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1. INTRODUCTION

Among the numerical methods of finding the spectral radius and an eigenvalue
of maximal modulus of a matrix, Kellogg’s iterative method is very important.
The detailed behaviour of iterations is known for matrices with linear elementary
divisors.

The purpose of this paper is to investigate in detail Kellogg’s iterative process
for matrices elementary divisors of which are not linear, generally with complex
elements, and to find an exact expression for the k-th iteration. The convergence
in such cases is very slow. However, at the end of this paper we construct two extra-
polation procedures which give very good results. One of them is analogous to the
Richardson-type extrapolation.

Before summarizing the main results of this paper, we mention the notation which
will be used throughout the paper.

We shall denote the field of complex numbers by C; V,(C) will be the n-dimensional
vector space of vectors

¢
x=1|:], where & eC.

The superscript T is used for transpose and H for conjugate and transpose, and
analogously for matrices.The identity matrix of the dimension k will be denoted by I,,
the index will be omitted if the dimension is obvious. The i-th column of I, will

k
be denoted by e and e® =Y e . Ifu; e V,(C),i = 1,2, ..., L u; = (n{",.... "),
=1

then (uy, uy, ..., w,) is the matrix

(1) ,(2) (1
Hy 5Ny s ~--,771)

: 5
1 2 1
nOon, gl
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the symbol
(U,,U,,...,U)

where Uy, ..., U; are rectangular matrices n x ry, ..., n x r; is to be understood
analogously. By J, we shall denote the matrix
Je=(0,¢el, .., e)),
where © = (0, 0, ..., 0)". Generally, the symbol @ will be the null vector or matrix.
If B; (i = 1,2, ..., 1) are square matrices, then diag (By, ..., B) is the matrix
B, ©, ..., 0, 0

o(A) will denote the spectral radius of a matrix A; if x € V,(C) then ||x|| denotes the
spectral norm of the vector x.

Let A & O be a matrix n x n. There is a nonsingular matrix U such that

(1 U™'AU = diag (A0, + Ji,. Aol AT+ )

. . 4
i iz ! 125"

(Jordan canonical form). In this paper we assume only that relations
=1, =...=1,, ]}.,I > l/l,‘ for I=t+1,..,r

hold for an integer t € {1, r)>. For the sake of simplicity we shall assume IAII > ]A l
for j & 1.

Let x, € V,(C), X, + ©. We shall denote

(2) x, = A%, ,
(3) e = xliclxk/xllr'—lxk—l >
4 ’ Ve = X XX X

The numbers g, and v, are studied in detail in Section 3.

Now we shall present the main results of this paper. It is proved that there exist
an integer k,, a sequence of real numbers {w,,}ff o and a function 34(k) such that

for all k > k, the ratio (3) is defined i.e., x;" ;x,_ = 0, the series z w,[kP is abso-
lutely convergent, w, = 1, r=

) e = 0*(A) [1 +,,‘i s 9,(k)],

and lim k* §,(k) = O for every integer s. The constants w, are determined uniquely.

k— oo
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Moreover, the constant w, is calculated. In general case, it is @, = 2(i; — 1), where
iy is defined by the relation (1). Similarly there is k, such that

(6) [1 + Z " 2+ 97(k):| w,eC

for every k > k,, iim k® 9,(k) = 0 for every integer s and generally o} =i, — 1.
In Section 4 it is préved that there exist constants K, o, K’, o’ such that inequalities

7 K>0, KK>0, «a>0, o« >0,

(8) lo,| < Ka?, |wj| < K'()?, p=0,1,2 ..

hold. Numbers K and o are constructed in the course of the proof.

In section 5, special cases of matrices are investigated.

A short numerical example is enclosed in Section 6; besides we construct two extra-
polation procedures. The efficiency of them shows Table 2 and the scheme at the
end of this paper.

2. PRELIMINARY

We turn our attention back to the relation (1). Let us denote

t, =314 for 1=0,1,..,r
s=1
and
9) Uipr = (W44, ..0u,,,) for i=0,1,..,r—1,
where u; is the j-th column of the matrix U. It is easy to see that
U=(U,...U)

and from (1) we obtain

(10) AU = Udiag (2,0, + Jis oo u A0, + T3,
and
(11) AU = Udiag (2 0;, + J3)5 o (A, + T
Lemma 1. Let v;e V,(C), i = 1,2,...,j, V= (v, V, ...,V,), i.e., a rectangular
matrix n x j.If 2€ Cand k =z 0 is an integer, then
(12) VI + T = (Vike Yoo oo Vi) »
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where

min(l,k+1) k )
(13) Vi = Z < )Ak_(l_”vl~(i—l)

i=1 i—1
for 1=1,2,..,j.

