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SVAZEK 19 (1974) APLIKACE MATEMATIKY CisLo s

SOME L, — ERROR ESTIMATES FOR SEMI-VARIATIONAL
METHOD APPLIED TO PARABOLIC EQUATIONS

IvaN HLAVACEK

(Received October 19, 1973)

The semi-variational method for parabolic equations [1] presents a sequence
of approximations to the solution with an increasing accuracy measured in the time-
increment. The first semi-variational approximation coincides with the Crank-
-Nicolson Galerkin procedure [2], [3], which is second order correct in time.

In a recent article [3], Dupont proved some estimates of the L,-norms of the
errors for the Crank-Nicolson Galerkin method applied to linear equations involving
a non-selfadjoint time-independent operator of the second order. The purpose of this
paper is to present similar estimate for the second semi-variational approximation.
The approach of [3] has to be slightly generalized to prove that the second approxima-
tion is fourth order correct in time even in case of non-selfadjoint operators.

The L,-estimates differ from those of [1], [2] not only by higher accuracy in space
and by an explicit dependence on the given data but also by different regularity
hypotheses on the solution of the parabolic problem.

1. NOTATION, PARABOLIC REGULARITY

Let Q be a bounded domain in the n-dimensional Euclidean space R" with a smooth
boundary I'e C*.

H(Q), with s non-negative integer, will denote the Sobolev space of all functions
in L,(Q), whose distribution derivatives up to the order s are also in L,(). The norm
in H(Q) will be defined through

[uld = % [

lal=s

2
>

where « is the multi-index,

olal
D= —— o=ty + oty + ...,
OxT' 0x32 ... oxpn

and the index s = 0 is omitted.
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The scalar product in L,(R) is denoted by

(u, ) = Luvdx

and the norm
lu] = (u, u)t2.

H™* denotes the space of linear continuous functionals on H'(Q), ie., H™! =
= (H'Y, with the norm

(L.1) 1A= = sup 221
it 1ol

where {f, v) is the extension of (f, v):
(1.2) ooy =(fiv) if feLy)(Q).

We use also the following notations
T
(13) el = [ JuColiar.
(0]
]l oy = ess sup [u(®)]x
0<t<T
for any function u(t), mapping the interval <0, T) into a normed space X.

We shall consider the parabolic equation

(1.4) (Z—u+Au=f on 2x(0, Ty, T< o,
t

with the initial condition
u(*,0)=¢ on Q
and the Neumann’s boundary condition

(1.5) a;—v;=0 on I x(0,T)y,

where A is the uniformly elliptic operator

(16) Au = — _a_ aij (3_14 bj_a_u + agu
0x; 0x; 0x;

and v; are the components of the unit outward normal to I The repeated index
implies summation over the range 1, 2, ..., n. The coefficients au(x) forman x n
symmetric positive definite matrix for each x = (xy, x,, ..., x,) € &. All coefficients

328



a;;, b, ao belong to C*(), (i.e., they can be extended to be infinitely differentiable
on R"), being independent of t. The right-hand side of (1.4) f is a mapping of <0, T
into H™*, which is continuous at # = 0. The function ¢ belongs to Ly(£).

We introduce the following bilinear form on H!

ou ov ou
1.7 u,vly,={a;—, —)+(b;— + apu,v}.
( ) [, el ( ’ax,. Bxi> (J(')xj ? )
Note that the form (1.7) is continuous but not symmetric unless the coefficients b;

vanish identically.
Let . be a finite — dimensional subspace of H'(Q), spanned by elements

Uy, Uz, vty Uy
The first semi-variational approximation u*)(x, t) (cf. [1]) is called Crank-Nicol-
son-Galerkin approximation [2], being determined by the equations

<fm+l +fm» V>’ Ve‘//l’

DO |

(18 LU, — U V) + %[U,,,“ + Uy V], =
T

m=012,...M—-1; Ued, s=0;

where

M=Tt, U =uV(-st), f,=f(s7)
and
(1.9 Up—,V)=0, Ved.

