satisfies (3.4,)
(u = w), and if

(3.6) A0 — ) + k J‘nlv,,l ds — k L|u,| ds 2

_Z_'[[f,u](v——u)dxdy+ {g,v—u) YveV,.
Q2

The existence of a pair {f, u} with the properties required follows from our general
theorem presented in Section 5 by specifying the data therein.

We are going to consider the limit cases k - 0 and k —» + 00 (0 < k < + ).
To emphasize the dependence of the solution of (3.4), (3.6) on k, we write f = f,
u=u, '

A-priori estimate (I). Set v = 0 in (3.6). Since

- J‘ [fk’ uk] udxdy = (fk)fk)Z,Z;O =20
a

(cf. (6.11)), one concludes from (3.6) -

A(“k’ “k) = A(“k: uk) + k'[ l“k,nl ds — j [fk’ “k] udxdy < {q,u .
r Q

By (3.1),
(7.1) [u#]|2.2 S const VO <k < +o0.

The Trace Theorem yields
(7.2) J‘ Iu,,_,,l ds é (mCS (F))Uz "uk,n”Lz(r) § const VO< k < +o00.
r

Eet k — 0. There exists a subsequence {u,} of {u,} such that u, - u weakly in V,
as v —» 0. By passing to a subsequence if necessary, we have u, — u strongly in
W14(Q). Defining f € Wg+*(2) by

(f, .p)m;o = — J [u, u] Y dxdy Vx//eWOZ.z(Q)’
Q2

the estimate (6.4) implies £, — f strongly in W5'}(Q).
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We replace v in (3.6) by u, + ¢, where ¢ € V; is arbitrary. Taking into account
(7.2) the passage to limit v — 0 in (3.6) yields

A, 0) = J [f,u] pdxdy + <q, 9> .
a
We have obtained

Proposition 7.1. Let {f,,u,} be a variational solution to (2.1)—(2.3), (2.6)
(0 <k < +00).

There exists a subsequence {{f,, u,}} of {{fi, ux}} such that: u, - u weakly in V,,
£, = f strongly in Wg**(Q) as v — 0, where the pair {f, u} satisfies the identities

(fiW)s 20 = = j [w, ] ¥ dxdy Wi eWE(9),
0

Alu, 9) = J'[f,u](pdxdy+(q,(p> VoeV;.
2

Hence {f, u} is a variational solution to (2.1), (2.2) under the boundary conditions
f=f,=0, u=M@u)=0 onTl
(cf. [4]).

A-priori estimate (II). Again putting v = 0, (3.6) yields
kJ‘QIuk’,,I ds < A(u, w) + kJ;Iuk_,,] ds — J;[f,u w] udxdy < <q, ) .
Using the estimate (7.1) we obtain
kJ. |ty o] ds < cvonst VO<k< +o.
r
This implies
(7.3) . J |ug .l ds >0 as k> +o0.
' r

We may select a subsequence {u,} from {u,} such that u, — u weakly in V; as
n — +oo. Arguing as above, one obtains f, - f strongly in Wg'*(Q) as n — + oo,
where fe W3'*(Q) is defined by

(fiv)2.200 = — J. [, u] Y dxdy VyeWs*Q).

Q
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Further, the compactness of the trace mapping W*:%(Q) - I*(T') (cf. [8]) provides

jlu”,"|ds »J.Iu,,lds as n— +.
r r

From (7.3) one concludes [r[u,|ds =0, ie., u, = 0 a.e. on I, and consequently
u e Wg(Q) (see [8]).

For arbitrary @ e Wg'*(Q) we set v = u, + ¢. By passing to limit 5 — + oo,
(3.6) turns into

A(u, ¢) = J‘ [f,u]l pdxdy + <q, ) .

Integrating by parts the terms in A(, ¥) which involve the constant y, we get

AP, ¥) = (@, ¥)2,20 Vo, Y € WOZ’Z(Q)
The above consideration yields

Proposition 7.2. Let {f, u,} be a variational solution to (2.1)—(2.3), (2.6)
(0 < k < +0).