Proof. For k = 0 we obtain from (13) v,, = v,. Let the assertion of Lemma hold
for k. Then

V(AL + J) = (VI + J)) (A + J;) = (Vige o Vi) (A + T5)

From this we obtain immediately (13) for k + 1.

We shall denote by P; (i = 1, ..., r) the projection of V,(C) to the subspace gene-
rated by the columns of the matrix U,. If x, € V,(C) then

(14) Xo =W, + W, +...+w,

where w; € P; V,(C) are uniquely determined. Let w; = U, The vectors b; are
uniquely determined and the dimension of b; is equal to the number of columns
of the matrix U,;.

Lemma 2. It holds
(15) A"wj = Uj(ijl,-j + Jij)" b;.

Lemma 3. It holds

(16) Ay =Y Ul + T )b,

Jj=1

The relations (15) and (16) follow immediately from (11) and (14).
Lemma 4. If IA,I > Iijl for some j (2 £ j £ ¥), then

o1
lim — Aw; = 0.
1

]
Proof. We have denoted t, = ) i;and U; = (u,,_, 1 ..., u, ). In the sequel we shall
s=1

use the notation
(17) v =u,, where m = t;_, + i and
b, = (B, ... B
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Suppose that k > i;. Lemma 1 implies
ij s k (i
(18) UGl + Jf by = 3 {ﬂg‘)_; (i i 1> P KU u}
LS k k= (i~ 1) gy ()
= Z z A’j ﬁs vs—-(i-—i) .

i—1
Dividing this sum by A¥ we obtain a sum with terms
k k
constant x x (4;]4,)* x vector,
p

where [4;/4;] < 1. The rest is obvious.

From (18) we easily obtain the following relation which we shall need in our
further investigation:

s=1i=1

=Z {( k )/Ik (i- ”Zﬁ(”vﬁ’)u— }
i=1 1

Lemma 5. Let Pxo #+ O, A; + 0, k > i;. Then there exist an integer l; and
a sequence of matrices {Fj(k)};; ., such that

(20 R IR (R OL S
j - .

(19) U4li; + Ji) by = 2 z ( )’lﬁ_“_l)ﬁij)vij—)(iﬂ) =

where

(21) 11,20, limFk)=06
k=

and a(“ is an eigenvector which belongs to ;.

Proof. We use notation (17). It is
Pixg=w; = Ub; = VP + ... + V) + 6.

Let us denote by I; such an index that B =+ 0, but P =0forall l; <i =i

If we denote for i =1,2,...,[;

1;
(22) al = Y (Bl

s=i

then from (19) we obtain

1 )
O e B I N (R O
i=1 \Il — j
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where

k
’lil i — 1) al (a)H

(23) =2 ( fl)WT"

It is evident that lim F (k) = ©. From (22) we obtain

k— o0

. 5 (Y ali=1
a(lj) — ngj)v(fl)/ljl ,

but v{ is an eigenvector belonging to A; (see (17)). This completes the proof.

Remark. If 4; = 0 or P;x, = O, let us put, in order that equality (20) be valid,
a) =0, F(k)y =0 and I; = 1.

Lemma 6. Let aﬁj" and F(k) for j = 1,2,...,r be vectors and matrices defined
by the relations (22) and (23) or by Remark in special cases.

Then there exists for every j,s =1,...,r a sequence of numbers {5Y9}%_,,
89" e C such that for all k > Koy = max (1,)

,,,,,

© U»s)
(4) @) (1 + O + P - =
p=0

where the series on the right hand side of (24) is absolutely convergent for all
k>k

Proof. If at least one of the equalities

max*

Pxo=0., Pxo=0, ;=0 and 4, =0

holds, then the product on the left hand side is zero and if we put 64" = 0 for all p,
we obtain the assertion of Lemma 6.

Let Pxo + @, Pxo + @, A; 0, A, + 0, I; > 1 and I, > 1. (The cases /; = 1
or I, = 1 will be evident.) Let k > k. Fori =1,2,...,1; — litis

<i —k 1)/(1, ]i 1) ((lz - 11))" k'f - (il— ik _1:'(1}:_27/@ B
“i5 e (B CEDEE) ()

and all series are absolutely convergent when k > Kk 1f we multiply these series
and rearrange terms, we obtain that

() w2
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where the series is absolutely convergent and

.. [. —1)! .
yor = (=Dt ALl - 22 0. where r=1, — i
(l — 1)' sptsat.. +9¢ !
5120, 52>0 s,>0
Now we shall calculate the product F (k) a”. From (23),

0 -1 o y(tJ)a(u
ﬂh’=2{§;;r%’

i=1
where the inner series is absolutely convergent. If (¢4, ..., &,)T are components