In the subintervals {mt, mt + 1), u¥(x, t) is defined as the linear interpolate

of Uy, Upst-
The second semi-variational approximation u‘®(x, t) [1] is determined by the

system of equations (1.9) and
. 1
(110)‘ ;(Um+1 - [Jm’ V) + %[Um + 4l]m+l/2 + Um+!a V]A =

= %(fm + 4fm+1/z +fm+1’ V>,
4
;(Um - 2l]m+1/2 + Um+1’ V) + [Um+l - U,,,, V]A = <fm+l —'fm’ V>’

Ved, m=0,1,2,. M~—-1, Ued, s=0;
U, = u®(-, s1).
In the subintervals (mt, mt -+ ) u¥(x, 1) is defined as the quadratic interpolate

of Uy, Upii1j2s Upyy. The system (1.8) for U, , and (1.10) for U, /2, Unms
respectively, possesses a unique solution for sufficiently small r and any m = 0,1,...

oM — 1.
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In order to prove this assertion let us note first, that there exist positive constants
A, o such that

(1.11) [o, v]4 + Ao)* = ofp]i, veH'(Q).

In fact,
a;; w R EE 2 Co!”
0x; 0x;

(b,. L v) < Cylols o]l + Caflo]? < Csfol? + <cl Ly cz) o],
0x; 4e

J

2
19

where
av

0x;

=3

i=1

Consequently, we may write
1
[0 0] + Afo]> = (co — C8) [of2 + (z P 42) BE

and choosing ¢, 4 such that

co — Cye 2 ¢,f2, )»—CZ—legco/Z
£

>

we obtain (1.11) with ¢,/2 = .
The system (1.8) for U, , can be rewritten as follows

, 2
(18) [Um+l’ V]A+;(Um+l’ V): Yma
where Y,, is a known vector. The solution of the corresponding homogeneous system
satisfies
2
(112) [Um+1’ Um+1]A+ - IIU'"+1”2 =0.
T

From (1.11) and (1.12) it follows that the matrix of (1.8") is regular, if 2/t = 4.

The system (1.10) for U,s1/2> Upyq can be rewritten in the following equivalent
form

1
(1.107), ~(Ups, V) + [W, V], = T,
T

4
(1.10), ;(—3W+ Uit V) + [Upi s V] = Zp s

where T,, and Z,, are known vectors and
W=3Uu + 3U,., 1/2+
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'Let us consider t.he solution W, U, of the corresponding homogeneous system and
insert V' = 12Winto (1.10'); and V = Uy into (1.10°), to obtain

(1.13) T (Ups s, LRw) + 12[w,w], =0,

(1.14) 417 (U,ppy, =3W + 3Unir) + [Unst> Unerla = 0.
The sum of (1.13) and (1.14) yields

(1.15) 6t | Upst|® + [Upyy, Upirla + 12[W, W], =0.

Inserting V = U, into (1.10'),, we obtain

(1.16) [Vnisl? = =W, 0,2 Ju = Coe Wl [Unials -

Inserting V = W into (1.10'),, we obtain

120 W[ = 607 Uiy, W) + [Upsr Wi

Hence it follows, by virtue of (1.16), that

AW < 64U | [ + 22C, [Upia]ls W] =

< AW + 666) [Uy o+ 22C, U W]

= Gl + 10Cre + 30,00 (Ui + WD)
If we put & = /4, then
(L17) 12| W] < 62| W] + Cye G i+ 3%2)(]{&"““{ LWl

For 6/t = J, from (1.11) and (1.17) it follows that

(118) [V UperTa + 6 Ui [P+ 1200, W, + 20 W]7) — 22 2
> (zx e, (%1 i f})) U |2 + (M e, G +2 %)) Wiz

