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INTRODUCTION

Genotypes can be characterized either by the probability laws of their inheriting
from parents to offspring, or by the way in which they influence the phenotype.

The probability laws of heredity can be formally described with the help of the
notion of population. For further details of basic mathematical concepts of popula-
tion genetics see [17], from where, with a small change, the notion of population
has been taken.

Formal description of the nature of the genotype’s influence on the phenotype has
not yet been achieved in a greater detail. The most elaborate conception we know
about is [2]. This paper introduces the notion of phenotype system, i.e., a function
from a set of genotypes into a set of phenotypes, and the notion of phenogram,
i.e., a class of permutationally equivalent phenotype systems.

We have tried to define the terms phenotype system and phenogram with regard
to the fact that there is a structure of a population on the set of the genotypes. From
this point of view it is useful to investigate the characteristics of the group of iso-
morphisms of this population. Our paper aims at proving the proposition appearing
in [2], namely that the isomorphisms of the mendelian population correspond
in a one—one manner to the permutations of the set of loci and the sets of the alleles
of every locus. This can help in finding the cyclic index of the group of the isomor-
phisms of this population.

Standard set-theoretical notation is used throughout the paper. Index of symbols
can be found in Appendix.

1. Definition. A population is a couple Z = (Z, P) such that Z is a finite non-
empty set and P is a function from Z* into the closed interval of real numbers
0, 1), such that for every 1, x € Z holds Y, P(t, %, 1) = 1. The elements of Z are
called the genotypes of Z. ez
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2. Definition. Let Z; = {(Z, P,>, i = 1,2 be two populations. A one —one function
¢ from Z, onto Z,, such that

tu i€ Z = P(tx 2) = Py(o(t). p(x). (7))

is called an isomorphism between Z, and Z,. The set of all isomorphisms between
Z, and Z, is denoted by IS(Z,, Z,).

Let us note, that for every population Z, Is(Z, Z) with the operation composition
of functions is a group.

3. Definition. A phenotype system isatriple H = {Z, f, F) such that Z = {Z, P)
is a population, f is a function from Z into a finite non-empty set F. The elements
of F are called phenotypes.

4. Definition. We say that two phenotype systems H, = <Z, f,,F>, i =1,2
represent the same phenogram, if there exist ¢ from Is(Z,, Z,) and a one—one
mapping t from F, onto F, such that the following diagram is commutative:

z,—-12,

ﬁj yz

F, s K,

The relation *‘to represent the same phenogram’ is an equivalence relation on the
class of all phenotype systems. The equivalence classes defined by this relation will
be called the phenograms. We say, that a phenotype sysiem H represents a pheno-
gram H if He H.

The following problem is considered in [2]. Given a population Z and a set F
of phenotypes, which are the phenograms of the form (Z, f, F)»? This is the reason
why we deal with the characteristics of the group Is(Z, Z).

The number of these phenograms can be obtained with the help of the Bruijn’s
formula

i

0 . . .
N:PD@Q,::LZ“”wom&mQZxﬂ,J:Llnﬁwmnzo
C i
for all k

(see [2] and [3]), expressing the total number N of patterns of mappings of a set D
into a set R, provided that D, R are groups if permutations of D, R, with cyclic
indices PD and PR respectively. We use the specialcase D = Z, R = F, D = Is(Z, Z)
and R is the group of all permutations of F.
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5. Example. Diallelic mendelian population.

Here Z = {aa, ab, bb} and P is defined by the table where the value in the row ¢

and column x represents Y. P(t, %, 4) A. For diallelic mendelian population and the set
AeZ

F = {0, 1,2} of phenotypes, there are just four phenograms. These phenograms
can be represented (for instance) by the following four functions:

aa ab bb

0 0 0 1. the trivial case

0 0 1 2. dominance-recesivity
0 1 0 3.

0 | 2 4. intermediare heredity

‘ l

%

- \\\‘ aa 7 ab bb
aa aa taa + }ab ab
ab Laa + Lab taa + Lab + 1bb Lab - Lbb
bb ab Lab + 1bb J‘ bb

|

6. Example. Let 4 be a finite non-empty set. The population {[A]%, ¢), where g
is defined for any ¢, x, A € [4]?, and 2 = {a, b} by the formula
Card(2) . [Card(v ~ {a}) Card(x 0 {b}) + Card(: n {b}) Card(x n {a})]
2Card(x) Card(2)

a(e, %, 2) =

is called mendelian population of one locus with the set A of alleles.