0
of the vector af’’, then an infinite series Y. 74" a{”’[k? !/~ s said to be (absolutely)
p=0

o0
convergent if Y.y [kP*1™F is (absolutely) convergent for s = 1,..., n.
p=0
If we denote

No=1{0,1,2,3,..}, N,={1,2,..,1;, =1} and M =N, x N,

i
then for every finite M, = M,

y;' 2J) a(]) l;—l <Z°f: y(' )] (J) > .
Ml

kp+lj i i<t =0 kp+l, i

ie., the generalized series Y, (y{"al’[kP* 177} is absolutely convergent. The theory
”

of generalized series is studied in [4]. Let us rearrange this series successively ac-
cording to the non-decreasing powers of 1/k and sum its terms with the same power
of 1/k. Obviously we obtain

o _ < g
(3) CLE S
m=1
where
(26) d(:) = Z ,Y(l; m+s,j) 2‘(J_)_m+S for m < lj -1,
s=0
1;—-2 .
. Fs.j .
d) = ) 'Yi«+ms—lt),-+1 af), for m 2 I -1
s=0

and the series are absolutely convergent.
Now we calculate

@)y (I + Fi() (I + F(k))a}) =

_ (a(lh)" a;S) N i (d(mj))H at) (J) (\) © (d(l) H d(S)
j s
m=1 k

a ma
Z ( + Z km1+m2 .

my,my=1
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If we put

(27) 8 = (alyy" al?
5(1 S) (d(J))H (s) + ( (J)) d(S) + Z (d(])) d;,g,
my,my=1
my+my=p

then we obtain assertion (24) of Lemma 6, which completes the proof.

Lemma 7. Let k > 1, p = 0 be integers. Then

(B (0)) - 2%

s+p—1

where oo = 1, 11 = 0 for s > 0, n,, = < >for p = 1 and the series

[ee}
Y nsr,/ks is absolutely convergent.
s=0

The proof is evident.

Lemma 6 and Lemma 7 immediately imply:

Lemma 8. Let the assumptions from Lemma 6 be valid. Then there is a sequence
of numbers {6(’ S)},, 1 5;,’;’15’ € C such that for all k > k.

(28) @)1 + FY(k — 1)) (I + F(k))al) = 20 5;:) ;

where the series on the right hand side of (28) is absolutely convergent for all
k>k

max*

o

Lemma 9. Let the series Y, 6,/k? be absolutely convergent with , = 0. Then there
p=0

exist an integer k' and a sequence of numbers {(),,}p o such that Z o /k" is abso-
p=0

lutely convergent for k > k', Z 3,/k? % 0 for k > k' and
p=0

(52) -5 %

p=0 kP p=0 kP

@0

Proof. Let us consider in the complex plane the series ) 6,z7. Since dy * O,
p=0

this implies that there is a neighbourhood U,(0) such that ),z + 0 in U(0),
pr=0
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which further implies that ( ) 8,z?)~" is a holomorphic function in U(0). There
p=0

exists {3,}_, such that
(X 8,2")7" =} 82"
p=0 p=0
and, for some k', 1/k € U,(0) for all k > k'. The rest is obvious.
Lemma 10. Let | > 1. Then a sequence {t,},_, exists such that
Kk (1 - 1) i T
I -1 k- 1 p=0 kP

where the series is absolutely convergent.

The proof is analogous to that of Lemma 6.

3. BEHAVIOUR OF g AND v

Let the following assumptions be satisfied.

Assumption 1. The eigenvalues A, A, ..., 4, of the matrix 4 defined in (1)
are mutually different.

Assumption 2. The inequalities

] >z 2|4

r

hold.
Assumption 3. For the initial vector x, it holds:
Pix,+ 0.

Remark. We suppose, only to simplify the following formulas, that eigenvalues
At -+ 4, are mutually different. We shall see easily that all results hold if instead
of assumptions 1 and 2 we put 4, = ... = A, and |l,l > ]Aj| forallj=t+1,..,r

From Lemma 3 and Lemma 5 we easily obtain

2
Xex, = |4,]* (l k 1) @) (I + F(k) (I + F (k) ai (1 + o(k)),
-
where

@) o= (| F ) e ) rw) )

E (5 ) (5 ) e e mw)ai)
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and ) denotes that we sum over all j, s with the exception of j = s = 1. Lemma 6
implies