Consequently, for
2\ -1
1:<min{ach‘(%l+§£> , 6/1}

2 4 o

(1.15and (1.18) imply U,,,; = W = ©. Hence the matrix of (1.10) is regular, Q.E.D.
We shall assume that the space .# belongs to a family {.#,} (0 < h < 1) of sub-
spaces of H'(Q), which satisfy the following approximation assumptions:

There is a constant C,, and an integer r = 1, both independent of h, such that for
1 <5 <2randve H(Q)

inf {Jlo = o + v = i} = Co[]s

xeMy
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A parabolic regularity result will be formulated in terms of the following norms

u stoiu
1.19 Ullys = — + — , 20,
( ) " IW j=o |0t Leo(H2s - 2J) j=zo o L2(H2s+1-2j)
lullw-+ = Juleeu-1) >
u
(1.12) el = O+ |54 ] vz 0.
ot —

G* will denote the completion of the set

{ueC‘”(() +<0, 7)) | ai,.;—“vj =0 on I x <O,T)}
X

with respect to the norm |+ | ¢..
Moreover, we introduce the set
D* = {[¢, ]| 3u € G* such thatu(+,0) = @ on Qand du/dt + Au = fonQ x (0, T)}.

Thus D* is the set of data which give solutions in G°.

Lemma 1. (Parabolic regularity).
For s = 0, there is a constant C(s) such that

Jul

The proof is given in [3]. It uses the usual energy estimate, Gronwall’s lemma and
elliptic regularity.

ws = C(s) "“

Gs» ueG*.

2. ERROR ESTIMATES

For completeness, we present here the error estimate also for the first approxima-
tions, which was proved by Dupont [3].

Theorem 1. (Dupont). Let U,, be the values of the Crank-Nicolson Galerkin
approximation (1.8). (1.9), u,, the solution of (1.4), (1.5) at t = mrt. Let s = max (2, r)
and the pair [¢, f] e D".

Then such positive constants t,, Cy, C, exist that for 0 < 7 < 1,

(2.1) max ||U,, — u,|| < Cl{h2'||u”W, + 2|ufy:} £
0<m<M

= G + ) {{lollas + [ S} -

The main result of the present paper is the following.
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Theorem 2. Let U,, be the values of the second semi-variational approximation
(1.9), (1.10), u,, the solution of (1.4), (1.5) at t = mt. Let s = max (5, r) and the pair

[o,f]€e D

Then such positive constants t,, C5, C, exist that for 0 <1 < 1,

wr + T ulys} <

(32) max U = ] = Culh]u

s G + ) {[lo]2 + /]

Ws-x} .

Proof. First we shall define a projection of the solution u of (1.4), (1.5) into the
subspace #,,. For each t € 0, T) let W(+, t) € .#,, be determined by

(2.3) [u =W, V]i+iAu—-WV)=0, Ved,,

where /1 is a sufficiently large constant such that (1.11) holds.
We shall need the following

Lemma 2. There is a constant C, independent of h and u, such that for each
1e{0,Ty and for2 < s <2r,r 2 2, ue H(Q)
(24) W= ul +07Hw —ul s < Ch]ul..

The proof of Lemma 2 can be found e.g. in [4]. The immediate consequence

of this Lemma is

Lemma 3. There is a constant C such that if ue G',r 22 and n = W — u, then

on

el < Ch*|u|
ot

LX(H-1)

wr -

(25) (A [,\

Proof. From Lemma 1 we conclude that u € W'. Applying Lemma 2 to n and
onfot, we obtain

(2.6) Inl = ch*|luls,
on < Ch* ’ 01‘--1
ot -4 [ 0t 2,-1

and from there (2.5) follows.
Denote

(27) (so-m =Opt1 — Op, Ur: = %(Gm + 4a.nH-l/Z + 6m+1) H
40, = 0p —20p11)3 + Opsy = =30, + 30 + Opsy),

S =U, - Wy, =W, —u,, z,=U,—u,.
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We can see that the solution u of (1.4), (1.5) satisfies the equation
(28) Gﬁ v>+[u,v]A=(f,v>. 0<I<T, veH(Q).
ot

In fact, u € G* = W* with s = 5, therefore

du

ou u
a1

o] 2y + o

< 0.
L%(L,)

L2(H?)

