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I. INTRODUCTION

The problem of testing the null hypothesis H, against the alternatives K, K,, ...

.» K, where under H, the observations X;, ..., Xy are independent, identically
distributed with the common density fe % (some family of density functions),
and under K; the observations X, ..., Xy have the densities

(1) f1(x) = f(x, AC4), ..., fa(x) = f(x, ACyy)

with respect to the Lebesgue measure, respectively, for i = 1, ..., s, where f(x, 0) =
= f(x), has been considered in [7]. However, one sometimes encounters the situa-
tions where one has to decide which alternative of K, ..., K, is true when H, has
been rejected.

Therefore, let us construct a procedure, which allows us at first to test the hypo-
thesis H,, then if H, has been rejected, to decide which of K, ..., K, is true. The
problem was investigated by Pfanzagl [9] The slipage problem — a special case
of the combined problem of testing and classification was investigated by Mosteller [ 6],
Paulson [8], Truax [11], Karlin - Truax [5], Hall - Kudo [3], Hall - Kudo - Yeh [4].

The most of procedures suggested by these authors are based directly on observa-
tions rather than on ranks. On the other hand, the procedure proposed in this work
is based on ranks.

A combined decision rule for testing and classification may be characterized by
a vector-valued function

o(x) = {0o(x); 01(x), - > 0.x)}

where ¢(x), ¢(x) are the probabilities of accepting H, and K, respectively, i =
=1,...,5, when x is a realization of the random vector X = (Xl, ..» Xy). The
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functions ¢,(x), i = 0, 1, ..., s, have to satisfy the following conditions:
e{x) =20 foralli, Y ¢(x)=1 forallx.
o

Let Py, Py 4, ..., Py 4; Eo, Ey 4, ..., E; 4 be the probabilities and the expectations
under Hy, K, ..., K,, respectively.

We say that a decision rule has the significance level 1 — « if
2) Eo po(x) = J o(x) dPo(x) 2 1 — o

We shall try to find a (1 — a)-level decision rule (p(x) such that for some values of 4
() 3B o) 2 3 Eu 0i(X)

for any other (1 — a)-level decision rule ¢'(x) = {pg(x), @1(x), .... i(x)}.

Definition. A decision rule satisfying (3) is said to be optimal for the combined
problem of testing and classification.

1I. A GENERALIZATION OF NEYMAN-PEARSON’S LEMMA

Assume that the probability measures Py, P, ..., P, have the densities

So(x), f1(x), ..., f(x) with respect to a o-finite measure p defined on the space &
of the sample values x = (xy, ..., xy).

Denote the expectations with respect to Py, P,, ..., P, by Ey, E,, ..., E;. Consider
a decision rule of the form:

(4) po(x) =1, &(x), 0 if m{ixfi(x) <,=,> Cfolx),
px) = Efx), 0 if Imzﬁle,-(x) =,> fix),

for j=1,...,s,

where &q(x), &((x), ..., &(x) are arbitrary but subject to the condition that ¢ is a
decision rule and C is some constant.

Let ¢’ be another decision rule. Then:

(i) If E,@o(X) = Ep @o(X) then ilEi Pi(X) < ;Ei oX).
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(i) If E, po(X) 2 Eo ®o(X) and > Ei0i(X) = X Ei9(X)
=1 i=1

then ¢’ has the form (4) a.c.. Furﬂ;ermore,
Eo 9o(X) = Eo @o(X) unless E; po(X) =0 forall j.

(iii) For every a € (0, 1) there is a decision rule of the form (4) with &,(x) constant,
say &,, such that

5) Eo 0o(X) = 1 — .

(See Theorem 1 in [3].)

III. LOCALLY OPTIMAL RANK DECISION RULE

Let R = (R,, ..., Ry) be the vector of the ranks of X, ..., Xy and r = (ry, ..., ry)
be a realization of R.

Theorem 1. Let Hy, K, ..., K be the hypothesis and the alternatives defined by (1).
Suppose that f(x, 0) involved in (1) satisfies the following conditions:

(A tim [£(x, 0) = F()0 = F(x.0)

holds and f(x, 0) is absolutely continuous on some open interval containing the
point 0.

(A,) ‘}Ln(‘)lj‘io [/(x, 0)] dx = Jio |/(x,0)| dx < o0,

where f(x, 0) = of (x, 0)/20.
Define the decision rule ¢(R) = {¢o(R), ¢4(R), ..., ¢(R)} by
(6) oo(R)=1,¢, 0 if maxT(R)<,=,>C,,

1<i<s
@i(R) = &(R), 0 if maxT(R)=,> T(R) for j=1,..,s,
1giss

where
o) T(6) = 3. Cu B, O (X))

with XD < X® < .. < X™ being the ordered observations X;,X,,..., Xy,
and where C,, &,, are defined so that Eq 9o(R) = 1 — a, &4(R), ..., &(R) are arbi-
trary but subject to the condition that ¢ is a decision rule.