(0) st (5 Y (E 7))

and

0=, ) (G GG (E )

where we put ¢; = /IJ-/A1 for j =1,2,...,r. Using Lemma 9 and Lemma 10, after
a small arrangement of the last series, we obtain

r ee) z(J,s)
(31) A= 3 faaernoon § S0

js=1 p=0 kp

where 2 EUIKkP is absolutely convergent, &YV = & since 69 = 65 and

prp=
f(”)—Ofor all pif 4;=0o0r 4, =0 or Px, = O or Px, = O since the same
holds for 64+
. i) _ S(s,J __ et 2(J,s) _ E(s,J
Because 659 = §%9 for p = 0,1,2, ..., it is also YY) = &),

Definition 1. Let W; = V,(C) be a subspate generated by all principal vectors
which belong to the submatrix 21; + J;, (sec (1)). Let ye V,(C). Let H; = W;
be an invariant subspace (with respect to the matrix A) of W of mmtmal dtmenszon
which we denote 1}, such that P;y e H; (projection of y to W, J)-

Then we shall say that the dlmenszon of the vector'y in W; is equal to l; and write
dim;y = 1.

It is easy to see that the numbers [; from Definition 1 are the same as those from
Lemma 5.

Theorem 1. Let A be an n x n matrix, xo € V,(C), Xo # O and let the assumptions
13 be fulfilled. Let us denote I; = dim; x, and q; = A;/2,.

Then there exist an integer ki, a uniquely determined sequence of real numbers
{w,}7-0 and sequences of complex numbers {EYV}7_o; j, s =1,...,r except
Jj = s =1 such that for k = k, the ratio x, x,(/x,(_lx,ﬁ1 is defined, lhe series

) « =)
w,, C
—L. and -
pgo kP pzz-o kP
are absolutely convergent for k = ki, wy = 1, w; = 2(l; — 1), the expression
r % i(j’S)
(32) ( ) Z kl\l +1,- 21 Z PP
Js=1 p=0 kP
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is less than 1 for k = k, and if we put for k > k,

(3) mwwﬁdm—dk—u(;;%jg§§4yww—1»

then

(34) Wy = QZ(A)[] + i % + 91(k):|
and !

(35) lim k* 8,(k) =0

k=

for every integer s.

The sequences {ET N _ . can be constructed so that

q Sp Sp=0

: “(s, (). . _ 2
(36) {p‘”-——fp“’ for all p—O,],k,----

There exist sequences of complex numbers {t$°9}%_o such that the series

q 14 p Sp

e

Y, t9[k? absolutely converges for k > ky, ¥ = fif'” and

p=0

w© r © (J,s)

(1) (o) —olk —1) Y Zr = 3 Igigktrimy St
p=0 kP j,s= r=1 kp

Jj 1

Proof. From Lemma 7 it follows that for k > max (i;) + 1

(38) y 3

p=o0 (k — 1)? p=0 k¥
where

= Sy
(39) = &, o e
m20,520
From this we obtain
40 Lo =06 = (ai”)"al” £ 0 and {; =6("".
0 N 1y

fry o

According to Lemma 9 there exist an integer k; and a sequence {{,},_, such that

o0
the series ). {/[k” is absolutely convergent and
p=0

(41) (i ~‘:~">_‘ — Y 5 for ks k.

p=0 kP p=0 kP

It can be verified immediately that for k > i,

(o)) =505
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From (31) it follows that lim o(k) = 0, which implies that there exists such an
k— o0

integer k, that for k > ky it is |o(k)| < L.
Let us put k; = max (max (i;), ks, k;) + 1. Then for k > k, the inequality

XX, = [;LI[“*("' - 1>2<i )(1 +o(k — 1)) %0

L, —1) \Jo k

holds and for g, we obtain a product of absolutely convergent series, i.e.,

o0
The product of the series is an absolutely convergent series which we write Y. o, [k”.
p=0

It is evident that w, are real, w, = 1 and

op =2l = 1) + 585" + oVE =

=2, — 1) = (8"Pfcg) 86" + 8P = 2(1, — 1).
The relations (33) and (34) follow immediately from (42) and from the fact that
1+oa(k) - o(k) — a(k — 1) _
1+ a(k —1) 1+ a(k —1)
— 1+ (o(k) = ok — 1)) iu (=1 o7(k — 1).
e

We have shown that

r n o x2(J,s)
olk) = )/ {61 okl (Z SL—)}

J.s=1 p=0 kp

g0 — 6D and & 99 =0 if q;q, =0 or Pxo = O or Px, = 0. From this we
easily obtain that there exists a sequence of numbers {VEY91 - such that the

series Z (1>¢“§7J’s)/k” is absolutely convergent and

e r o (1)5(1 »S)
ol =)= 3 e (3 2L

Js=

Here

m'f(j W =0 if §;4s = 0, e = :(j's)qﬂs il g;q, *+ 0, (1)Cfaj’s) = (1)&:,1) for all
J,ys=12,. ., rexcept j = s = 1. Hence

k—1) = AV kj L+ =20 < é;j's) “(I)CV;j'S)
(43) o(k) — ol 1) = 2 49K >

J.s= p=1 kP
Assertions (36) and (37) follow immediately from the fact that 09 = 5% and

from (43).
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The uniqueness of w, follows from (34) and (35), which completes the proof.
It is not difficult to show that the number of mutually different summands in the
sum