Then u and au/at equal almost everywhere to a continuous mapping of the interval
{0, T) into H? and L,, respectively (see e.g. [5], p. 5) Accepting this continuity, we
come to (2.8) even for ¢ = 0 by the limit procedure.

Thus we may write

(2.9) ’;(&lm, o) + [uls o]y = f2a 0> + (omv), veH',
where
(2.10) gm=%5um—(%‘:>/\, m=01,..,M—1,
(2.11) g(dum, v) + [ty v]4 = {Sfp 0> + ((mov), veH',
where
(2.12) cm:%Aun,—(S(f;“) ., m=0,1,...M—1.

T ot )

Subtracting (2.9) and (2.11) from the corresponding equations (1.10), we derive
(2.13) Yoz V) + [0 V] = —(m V), Ve,
T
(2.14) Y Bz V) + [z V] = (G V), Ve,
T
Inserting z,, = 9,, + n,., V= 9,, and V = 9, respectively, we obtain

] I A A A A
(2]5) ;(59m5 9,:) + [‘9':’ ")mA]A = —T— (5’77715 '9m) - ['7».’ 19m]A - (Qrm ‘gm) >

(2.16) % (49,,59,) + (69 094 = — .4,(Aqm, 89) = [0t 690]a — (o 39,) -
T T
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If we multiply (2.15) by 12 and add to (2.16), we may write, using also (2.3)
6
Q1) S0~ 91 + D99, 010 + 1255 03], =
12 A A A
= — = (1 -9,") + 124(np, 90) — 12(0,,. ) —
T
4
= = (AN 88,) + HMms 39,) = (Coo 59,,) -
T

With the use of both (2.4) and the extension of the scalar product in L,, according
to (1.2), we obtain
6 i .
@18) (9 a* = 9% + 087 + 12827 = 2[58,> — 124]]> <
< Ce([[69a]F + 190 17) + Cath

where ¢ is an arbitrary small positive constant and

2 2
+ ”i’],: ”2”1 + ”leiz“l - (Cm’ 1519",)
-1

ER o

-1

Let us derive an estimate for |3, . To this end. insert ¥ = 92 and z,, = 9. + 1,
in(2.14):

4 .
(2.20) - (—39,:, + S(S,,, + Frt) s 9,:> +[09,. 9514 =
T
4 A N A v g
= - - (A”]m, 9m) - [qu’ ‘9"1]A - (’Sm' '9m) .
T

Using moreover (2.3), we arrive at
(31 914 = (010 82)] < A0ma] =1 9] -

Consequently, (2.20) yields
29217 = 6(19] + [Swesl) [92] + <Callo9u]( 695 ], +
Ol + Acfl08] -0 |9l + [<Cal [90] =

'9"'”2 + HS,,,«HHZ) + Cyt %("5.9'""% + ”3;:”%) +

+ 4] an, |-

< 6el 92 + c(

+ 4|90 |3 + 4C] A2 1 + Are 95T + Carlon,|*, +
+ & 8® + Cllal” -
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For sufficiently small ¢ we have the estimate

@21) [92]7 < c{llsmlP + [ [P+ [ Ana] 21+ { 21+ IITCmIIZ} +

! My
T

+ Cy(r + & + 72) |90 1 + 3Cat[69,]3 .
Let us use (2.21) in (2.18) to obtain
(222 219l = 190 + o0l + 120]52)2 <
< o991 + 1921 + Can +
+ CaflBnl + [0+ (x4 0+ 20 [9217 + <losy + et}

If ¢ and 7 are sufficiently small, we have the inequality
1
@23) —([9meal* = [9al%) + 19 ]* = CUIM + [Smea]* + Call* + v}

where the term ”9,,,“2 was added on both sides.

