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SVAZEK 19 (1974) A P L! K A C E M ATE M A T I K Y ČÍSLO 6 

ISOMORPHISMS OF MENDELIAN POPULATIONS 

L U K A S PELLAR 

(Received November 12, 1973) 

INTRODUCTION 

Genotypes can be characterized either by the probability laws of their inheriting 
from parents to offspring, or by the way in which they influence the phenotype. 

The probability laws of heredity can be formally described with the help of the 
notion of population. For further details of basic mathematical concepts of popula­
tion genetics see [17], from where, with a small change, the notion of population 
has been taken. 

Formal description of the nature of the genotype's influence on the phenotype has 
not yet been achieved in a greater detail. The most elaborate conception we know 
about is [2]. This paper introduces the notion of phenotype system, i.e., a function 
from a set of genotypes into a set of phenotypes, and the notion of phenogram, 
i.e., a class of permutationally equivalent phenotype systems. 

We have tried to define the terms phenotype system and phenogram with regard 
to the fact that there is a structure of a population on the set of the genotypes. From 
this point of view it is useful to investigate the characteristics of the group of iso­
morphisms of this population. Our paper aims at proving the proposition appearing 
in [2], namely that the isomorphisms of the mendelian population correspond 
in a one —one manner to the permutations of the set of loci and the sets of the alleles 
of every locus. This can help in finding the cyclic index of the group of the isomor­
phisms of this population. 

Standard set-theoretical notation is used throughout the paper. Index of symbols 
can be found in Appendix. 

1. Definition. A population is a couple Z — <Z, P) such that Z is a finite non­
empty set and P is a function from Z 3 into the closed interval of real numbers 
<0, 1>, such that for every i, x e Z holds £ P(t, x, X) = 1. The elements of Z are 

called the genotypes of Z. XeZ 
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2. Definition. Let Zt- = <Z;, P.), / = 1, 2 be tvvO populations. A one —one function 
cp from Zx onto Z2, such that 

i, x J e Z - 4 Pt(«, x, A) = P2(<p(t)- <HX)' ^W) 

is called an isomorphism between Zx and Z2 . Thc set of all isomorphisms between 
Z, and Z2 /s denoted by Is{Z{, Z2). 

Let US note, that for every population Z, Is(Z, Z) with the operation composition 
of functions is a group. 

3. Definition. A phenotype system is a triple H = <Z, / , F> such that Z = <Z, P> 
is a population, f is a function from Z into a finite non-empty set F. The elements 
of F are called phenotypes. 

4. Definition. We say that two phenotype systems Ht = <Z;-, fh F{->, / = 1,2 
represent the same phenogram, if there exist cp from Is{Zx, Z2) and a one —one 
mapping x from Fx onto F2 such that the following diagram is commutative: 

Z, >Z1 

fx 

F1 

Thc relation "to represent the same phenogram" is an equivalence relation on the 
class of all phenotype systems. The equivalence classes defined by this relation will 
be called the phenograms. We say, that a phenotype system H represents a pheno­
gram H if H e H. 

The following problem is considered in [2]. Given a population Z and a set F 
of phenotypes, which are the phenograms of the form <Z, / , F>? This is the reason 
why we deal with the characteristics of the group Is{Z, Z). 

The number of these phenograms can be obtained with the help of the Bruijn's 
formula 

N=PD(~9 / = l,2,...,\D\)pR[exp{jj:xji), j = 1 , 2 , . . . , | / ? | ] / x , = 0 
VOX- / t=i 

for all k 

(see [2] and [3]), expressing the total number N of patterns of mappings of a set D 
into a set R, provided that D, R are groups if permutations of D, R, with cyclic 
indices PD and PR respectively. We use the special case D = Z, R = F, D = Is{Z, Z) 
and R is the group of all permutations of F. 
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5. E x a m p l e . Diallelic mendelian population. 

Here Z = {aa, ab, bb} and P is defined by the table where the value in the row t 

and column x represents ]T P(t, x, X) X. For diallelic mendelian population and the set 
XeZ 

F = {0, 1,2} of phenotypes, there are just four phenograms. These phenograms 

can be represented (for instance) by the following four functions: 

ia ab bb 

0 0 0 V the trivial case 

0 0 1 2. d ominance-recesi vity 

0 1 0 3. 

0 1 2 4. intermediare heredity 

aa ab ЪЪ 

aa aa ^aa + ^ab aЪ 

ab ^ a a + Jтab \aa + ЏЪ + ^bb Џb + Џb 

bb ab Џb + Џb bb 

6. E x a m p l e . Let A be a finite non-empty set. The population <[A] 2 , q), where q 

is defined for any t,x,Xe [-4]2, and X = {a, b} by the formula 

, v Card(X) . \Card(t n {«}) Card(x n {b}) + Card(t n {b}) Card(% n {a})] 

2Card(x) Card(X) 

is called mendelian population of one locus with the set A of alleles. 