(i— 1y (I, —2), where t=1;,—1i
S1Hs2H . Fse=p

5120,...,5:20

p+1—3
-

{, according to Lemma 6 and Lemma 9, we easily calculate an estimate for ]w,,|

according to (42). In this way we obtain immediately the following lemma, which

is equal to ( ) Constructing successively the bounds for 54", {, and

will be used in the next section.

Lemma 11. Let the assumptions of Theorem 1 be fulfilled. Let I, > 1. Let us define
the following functions:

1) &(0) = [ai?],
el = = (7 Y 0= 2

I, -2
for p =1,2,..., where a{") is defined by (22).

D &)= Yl &lp — ) Sor p= 012

3) &(p) = Zofl(s) Np_ss Jor p=0,1,2,..,

where n;; are the numbers defined in Lemma 7.

4 £(0) = (GO)
&) = GO) 7 BaE Er -9 for p =123

5) &u(p) = 5053(3) ¢p—s) for p=0,1,2,...

P
6) &s(p) = 2054(s) (L =1 (p—s+1) for p=01,2 ...

Then the coeficients w, from Theorem 1 satisfy

(44) |w,| < &s(p) for p=0,1,2,....

Theorem 2. Let the assumptions of Theorem 1 be fulfilled. Then there is an
integer k, and a uniquely determined sequence of complex numbers {w)}7_, such

354



oC
that for k > k, the series Zow;,/k" is absolutely convergent. wy = 1, wy = 1, — 1,
=

(45) Ve = A [1 + ‘; %{’— + .92(k)]

and
lim k* 9,(k) = 0
for every integer s.

The proof is analogous to that of Theorem 1. (We use only Lemma 8 instead
of Lemma 6.)

Remark. The numbers 7, = ul/? satisfy
w//
(46) — [1 +T 28+ 93(1()} ,

where the series is absolutely convergent, w), are real and lim k* 9,(k) = 0.
k=

4. BOUNDS FOR w, AND (u;,

From Theorem 1 and Theorem 2 it is easy to see that the coefficients [w”| and
[a);,l cannot increase more quickly than «? for a positive number «. In this section
a constructive proof of this assertion will be given, i.e., we shall construct positive
numbers K and « for which [wp| < Ka? and analogously for .

Theorem 3. Let the assumptions of Theorem 1 be fulfilled. Let 1, > 1. Then there
exist positive numbers K and o. such that

(47) lo,| < Ka? for p=0,1,2,....
Proof. We find by easy computation that for p > 1

<p+ll——3

Y s = e - 2

(a) If we denote

-2
Ko= (1~ 1S iy,
s=

» dor(ll —2)ell_27

10(0) = [|a{] and no(p) = Keuf™' for p=1,2,...,
then

(48) So(p) = no(p) -
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(Throughout this proof, &o(p), &4(p), ..., &s(p) are the functions from Lemma 11.)
(b) For p > 1,
P e
&(p) = 2 5o(s) &olp = 9) = 2| ai?|| no(p) + 2 1o(s) no(p = 3) =
< 2]all| Koop ™! + Kguf ™2 P72
Hence putting

Ky =2/|afP| Ko + o5 'K, 2y = 25e"? il o % 0 (i Iy # 2)

and
K, = max (2a{’| Ko. K3). 2, =1 if o =0,
’71(0) = é(2)(0) . mlp) = Kyaf™t,
we obtain
(49) él(p) = 'h(l’) .

(c) According to 3) from Lemma 11 and (b) it follows for p = 1

‘fz(l’) =

s

M=

P
O‘::l(s) 'ip—s.s .S— Zorll(s) r’p—s,s =

:<pg1)M0+(p11>m@%%~+(£:1>nMﬁ=KK1+%Y”-

Writing

It

K, =K1 + o), 2, =140,
1:(0) = n1(0), nap) = Ky (p= 1),
it is
(50) E(p) < malp) -

(d) Now we show by induction that if we define

1 P
n3(0) = 1. nx(p) = ——— L mals) mslp = 9)»
Qz(o) s=1
then for p = 1,2, ...
(51) n(p) = Kb,

where

K, = ;2((20) (1 + -;2((8)>—1 and oy = o, (1 + ;i:))) .
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(I) For p =1,

773(1)
52(0)
(IT) If (51) holds for an integer p then

Z’?z ) 73(0) — = o, = Kjas.

u +1- K, 1
p+i-s p+1 _
ZKzf"z 3%3 + o =

¢ 2(0) £,(0)

- KKs i aia‘z’““(l 4 K )p“_s+ K, at! =
£,(0) s &,(0) £,(0)

ni(p + 1) =

K P K pti-s
=K p+1 2 1 4 2 1 4+ 2 pt+1 =K pt1 X
N GoP () B R () Rt

which shows the validity of (51) for p + 1.
Evidently

(52) &(p) S malp) for p=1,2,....