Lemma 4. (Discrete analogue of Gronwall’s inequality).
Let

(2.24) (Jows* = lenll®) + an = C{loal* + Jomed]* + 4.}

Q|

hold for
m=0,1,...M-1, 1=TM, 0<T<ow, a,=0.

Then positive constants 1, and C exist such that for0 < t < tgandj =1,2,..,. M
j=1 j-1
(2.25) [o;lI* + Zomm < C(Jloo]* + ZOTA,,,).

Proof. From (2.24) it follows that

(2.26) (1 = Ct) |tms|? = (1 + C1) |0, + 74, < CrA4,,.
Let us define
1 -Ct
o) =1 + Cr
If 7 is sufficiently small, then
(2.27) 0<go<g(t)"<g; <

holds for any 0 < m < Tjx.
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Multiplying (2.26) by (1 + Ct)~" g(r)" and using (2.27), we obtain
(2.28) 9O ome 1| = 9(O)™ Jom]® + va, £ Cy7A4,,,

where y and C, are some positive constants, independent of m and 7. Let us sum
up (2.28) from m = 0 to m = j — 1 to obtain

) j-1 j-1
a6 [ = oo + 70 L au < it A

Using again (2.27), we arrive at (2.25).
Applying Lemma 4 to

Um = ‘9m > am = “9"'"2 4 Am = ”TC'"HZ + l/jm,
we derive

i-1 i-t
@) I Xl S Ol + T + )
forj = 1,2, ..., M. The last term of (2.29) may be bounded as follows
i1 j-1
(2.30) — ZOT(C",, 59,,,) = —1 Z_l(éc,,,_l, 3,) — (‘L'Cj_l, 9,-) + (‘ECO, 90) <
j-1
< [Lol [0l + el o [ 185 + = X JoCu- ] 9] =
< 3% + H<lo® + |97 + Cuflol;-i ] +
j-1
VS 5 ot ).
Inserting (2.30) and (2.19) into (2.‘29), we obtain

9, (1 — &) + S elanl (1 — &) < clsal* + ).
where -
B = Ietol® + ety + ot +

2 2

# 5 (Il + lenls + | ane

+ Hl Mo
T

¥ un:,nil).

-1 -1

Choosing ¢ small enough, we shall have

(231) 81 = (9] + B

foranyj=0,1,..., M.
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By virtue of (2.7)

Izl = 19l + Inml s 19] = {zoll + o]l -
Consequently, (2.31) yields
(2.32) 2l = €lizoll + lnllccesy + By -

From (1.9) it follows
lzoll £ ¢ — x| xe 4.

Since ¢ € H**, s = r, there exist a constant C and y, € .4, such that

lo = 2l = Ch*[o],, = Ch*|u

lWr .
Hence we obtain

(2.3) J=o] < C¥ [l

Next let us estimate the terms of f3,,. We can check easily that

T

t/2
cm = J‘ Pl(sm) u(4)(sm) dS,,, + J PZ(Sm) u(4)(SM) ds'" >

(0] t/2
where
u® = ctulort, s, =t—mr, m=01,..,M-1,
) 1 2
Pis) =s*(— 5+ =s), Pyfs) =Py —5).
2 37
Consequently

v

m

t/2 T
o R R A U FOEC T
0

/2

where C is independent of 7 and u,

N4
Ct* 1 au

|| ar*

o*u

< C‘L’4 o
ot*

L*(L2)

(2.34) Gl

IIA

< Ct*f|ullys -
Le(H?)

Similarly,

T

/2
= Cpe1 — = J Py(s,,) u®(s,,) ds,, + J Py(sy) u®(s,) ds,, +

0 /2

317/2 21
¥ j 0x(5,) 4 (5. dsw + [ 01(5)u9(5,) ds,o,

T 31/2
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where

05(s) = Py(2t —5), Q4(s) = P,(2t — 5).