Let us note that for Card(A) = 2 this population is isomorphic to the diallelic 

mendelian population. If Q is a permutation of A, then q(t, x, X) = q(Q,ft, Q"X, Q"X) 

holds for every i, x, X from [At]2. It is easy to see that the properties of mendelian 

population of one locus with the set A of alleles depend on the cardinality of A only. 

7. Definition. Any function from a positive integer to the set of all positive integers 

is called dimension. We say, that <Z, P} is a mendelian population of dimension d, 

if the following condition is satisfied: 

Z = {t; Fuc(t), D(t) = D(d), i e D(t) -> t(i) e [d(i)f} 

and P is defined for any t,x,XeZ by the formula 

P(t, x,X)= [ ] q(<0> <0> K1)) > 

ieD 

388 



where q is defined in the same way as above. The elements of D(d) are called the 
loci and the elements of d(i) are called the alleles of the i-th locus. The genotypes 
of this population are functions over the set of the loci associating every locus 
with a couple of its alleles. 

A genotype t from Z is said to be homozygote or heterozygote in the i-th locus, 
if Card(t(i)) = 1 or Card(t(i)) = 2, respectively. We shall denote Hom(t) = {i e D(d); 
Card(t(i)) = 1} and Het(t) = {i e D(d); Card(t(i)) = 2}. 

The proposed representation of genotypes is based on the idea of numbering the 
loci and the alleles of every locus, and the expressing P by q. It may seem a little 
obscure. The more usual and more graphic way is to represent the genotypes by the 
words of the form a1b1 * ... * akbk, , where 1,2, ..., k are the loci, ai9 bt are alleles 
of the i-th locus, the words a1b1 * . . . * akbk, a\b\ * ... * a'kb'k such that {at, bj = 
= {O-, b-} being identified. 

8. Lemma. Let d be a dimension and n a permutation of D(d). Mendelian popula­
tion of dimension d is isomorphic to mendelian population of dimension don. 

9. Lemma. Let dx and d2 be two dimensions, dx £ d2 and W(d2 \ d^) = 1. 
Then m.p. of dimension dx is isomorphic to m.p. of dimension d2. 

It is obvious that in studying the isomorphisms we can confine ourselves to dimen­
sions d such that d(i) = 2 for any i e D(d). 

10. Proposition. Let Z be mendelian population of dimension d such that d(i) = 2 

for any i e D(d). Then there exists a one-one correspondence between Is(Z, Z) and 

the set S of all ordered pairs <7i, O> satisfying the following conditions 

n is a permutation of D(d), d ° % = d, 

Q is a function such that the value O(i) is a permutation of d(i)for each i e D(O) = 
" = D(d) 
Before proving Proposition 10 we state and prove the following lemma. 

11. Lemma. Let Z = <Z, P> be mendelian population of a dimension d, t, x e Z, 
cp e Is(Z, Z). Then 

1. Hom(t) n Het(t) = 0 and Hom(t) u Het(t) = D(d). 
2. Card(Hom(t)) = Card(Hom(cp(t))). 
3. FOr every XeZ it holds P(t, x, X) = (£) Card(Het(t) u Het(x)). 
4. If tJHet(t) c: x then there exists a genotype XeZ such that P(t, x, X) = (^) 

Card(Het(x)). 
5. If tlHom(t) £ x then cp(t)lHom(cp(t)) £ cp(x) and Het(cp(x)) £ Het(cp(t)). 
6. If Het(t) c Het(x) then Het(cp(t)) <= Het((p(x)). 
7. If Hom(t) = Hom(x) then Hom(cp(t)) = Hom((p(x)). 
8. If tJHom(t) = xlHom(x) then cp(t)JHom(cp(t)) = (p(x)\Hom(cp(x)). 
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Proof of Lemma 11. 

1. follows immediately from the definition. 
2. is a consequence of 1. and the equality 

(i) Card(Het(t)) = P(t, t, t) = P(cp(t), cp(t), cp(t)) = Q) Card(Het((p(i))). 

3. follows from the definition of P. 
4. Let us define X by the formula X(i) = t(i) u x(i) for each i E D(d). 
5. mjHom(t) g x then for every X such that P(t, x, X) > 0 it holds Card(Het(X)) S 

^ Card(Het(tj). If the condition 
cp(t)JHom(cp(t)) g </)(x) is not satisfied, than there exists// G Z such that Het(cp(i)) <j 

*J Het(fi) and P(cpt(i), (p(x), JLI) > 0. Using 2. for A = cp~l(/.i) we obtain P(t, x, A) > 0 
and Card(Het(X)) = Card(Het(^i)). Hence cp(i)\Hom(cp(t)) c <p(x) and consequently 
Het(cp(x)) g Het(cp(t)). 