Let us note that for Card(A4) = 2 this population is isomorphic to the diallelic
mendelian population. If ¢ is a permutation of A4, then g(c, %, 1) = q(0”¢, ¢"%, 0"2)
holds for every ¢, %, 2 from [A]% It is easy to see that the properties of mendelian
population of one locus with the set 4 of alleles depend on the cardinality of 4 only.

7. Definition. Any function from a positive integer to the set of all positive integers
is called dimension. We say, that {Z, P) is a mendelian population of dimension d,
if the following condition is satisfied:

Z = {u; Fuc(t), D(t) = D(d), i € D(s) > «(i) € [d(i)]*}
and P is defined for any «, %, L€ Z by the formula

P2 2) =TT a0, (), A1),
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where q is defined in the same way as above. The elements of D(d) are called the
loci and the elements of d(i) are called the alleles of the i-th locus. The genotypes
of this population are functions over the set of the loci associating every locus
with a couple of its alleles.

A genotype t from Z is said to be homozygote or heterozygote in the i-th locus,
if Card(((i)) = 1 or Card(«(i)) = 2, respectively. We shall denote Hom() = {i € D(d);
Card((i)) = 1} and Het(¢) = {i e D(d); Card((i)) = 2}.

The proposed representation of genotypes is based on the idea of numbering the
loci and the alleles of every locus, and the expressing P by g. It may seem a little
obscure. The more usual and more graphic way is to represent the genotypes by the
words of the form a,;b, *... * a;b,, , where 1, 2, ..., k are the loci, a;, b; are alleles
of the i-th locus, the words a b, * ... * a;b,, aiby * ... * a;b; such that {a;, b;} =
= {a}, b}} being identified.

8. Lemma. Let d be a dimension and n a permutation of D(d). Mendelian popula-
tion of dimension d is isomorphic to mendelian population of dimension d o .

9. Lemma. Let d; and d, be two dimensions, d, = d, and W(d, \ d,) = 1.
Then m.p. of dimension d, is isomorphic to m.p. of dimension d,.

It is obvious that in studying the isomorphisms we can confine ourselves to dimen-
sions d such that d(i) = 2 for any i € D(d).

10. Proposition. Let Z be mendelian population of dimension d such that d(i) _Z_
for any i€ D(d). Then there exists a one-one correspondence between Is(Z, Z) an
the set S of all ordered pairs {n, @) satisfying the following conditions
n is a permutation of D(d), d o n = d,
¢ is a function such that the value o(i) is a permutation of d(i) for each i € D(g) =
= D(d)
Before proving Proposition 10 we state and prove the following lemma.

11. Lemma. Let Z = {Z, P) be mendelian population of a dimension d, 1, x € Z,
@ els(Z, Z). Then

1. Hom(¢) n Het(¢) = 0 and Hom(1) U Het(1) = D(d).

2. Card(Hom(4)) = Card(Hom(o(1))).

3. For every A€ Z it holds P(1, %, ) < (%) Card(Het(¢) U Het(x)).

4. If 1[Het(t) < » then there exists a genotype A€ Z such that P(, x, 1) = (%)
Card(Het(x)).

5. If t/Hom(1) =  then o(¢)[Hom(p(1)) < ¢(x) and Het(p(x)) = Het(¢(c)).

6. If Het(1) = Het(x) then Het(¢(1)) = Het(p(x)).

7. If Hom(t) = Hom(x) then Hom(¢(1)) = Hom(¢p(x)).

8. If tJHom(1) = x[Hom(x) then o(¢)[Hom(p(r)) = ¢(3)/Hom(¢p(x)).
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Proof of Lemma 11.

1. follows immediately from the definition.
2. is a consequence of 1. and the equality

(%) Card(Het(v)) = P(1, t, t) = P(p(1), @(¢), @(t)) = () Card(Het(o(1))).

follows from the definition of P.

4 Let us define A by the formula A(i) = «(i) L x(i) for each i € D(d).

5. If (/Hom(t) < x then for every A such that P(«, », 2) > Oit holds Card(Het(1)) <
< Card(Het(1)). If the condition

@()/Hom(o(r)) S @(3) is not satisfied, than there exists i € Z such that Het(¢(1)) <
S Het(y) and P(u(t), p(x), ;1) > 0. Using 2. for 2 = ¢~ '(u) we obtain P(t, %, 1) > 0
and Card(Het(2)) = Card(Het(1t)). Hence o(t)[Hom(¢(1)) < @(x) and consequently
Het(p(x)) = Het(q(1)).