Consequently
IP(s)| < Cit®, Qs S Cit*s i = 1,2,
2t
6] < CZTSJ [u®(s,)|| ds, < 20,7 [u™|| ) < Cot*||uf s,
(0]
M-2
(239) S <o < cotfulis
m=0
Furthermore,

/2 T
m:JPﬁQWMM%+JPﬁmWMM%,

0 %)
where
P(s) = 1 s3<— ! + 1 s) Py(s) = P\(z — s),
12 3 2z
so that
[Ps)| = C?®, i=1,2.
Consequently

dsm ’

nmpgcﬁfwwmw@hgajwwm>
0

0

M-1 M-1 T

236) Y o) =Y cfj [ (s)]? dsp < CE¥u®) 2o, < C¥ulds .
m=0 m=0 0

Since

1 ] l / (m+ 1)t 6 (m+1/2)c 0
- Any, = ;(’7m = M 12 + ’7m+1) =- (J‘ rl‘dl “f '(’7d1> ’
T

-
T (m+1/2)¢ ot at
on

2 (m+ 1)t 2 (m+1/2)r
<! {( dt +j
-1 (m+1/2)t at —1 mt
(m+ 1)t
=1_1J
™m

mt

“ dt}:
-1

we have

! an,,
T

n

ot
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Hence
M-1

2 T 2 2
(2.37) Y lAnm T = j on dt = on .
m=0 ||T -1 ) ot -1 ot L2(H-1)
Similarly
(m+ 1)t
]~5nm =< r_lj on dt
T -1 mrt ot -1
and therefore
M-t 2 T 2 2
Yot 1511,,, < j @—’1 dt = on .
m=0 ||T -1 ollot]l-y Ot || Laqm-1)
Finally,
(2.38) Inml =1 < Elnal + 31mei 2]l + Hltmer] S Inlien -

Let us use (2.34), (2.35), (2.36), (2.37) and (2.38) to obtain
(2.39) e s ¢ ol + e}

From (2.32), (2.33), (2.39) and Lemma 3 it follows that
} <
Ot || 2qm-1y

< C(Rrullwr + *ullws), j=0,1,... M.

Note thatforO0 < r £ sandu € G*

(7;1‘
ot

|L2(H-1)

nwgcywww+wmm+#ww+ﬁ"

- < Julw-
Then Lemma 1 implies

Wl + < ulws < (5 + ) fuly- <
< (¥ + ) Julas = €O + <) (folas + 1)

and Theorem 2 is proved completely.

References

(11 I. Hlavdcek: On a semi-variational method for parabolic equations. Aplikace matematiky
17 (1972), 5, 327351, 18 (1973), 1, 43—64.

[21 J. Douglas, Jr., T. Dupont: Galerkin methods for parabolic equations. SIAM J. Numer.
Anal. 7 (1970), 4, 575—626.

[3] T. Dupont: Some L? error estimates for parabolic Galerkin methods.

[4] J. H. Bramble, J. E. Osborn: Rate of convergence estimates for non-selfadjoint eigenvalue
approximations. MRC Report 1232, Univ. Wisconsin, 1972.

[5]1 J. L. Lions: Equations differenticlles operationelles et problémes aux limites. Springer-Verlag,
Berlin, 1961.

340



Souhrn

L, — ODHADY CHYB SEMI-VARIACNI METODY
PRO PARABOLICKE ROVNICE

IvaN HLAVACEK

Je studovana konvergence semi-variaénich aproximaci [1] k feSeni smifené para-
bolické ulohy s nesamoadjungovanym operatorem druhého fddu a Neumannovou
okrajovou podminkou. Odhad chyby v L,-normé& se odvozuje postupem, ktery
navrhl Dupont [3] s pouZitim parabolické regularity a projekce, zavedené v praci
Bramble, Osborn [4]. Je dokazano, Ze druhi semi-variadni aproximace je &tvrtého
stupné v fase a maximalniho moZného stupné (v souladu s vlastnostmi uZitého
podprostoru koneénych prvkﬁ) v prostoru.
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