6. a) We first prove 6. for t, x such that iJHet(t) g x. 4. asserts that there exists A 
with the property P(t, x, X) = (V) Card(Het(x)). By 3. it is P(t, x, /i) = P(cp(i), cp(x), 
cp(X)) ^ (i) Card(Het(cp(t)) vHet(cp(x))). Hence Card(Het(cp(t)) u Het(<p(%))) ^ 
^ Card(Het(x)) = Card(Het((p(x)))> that is, Het(cp(t)) g Het(cp(x)). 

b) Now we prove 6. for every t, x e Z. Let us denote A = tJHet(t) u x\Hom(t). 
By a) Het(cp(tj) g Het(cp(X)) and by 5. Het(cp(X)) g Het(cp(x)). 6. is proved. 

7. and 8. are consequences of 5. and 6. 

Proof of Proposition 10. We shall prove that there exist a one-one function g 
from S into IS(Z, Z) and a function h from Is(Z, Z) into S such that g ° h is the 
identity on Is(Z, Z). 

Let us denote Hi = {t e Z; Hom(t) = {/}} and H{ fl = {t e II{; t(i) = {a}} for any 
i e D(d), a e d(i). 

Let us define the function g by the equation g(n, O) (t)(i) = O^Tr"1^"))" t(7c-1(i)) 
for <7i, O> G S, A e Z, i e D(d). It follows from the properties of the function q that 
g(n, Q) E Is(Z, Z). It holds tEHia if and only if g(n, Q)(I) E HK(i)Q(i)(a). Hence 
if <7i, O> + <TC', O'> then there exist i G D(J) and O G d(i) such that <7i(i), O(i) (a)} =# 
# O'(0> ^ '(0(^)>- I f < G # / a then #(TT, O) (t) G Hn(i)g(i)(a) and #(TT\ O') (t) G HK,{i)^(i)(a) 

Hence g is one-one. 

Let us denote hl(cp)(j) = (JHom((p(x)) for cp EIS(Z, Z), j E D(d), XEHJ and 
fc2(<l>) (j) («) = U ^ M ^ ^ ( < P M ) ) for xEHja. It follows from 11.7 and 11.8 
that hi(</>) and h2(cp)(j) are defined correctly, independently of the choice of x. 
h^cp) is a permutation of D(d) . h2(cp) (j) is a function from d(j) onto d(h{(cp) (j)), 
hence d(j) = d(hx(cp)(j)), that is d ° hx(cp) = d. It holds tEHia if and only if 

^ (0 e #M«O(0,M^^ = ^i(^~1) a n d( / z2(<p)(0)~1 = 
= h2(<p-1)(hl(^)(0). 

Let us define the function h by the equation h((p) = (ht((p), h2((p)}. It is sufficient 

to prove g(h((J>)) = </>, that is (r22(^) ((/i,^))""1 (J)))" ^(/i^^"1) (J)) = <K0 (•/) f o r 
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every teZ and j e D(d). From above, it is sufficient to prove (h1((p~1) ( I ) ) 1 " . 
, ((h^cp'1) (j)) = cp(i) (j). Let cp(i) (j) = {c, d). Then there exist y e Hj c and O~ e Hj d 

such that P(y, S, <p(i)) = 0, since P(<p_1(y), </>_1(<5), t) > 0 and ^ _ 1 ( y ) 6 
G^/»i(<p-1)(i),!t2«,-M(j)(r) and q)~\č>)eHhi{(p-i){jhh2{q)-y)um. Hence i(hx((p~l) (,/)) = 
= { ^ ( ^ M j ) ( 4 M ^ C W } > that is, {c, d} = ( M i O C / ) ) " 1 * ^ f r " 1 ) (./))• 
Proposition 10 is proved. 

A P P E N D I X 

We use the following notions and notation of the set theory. Let x be a set a n d / 
a function. Then 
UN denotes the union of x. 
Card(x) denotes the number of elements of N. 
[ x ] 2 denotes the set {y g x; 1 ^ Card(y) g 2. 
Fuc(f) means that / i s a function. 
D(/) denoted the domain of/ 
//x denoted the restriction o f / t o x. 
W(/) denoted the range off. 

f"x denoted the range of the restriction of/ to x, that is, the set W(fjx). 

We identify, as usual, the positive integer k with the set (0, 1, ..., k — 1}, the zero 0 
with the empty set. 
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S o u h r n 

ISOMORFISMY MENDELOVSKÝCH POPULACÍ 

LUKÁŠ PELLAR 

V článku jsou navrženy nebo zobecněny některé pojmy matematické populační 
genetiky sloužící jednak k popisu způsobu, jakým genotyp ovlivňuje fenotyp, jednak 
k popisu pravděpodobnostních zákonů dědičnosti. Hlavní výsledek článku je v dů­
kazu tvrzení o vzájemně jednoznačném vztahu mezi isomorfismy mendelovské 
populace a permutacemi množiny lokusů a množin alel každého lokusu. 
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V úvalu 84. 

391 


		webmaster@dml.cz
	2020-07-02T02:10:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