There exists a subsequence {{f,, u,}} of {{fi, u,}} such that: u, — u weakly in V,,
fo = f strongly in W3?Q) as n - + o0, where ue Wg'*(Q) and the pair {f, u}
satisfies the system of identities

Il

F, ¥)a2i0 —'[[u,u]wdxdy W e WEA(Q).

(u, 9)2,2:0 = f [f,u] pdxdy + (g, 0) YoeW5*Q).
2

Remark. It is easy to see that for (3.45), (3.7) the limit cases k — 0 and k — + oo,
respectively, can be studied in the same way as above.

Furthermore, modifying slightly the above argument, for (3.4¢), (3.9) the limit
cases g — 0 and g — + oo, respectively, can be discussed. We do not carry out the
corresponding proofs; let us only note that the passage to limit g — 0 leads to a varia-
tional solution to (2.1), (2.2) under the boundary conditions

f=f,=0 onrl,
u=u,=0 onTl,,

M(u) + equ, = my, ‘T(u)=0 only,

while for the limit g — + oo one obtains a variational solution to (2.1), (2.2) subjected
to the boundary conditions

f=f,=0 onI",
u=u,=0 only, u=0, M(u)+eu,=m; onl,

(I = I'y U Iy denotes the decomposition according to Section 2.2).
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Let us consider the system (2.1), (2.2) under the boundary conditions (2.3), and
(2.10) replaced by

W=W”=O onro,
T(w) =0 if |w|<e,

(2.10)) (W) = —ow (1 - L) if |w|>e,lonry,

[l

M(w) + e;w, = my

where ¢ = const > 0. Here I' = I'y U I'; is the decomposition according to Section
2.2, and the data e,, m, satisfy the conditions therein.

The pair {f,u} e Wg'*(Q) x V, is called a variational solution to (2.1)—(2.3),
(2.10,) if {f, u} satisfies (3.4,) (u = w), and if

(3.10,) A(u,v —u) + f

ry

ey, (v, — u,)ds + o'J-

I

i) ds — o f ju)ds 2

Iy
g'[[f,u}(v—u)dxdy +J‘ my(v, — u,)ds + {q,v —u) VveV,.
2 Iy
Here we have put
rdr+¢) if r<-—e,

Jjlr) =4 -3 if —e<rse,

rdr—¢) if r>e.

A variational solution to (2.1)—(2.3), (2.10,) will be denoted by f = fo u = u, to
point out its dependence on .

We study the case ¢ - 0. Set v = 0 in (3.10,). Using
—jf0) = 3¢*, j(r) = —1e® VreR!,
from (3.10,) one derives

Ay u) < Auy, u) + f

eul,ds — orf Jj0)ds +
Iy T;

1

+ aI Je(u,) ds —J. Lfe u] u, dx dy gf myu,, ds + {q, u .
Iy 2

Iy

Hence

(74) el
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Thus, there exists a subsequence of {u,} still denoted by {u.} such that
u,—»u weaklyin V,, f,—>f strongly in W3*(Q)

as ¢ — 0, where f € WZ'*(Q) is characterized by
(fi¥)2,200 = — f [u.u]ydxdy VyeWs?*Q).
Q2
Let v e W>*(Q) be arbitrary but fixed. Then

(7.5) J‘j,(ua+v)ds—>-}.[ (u +v)*ds as e~0.
r Iy

1

Indeed, we have

j rlje(u, + v)ds — %J‘n(u +v)’ds = J‘n[je(ue +0) — (u, + v)*]ds +

+%j (u? —uz)dS+J (v, — u)vds.
Iy Iy

From the compactness of the imbedding W'*(Q) = I*(T) it is easy to see that (by
passing to a subsequence if necessary) the second and the third integral on the right
hand side tend to zero as ¢ = 0.

Considering the first integral on the right hand side, set

Al,a= {(xyy)erlzue+v< —8},
Ay ={(x,y)el:—esu, +v=¢},
Aa,e={(x,J’)€F1:ue+u>s}.

One gets by virtue of (7.4)

J.A Lidu. + v) — 3(u, + v)*] ds

< ef |u5 + v|ds < ec
Ag,e
where ¢ = const > 0, s = 1, 3. Further,

§ .