() By easy calculation we obtain

’73(9) m(p —s) = Kjof,

|IM'E

where
Kk, = KK &0 Koy + K, £2(0).
K,a,
Writing
K, =max (K} 1), a2, =0a3 and n4(p) = Ko,
we have
(53) éo(p) S Kyuy for p=0,1,2,....

(For p = 1 we have used (52) and (49), for p = 0t is &,(0) = 1 < K,.)
(f) Itis

P
Ynas) (I, = 1) (p—s+ 1) <Ky + 1, =1+ a,)""" < Ka?,
s=0

where we put

K=K, +2) and a=1 + a,.
This implies

(54) &s(p) < Ko?
and consequently from Lemma !1
(55) |oo,| < Ko

which completes the proof.
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Theorem 4. Let the assumptions of Theorem 3 be fulfilled. Then there exist real
positive numbers K' and o’ such that

(56) |a);,l < K'(2).

The proof is analogous to that of Theorem 3.

5. SOME SPECIAL CASES OF THEOREM 1

In this section we shall suppose that the matrix A is normalizable, i.e.,
U™AU = diag (4, 43, ..., 1)
(if i; =1 for j =1, ..., n; see assumptions 1—3 in Section 4), or more generally
U 'AU = diag (A1;,, 214, .0, A 03) -
In both cases we shall suppose
(57) |4 > |4;] for j+1.

Hence using the theory from Section 4, we obtain ¢/ = 0 for p > 0 (Lemma 6).
Continuing in this way we easily obtain @, = 0, {9 = 0and 1" = 0 for p = 1,
so that the following theorem immediately follows from Theorem 1.

Theorem 5. Let A be a normalizable matrix n x n, (n > 1) and suppose, if

Ioli o L),

(b2

U™ 'AU = diag (4,1,

that llll > |/1j| for all j % 1. Let x,€V,(C), X, + © and P,x, + © (projection
to the proper subspace of V,(C) which belongs to 1,).
Then there is such an integer k, that for all k > k,

(8) e = @*(A) [1 + 94(K)],
where the function 3,(k) is obtained from 9,(k) if we put in the relation (37) w, =
=100 =99 =0 for p=1, I, =1 for j=1,...,r, ie., there exists numbers
T G s = 1,2, ..., rexcept j = s = 1 such that

(59) %0 = (3 AT 1+ T (-1 o - 1),

Js=

where

(60) olk) = ¥ &5 -

Js=1

Moreover, if A is normal, then t§*® = 0 and £ = 0 for j =+ sand
60 90 = (7 0 (1 + S 17 (S e laf* ).
= = i=
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The rate of convergence is in this case twice as quick as in the case of general norma-
lizable matrices.

Proof. The first part of the theorem follows immediately from Lemma and Theo-
rem 1. If A is normal, i.e., unitarly similar to a diagonal matrix, then the proper
vectors are orthogonal. The rest is evident.

Remark. An analogous theorem holds for x!’? and v,.

Remark. Let us return to the general case in Theorem 1. If the assumption
|4,| > |4;| does not hold, for example,

] = A2 > 4] for j+ 1,2, 4 # 4y,

then Kellogg’s iterations converge if I; > [, or I; < I,. This follows from the theory
in Section 3. We do not study this problem in this paper.

6. EXTRAPOLATION AND NUMERICAL RESULTS

Let UT'AU = diag (I3 + J5, 0:951)), i.e.,

1100
0110
UU=15010 |
000095
xo = (1,1, 1, 1)7
and
241, 2+ 8i,3—-2i, —1+7i
Ul = S5+ 3i, —2+2i,3+4i, 05
11, 8+i, 5—1i, —3+5i
—4 + 6i, -5, 6 —3i, —1+2i
Now we calculate 4 and w,, ®,, ..., wg according to the proof of Theorem 1. We
obtain
wy = 1 w, = — 71-07088246 ...
0, = 4 ws = —117-18223994 ...
w, = 935645366 ... we =  465:03609659 ...
w3 = —0-84973996 ...

Table 1 shows the differences
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forl =1,...,6 and k = 50, 100, 200, 500, 900. It is seen from Table 1 that the sum
of several first terms of the series gives us a good approximation for y, and the error
is small relative to this sum.