6. a) We first prove 6. for ¢, x such that z/Hc (1) € . 4. asserts that there exists 1
with the property P(t, x, 1) = (}) Card(Het(x)). By 3. it is P(¢, %, 2) = P(¢(1), ¢(x),
@(2)) < (4) Card(Het(p(1)) UHet(p(x))). Hence Card(Het(p(1)) u Het((p(x)) <
< Card(Het(x)) = Card(Het(¢p(x))), that is, Het(¢(1)) < Het(¢(x)).

b) Now we prove 6. for every ¢, x € Z. Let us denote 4 = ¢/Het(1) U x/Hom(t).
By a) Het(p(1)) < Het(p(2)) and by 5. Het(p(4)) < Het(¢(x)). 6. is proved.

7. and 8. are consequences of 5. and 6.

Proof of Proposition 10. We shall prove that there exist a one-one function g
from S into Is(Z, Z) and a function h from Is(Z, Z) into S such that g o h is the
identity on Is(Z, Z).

Let us denote H; = {te Z; Hom(¢) = {i}} and H; , = {te H}; (i) = {a}} for any
i€ D(d), aed(i).

Let us define the function g by the equation g(m, ¢) (¢)(i) = o(n™'(i))" «m™ (i)
for (m, 0y €S, teZ, ie D(d). It follows from the properties of the function g that
g(n, 0)els(Z, Z). 1t holds ve H,, if and only if g(m, 0)(¢) € Hyy iy Hence
if (n, 0> # (x', ¢') then there exist i € D(d) and a € d(i) such that {xn(i), ¢(i) (a))> *
+ <'(i), '(i)(a)>. IFee H, ,then g(m, 0) (¢) € Hegiy oy and (7' @) (1) € Ho iy (it
Hence g is one-one.

Let us denote hy(@)(j) = UHom(p(x)) for ¢ elIs(Z, Z), je D(d), xe H; and
hao(9) (j) (a) = UW(p(x) Hom(p(x))) for x e H;,. It follows from 11.7 and 11.8
that h,(p) and hy(p)(j) are defined correctly, independently of the choice of x.
hy(¢) is a permutation of D(d) . hy(¢)(j) is a function from d(j) onto d(h,(¢) (j)).
hence d(j) = d(h,(¢)(j)), that is d < h,(p) = d. Tt holds /eH,,, if and only if
@(t) € Hy, (i) ooy 1t can be proved that (h,(¢)) ™" = h,(¢~")and (h,(e) (i)~
= hy(o™") (hi(e) (7).

Let us define the function h by the equation h(¢p) = (h ((p) 112((p)> It is sufficient

to prove g(h(p)) = @, that is (hy(¢) ((hi(0))™" ()" dhi(0™") () = (1) (j) for
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every teZ and je D(d). From above, it is sufficient to prove (h,(¢~ 1) (j))™'".
(hi(e™ ") () = o(0) (). Let @(¢) (j) = {c, d}. Then there exist ye H; ;and d e H
such that P(y, 8, (1)) = 0, since Pl '(y). ¢ '(8), ¢)>0 and ¢ '(y)e
€ Hy om0y hato- e AN @7 N(0) € iy -1y o= i Henee hy (@™ 1) () =

= {hae ) (1) () ha@™ ") () (d)] , thatiis, {e. d} = (ha(¢™") (1) (hal@™ 1) ().
Proposition 10 is proved.

APPENDIX

We use the following notions and notation of the set theory. Let x be a set and f
a function. Then
Ux denotes the union of x.
Card(x) denotes the number of elements of x.
[x]*  denotes the set {y € x; 1 < Card(y) < 2.
Fuc(f) means that f is a function.
D(f)  denoted the domain of f.

flx denoted the restriction of f to x.
W(f)  denoted the range of f.
fx denoted the range of the restriction of f to x, that is, the set W(f/x).

We identify, as usual, the positive integer k with the set {0, I, ..., k — 1}, the zero 0
with the empty set.
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Souhrn
ISOMORFISMY MENDELOVSKYCH POPULACI

LUKAS PELLAR

V ¢lanku jsou navrZzeny nebo zobecnény nékteré pojmy matematické populaéni
genetiky slouZici jednak k popisu zptisobu, jakym genotyp ovliviiuje fenotyp, jednak
k popisu pravdépodobnostnich zakont dédi¢nosti. Hlavni vysledek ¢lanku je v di-
kazu tvrzeni o vzajemné jednoznaném vztahu mezi isomorfismy mendelovské
populace a permutacemi mnoziny lokusti a mnozin alel kazdého lokusu.

Author’s address: Dr. Lukds Pellar, Fakulta détské¢ho lékarstvi UK, 150 06, Praha 5, Motol,
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