.L [ius + v) — $(u, + v)*] ds

< -}azf ds + %J. (u, + v)*ds < e* mes (I) -
Az,e Az,c

Our assertion is now readily seen.
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Let ¢ € V, be arbitrary, A > 0 arbitrary. Replacing v in (3.10,) by u, + ¢ and
letting ¢ — 0, one obtains by the aid of (7.5)

AA(u, @) + lj

ry

eu,p,ds + AGJ.

r,

upds + JZJ.ZJJ‘ 0%ds >

I,

Zij [f,u] ¢ dxdy + lf mp,ds + A{q, ¢ .
2

ry

We divide by 4 and let A — 0. Then the last inequality turns into

A(u, ¢) +J. eu,p,ds + af upds =
Iy

ry
;J[f,u]tpdxdy+J my@, ds + {q, ¢
2 ry )

which in fact is an equality since ¢ € V, is arbitrary.
We summarize the last results in

Proposition 7.3. Let {f,, u,) be a variational solution to (2.1)—(2.3) (2.10,) (¢ > 0).

There exists a subsequence {{f,, u.}} of {{f., u.}} such that: u, - u weakly in V,.
fo— f strongly in W2*(Q) as © — 0, where the pair {f,u} satisfies the system
of identities

(fi )220 = — f [u u]ydxdy WVyeW*(Q),

Aw ) + o j

up ds +I e u,p,ds =
Iy Iy

=f[f,u]<odxdy+f migeds + <, 0> VoeV,.
2

Iy
The boundary conditions upon u which lead to the latter identity are

u=u,=0 onl,,

M(u) + eyu, =m;, T(u)+ou=0 onl,

(cf. [4]). These conditions correspond to a plate whose edge is clamped along I'o,
while along I'y it is elastically clamped and loaded by the moment distribution m,
on the one hand, and elastically supported and free of shearing forces on the other
one.

The author is greatly indebted to Dr. I. Hlavaéek for a number of helpful discus-
sions when preparing the material of Section 2. .

124



References

{11 Brézis, H.: Problémes unilatéraux. J. Math. pures appl., 5/ (1972), 1—168.

[2] Duvaut, G. et Lions, J. L.: Les inéquations en mécanique et physique. Dunod, Paris 1972.

[3] Duvaut, G. et Lions, J. L.: Problémes unilatéraux dans la théorie de la flexion forte des
plaques, (I). Les cas stationnaires. J. de Mécanique. 13 (1974), 51 —74.

[4] Hlavdcéek, I. and Naumann, J.: Inhomogeneous boundary value problems for the von Karman
equations, I. (to appear in Apl. Mat.).

[5] John, O. and Naumann, J.: On regularity of variational solutions of the von Karman equa-
tions. (to appear).

[6] Lions, J. L.: Quelques méthodes de résolution des problémes aux limites non linéaires.
Dunod, Gauthier-Villars, Paris 1969.

[7] Lions, J. L. et Magenes, E.: Problémes aux limites non homogénes et applications, vol. I.
Dunod, Paris 1968.
[8] Neéas, J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967.

Souhrn

O JISTYCH JEDNOSTRANNYCH OKRAJOVYCH ULOHACH
PRO VON KARMANOVY ROVNICE. CAST I:
KOERCIVNI PRiPAD

JOACHIM NAUMANN

Clanek pojednava o existenci rovnovaznych stavi tenké pruzné desky pod pti¢nym
zatizenim za predpokladu, Ze na okraji desky jsou pfedepsany Caste¢né podminky
pro pootoceni a priuhyby, caste¢né klasické okrajové podminky ve tvaru rovnosti.
Zkoumané okrajové problémy jsou prevedeny na jistou variacni nerovnost ve vhod-
ném funkénim prostoru tak, Ze 1ze pouzit abstraktni existenéni véty.

Author’s address: Dr. Joachim Naumann, Sektion Mathematik, Humboldt-Universitat zu Berlin,
Unter den Linden 6, 108 Berlin, GDR.
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