Table 1

1
Hy — 2 (wp/k'ﬂ)
p=0

|

|

} 0-003724581230736
50 : —0-000018000235765
i —0-000011202316064
|

0-000000169025136

BN S

0-000934080732889
—0-000001564633711
| —0-000000714893811
—0-000000004185011

100

S

N

0-000233760354689
| —0-000000150986913
| —0-000000044769506
| —0-000000000350106
| 0-000000000016094
0-000000000008889

| 200

S N S

(=)

0-000037417875911
—0-000000007938889
—0-000000001140988
3 —0-000000000003887
—0-000000000000185
—0-000000000000217

500

R W N -

(=2

0-000011549903325
—0-000000001273980
—0-000000000108378
— 0-000000000000076

BN =

900 |
|

The convergence of g, is very slow. At the end of this paper we show two proce-
dures which accelerate the calculation of o?(A).
We have proved that

I
=i 3 s 9]
p=1 kP
where

(k) = 0(_kII—> for k- o
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and [ is a fixed positive integer. Let
(62) ky s my <my <..o<mypyy

be a strongly increasing sequence of integers. For every pair (m;, m;4q) i = 1,..., 1,
let us perform the following procedure:

i, = 0*(4) [1 by 2y S(mi)],

p=1 M;

1
Hmy o, = 0*(A) [1 + Y a;” + 9(m,~+])].
p=1

Mity

Cross-multiplying these equations we obtain

1
(63) Moy y = My = 2, wp[J:m_i — '[f"'-’;u] + z(my, mig,),

P
Mivq m;

where
Z(mi’ mi+1) = Hm; S(miﬂ) = Hmiyy S(mi).

Writing (63) for all pairs (m;, m;, ;) without z(m;, m;. ), we obtain a system of linear
algebraic equations for wy, ..., .
|
Fom - Hmiss |
miy mf |

Let us denote
fori=1,2,...,land p=0,1,..., L It is not difficult to show that in numerical

calculation, in which every real number is correctly rounded to d decimal places,
the number

Hip = lOgm{

— {, B
Xy = MaX %0 — o

cannot be greater then d — 1. This condition gives the upper bound for I. (This
depends on the computer used.) In practice it is better to take »; < d — 2 or
xaqy < d— 3.

Let us denote for some admissible /

- (64) 02(K) = 1y /[1 Py Qv_] ,

p=1 kP

where Q,, Q,, ..., Q, is a solution of a linear algebraic system for w,, w,, ..., 0,

Four our matrix 4 x 4 it was possible to take I = 4. Table 2 compares the numbers
02 k) and p for four cases.

Case 1: (m], m,, msy, My, 1115) = (40, 41, 42, 43, 44)
Case 2: (my, my, my, my, ms) = (54, 55, 56, 57, 58)
Case 3: (my, my, my, my, ms) = (74,75, 76, 77, 18)
Case 4: (my, my, my, my, ms) = (100, 101, 102, 103, 104)



Remark. Analogous calculations for v, and p;/? were made; they show similar
behaviour.

Table 2
Case { 03_\//() B
I ! 0:99999931482 1-095713367851625
2 1 0:999999681996 1-071736295510767
3 ; 0:9999999098124 1-052816220440535
4 i 1-:0000000063206 1-039325228250185

The second procedure is analogous to the Richardson-type extrapolation (see [2]).
Let us assume

S W
llk:QZ(A) 1L+ Yy —2].
p=1 kP
From this it follows
2 Q
HA) = — Yy -2,
( ) : pgl kP
where we put Q, = w, 0*(A4). Let
ki <k, <ky<...

be an increasing sequence of integers such that

l‘;‘(,t‘_ =a =const (>1)
for i = ]923 e
Let us write
2 - S Q"
(65) o(A) =t = X
p=1 kf
and
2 S Q”
(66) Q (A) = Hiiyy — Z p :
p=1 ki+1

Multiplying (65) by k; and (66) by ki, substracting and then solving for @*(A),
we get
0 Q(l)
QZ(A) — uﬁ) . Z p s

p=2 kf

where
(1 _ Buio Kivr =ty ks
. ki+1 - ki
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and

1 1
(1) _ — — —
Q —Qp<“p_1 1)<a_1>.

Continuing analogously this procedure we obtain easily for I = 2, 3,4, ...

