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UNSTEADY MOTION AROUND
A UNIFORMLY DEFORMING ROTATING CYLINDER

SUNIL DATTA

(Rzczivad November 29, 1972)

In the present note the unsteady motion around a cylinder in an infinite viscous
medium is studied. The initial motion is that due to steady rotation and the unstead-
iness is introduced when the cylinder begins to deform. It is found that the viscous
stress increases for an expanding cylinder and decreases for a contracting one.

Let us consider the motion around a deforming cylinder of initial radius a, rotating
in an incompressible viscous fluid of density p and kinematic viscosity v. Rendering
the space coordinate, time, velocity and ptessure dimensionless respectively by a,,
aj/v, vla, and gv*/aj the non-dimensional equations of motion governing an
axisymmetric plane flow can be expressed as
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where u and v are radial and transverse velocity components.
Equation (3) now gives

(4) u =,

where ¢ can be a function of time. Since on the deforming surface r = a(t) at any time
u = da/dt, we have from (4)
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In the present study c is a constant since cross section changes uniformly, and then
we have from the above equation

Q) a* =1+ 4ct.
Equation (1) merely determines the pressure distribution when u and v are known

and will no longer be considered. Substituting the value of u from (4) in (2), the
equation determining the transverse velocity is obtained as
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The initial motion is the solution of the above equation when the time derivative
vanishes and ¢ = 0 and is taken as Afr.
Writing v = w + A/r in equation (6), we get
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We have to solve the above equation subject to the following conditions
(8) w=0, at t=0, r>1,

w=l{a(t){2(t ———(—)}=lw(t) when r =a(t), t>0,

where A Q(t) determines the prescribed angular velocity of the cylinder at any in-
stance of time.

Now by the help of Green’s theorem [1], we can express the solution of the system
(7) and (8) as
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is to be determined from the following Volterra integral equation of the first kind

(10) ofl) = — J‘ ;a1_2°(t’) vola(t), 1 alt), ) £(1) dt" +
Jw(t){avo(r t;r, t) dzflt’) vo(r', t';r, t)}r=a(t) dr’ .

r'=a(t’)

where the function
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Here vo(rs 13 1/, t') is the fundamental solution satisfying the equation
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and is given by

200 — 1) 2(t — 1)
where I, represents modified Bessel function and U(t) the unit function.

The Volterra equation of the first kind can be transformed to Volterra equation
of the second kind and a series solution can be given in the usual manner but we shall
not attempt it here. Instead we shall determine an approximate form of f(t) for small
time and for constant angular velocity, i.e., for Q(¢) = 1. For small time, using the
following approximations

a(t) = (1 + 4ct)”2 ~ 1 + 2ct,

o(t) = 1) - —7  ~4ct,

a(')
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and retaining only the largest terms, we have from equation (10)
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the solution of which is

(13 = - e[ e

- [S(L'zt + ) erf(c /1) + 8cA/<—;—) e | = 16¢ x/%

Now the non-dimensional viscous stress is given by

(14) . [ﬁ—i] 2_1[2+16c/i].
or L SN i

Thus it is concluded that the stress increases for an expanding (¢ > 0) and decreases
for a contracting (¢ < 0) cylinder.
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Souhrn

NESTACIONARNI POHYB
V BLIZKOSTI STEJNOMERNE SE DEFORMUJICIHO ROTUJICIHO VALCE

SunIiL DATTA

V ¢lanku se studuje nestacionarni pohyb v blizkosti valce v nekoneéném viskoznim
prostfedi. Za pocatecni pohyb je povaZovan ten, ktery odpovida stacionarni rotaci.
Nestacionarni pohyb vznik4, kdyz se valec pone deformovat. Ukazuje se, Ze viskozni
napéti roste v pfipad€ expanse vélce a klesa v ptipadé jeho kontrakce.
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