0 (1)
(67) ) =i — Y T
b p=ivt kP

where
(69) p = S e =P

k:+1 - kl’

and

1 1
. () _ oU-1) — _—
(69) Qp - Qp <ap—l 1) <al -1 )

forp=1+11+2,.
If we put p(? = py, and oP =0, then (68) and (69) hold also for I = 1. It is
convenient to mtroduce a scheme of 1;” in the following way:

(0)

= Hg,
> o
Mo = 13| >#22’
> u ) s
(0) > (2)
kz

Hyy = llkg

\0) / uk:

For the matrix 4 x 4 from the beginning of this section we have obtained for
ky = 40, k, = 60, k; = 90 and k, = 135 (the scheme cannout be continued further):

1-105807272897

0-996154400089
1-:069256315294 0-999979216309
\\ AN
0-998279297989 1-000002354722
/ N //
1-045597309526 0-999995498896
0-999232742937

N

1-030142453996
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We have obtained again a very good result. We cannot continue this process because
ak, = 3 x 135 is not an integer.

The situation in this extrapolation procedure is this: the nearer « is to one, the
more slowly the sequence k,, k,, ... increases. But if « is for example 1.1 then for
k, = 40 we get k, = 44 and k5 is not an integer. In this case we can calculate only
usY). The choice « = 2 makes it possible to calculate u{"” for every integer I, but to
evaluate u” we need to know u,, where s = k.2'"1,

The second procedure is easier than the first one, but generally requires to calculate
more iterations of g, than in the first case.

Acknowledgement. T wish to thank Dr. Milan Préager, CSc. for reading and com-
menting the manuscript of this paper.
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Souhrn
KELLOGGOVA ITERA CNI METODA PRO OBECNOU KOMPLEXNI MATICI

JAN ZiTKO

Necht A # @ je komplexni matice n X n, Xo € V,(C), X, # O. Definujme
x, = A*, ,
e = xllc{xk/xltl— 1Xp-1 5
Vi = X£I—1Xk/xllc{~ 1Xg—1 -

Necht U je regularni transformace, ktera pfevadi matici 4 na Jordaniv kanonicky
tvar, tj.
U™ YAU = diag (A,0;, + Ji A0y + Jip oo AL+ J3)
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a predpokladejme, Ze
=dy= .=, [A>|4 (I=t+1,..,7)

pro né&jaké prirozené &islo t e {1, r)>. Pro zjednoduSeni zapisu miiZzeme bez ujmy
na obecnosti pfedpokladat, Ze {l,l > !/Ijl proj + 1.
V této praci jsou tplné studovana &isla g, a v,. Je dokazano, Ze existuje prirozené

¢islo ky, posloupnost iealnych Cisel {wv;p o a funkce 9,(k) tak, Ze pro viechna

k> ki jex x,., #+ 0, fada Z w,[kP absolutné konverguje, w, = 1,
=0

1 = 0%(A) [1 Ly 9y Sl(k):'
p=1 kP

alim k* 9,(k) = 0 pro libovolné celé &islo s. Konstanty o, jsou urceny jednozna¢né.
k- o

Navic je spocitana funkce 9,(k) a &islo o, , které je v obecném ptipadé rovno 2(i; — 1).

Podobné existuje ptirozené &islo k, tak, ze

Ve = Ay [1 + Z 32(k)" (), € C)
p= R

pro viechna k > k,, lim k* 9,(k) = 0 pro libovolné celé s a obecné je w; = i; — 1.

k— o0
Z asymptotického chovani aproximaci y, a v, je ziejmé, Ze &isla w,,[ resp. !(u;,[ ne-
mohou riist rychleji nez o pro nékteré realné ¢islo » > 0. V praci jsou navic sestrojena
gisla K, o, K', o' tak, ze plati

K>0, >0, K'>0, «>0,
lo,| < Ko, |o,| <K'(«)" pro p=0,1,2,....
Kromé obecného pripadu i; > 1 se v Clanku zabyvame také specialnimi pfipady
a sice normalisovatelnymi a normélnimi maticemi. Je-li matice 4 normalisovatelna,
pak w,=0prop=1la

9.(0) = ( 3 9gt j49) ( Z( )Ptk = 1)),

Js=1
kde

r

o(k) = X &a5dS

jis=1

q; = ij//ll at§ a &Y jsou komplexni &isla. Y znadi, Ze se nestitd proj = s = 1.
V piipadg, Ze 4 je normalni, pak t§* = 0a & = 0 proj + s.

V zavéru prace je ukazano, jak je mozno obecné formule pro y, pouZit k extrapolaci

0*(A). V tabulce 2 je ukazano, jak podstatn& se lii extrapolované hodnoty od iteraci

pro néktera k. Zvolili jsme jako kontrolni p¥iklad matici 4 x 4, i, =3 a i, = 1.

Pfesna hodnota 0*(4) je &islo 1.

Author’s address: RNDr. Jan Zitko CSc., Katedra numerické matematiky na MFF KU,
Malostranské namésti 25, 118 00 Praha 1.
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