This decision rule is locally optimal within the class of all (1 — a)-level rank
decision rules in the sense that there exists an ¢ > 0 such that ¢ maximizes
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Z E; ¢i(R) uniformly for all 0 < A4 < & within the class {¢'(R)} of all possible

i=1

decision rules depending only on the ranks of X, ..., Xy.

Proof. First consider the combined problem of testing and classification of H,
against K, ..., K, with 4 fixed. Put B, = {X; R = r}. The sub-o-field generated
by R, say %, consists of all unions of such events, while the rest of the space &
where some coordinates coincide and R is not defined may be neglected, since its
probability is zero under all distributions determined by densities.

We have, under H,, Py{B,} = Po{R =1} = 1N

Introduce on 4, the so-called counting measure p which is defined by u(B,) = 1.
Then P; 4{B,}, i = 1,...,s, Po{B,} may be regarded as a density of P;, and P,
with respect to the counting measure p on the sub-o-field %#,. Applying the above
generalized Neyman - Pearson’s Lemma we obtain the optimal decision rule within
the class of all possible rules based on ranks for the combined problem of testing
and classification with each 4 fixed. The decision rule is given by:

(®) @o(r)=1,¢&,0 if maxP, R =r} <,=,>C,,

1<iZs
o r) =¢&(r), 0 if maxP,{R=r}=,>P{R=r} for j=1,..5.
1siss
On the other hand, if f(x, 0) has the properties (A,), (A,) then, by the proof
of Theorem 1 in [7], we obtain

PR =r} =1/N! + (A/N!)élc,.k Eo[ (X, 0)[/(XT)] + o(4)

= 1/N! + (4IN!) T|(r) + o(4) .

Consequently, there is an & > 0 such that (8) is equivalent to (6) for 0 < 4 < &.
This completes the proof.

IV. THE ASYMPTOTIC DETERMINATION OF CRITERIA

In general, the determination of the constants &, and C,, even the asymptotic
determination, is very difficult. Therefore, let us try to make an asymptotic deter-
mination of the constants for some special cases, which are, however, important
in practice, by examining the asymptotic behaviour of the distribution of the statistic
max Ty(R).

1<iss

1. The s-sample problem of slippage. Let X, ..., Xy be independent observations,
and let f,(x), ..., fy(x) be their densities, respectively, with respect to the Lebesgue
measure.
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Consider the hypothesis Hy and K, ..., K, where
9) Hy : fi(x) = f(x) forall j=1,..,N,
(10) K; :f(x) =f(x,4) forall jel,,
= f(x) forall je¢I,, i=1,...,s
with
Ih={1L2...n}; Iy={n +1,n, +2,..,n +n},...I =
={n +...+n_ +1L..,n +...+ng
where ny + ... + n, = N. Thus card (I,) = n,.

Assume that

(11) limn/N =4, (0 < 2; < 1foralli).

N- o

These alternatives are only a special case of the regression aiternatives defined
by (1) with
(12) C;j=1 forall jel,,

=0 forall j¢I,; i=1,2,...,5.

Applying Theorem 1 we obtain the locally optimal rank decision rule for the
combined of testing and classification of H, against K, ..., K,. The decision rule
is defined by

(13)  @o(R)=1,¢&, 0 if max T(R){/N <,=,>C,,

¢(R) = &(R), 0 if lnf;STi(R) =,>T(R) for j=1,..5,
where o
(14) T(R) = 3 ELX ™, 0 (X)) = T a(re )
with h N
(15) ay(k. f) = E@(U®.f), k=1,...N, .

o(u,f) = f(F'(u), 0)/f(F~"(u))

where U < ... < U™ is the ordered sample from the uniform distribution on
(0, 1), F(x) is the distribution function corresponding to
S(x), F~'(u) = inf{x; F(x) = u} .
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Lemma 1. Assume that
1
(16) 0<I(f)= J ¢o*(u, f)du < oo .
0
Then {T,(R)[{/N, ..., T(R)/\/N} is, under Hy, asymptotically degenerated s-variate
normal with the mean vector zero and the covariance matrix {2(0;; — 2;)I(f)}
where 6;; = 1,0as i = j, i & j, respectively.

Proof. Let Z,, ..., Zy be the normal random vector with the mean vector zero and
the covariance matrix defined in Lemma 1. According to Theorem V.2.1 in [2] the

assertion of Lemma 1 will be proved if we can show that Z 0; T(R)/{/N converges
in distribution to Z 0,Z, for any real numbers 0s.
i=1

Actually, it is easy to see that
Eo[T(R)] = EZ, =0 foralli,
N
cov (T(R)[\/N . T(R)[JN) ~ (n/N) (;; — n;[N)N 'lk;aﬁ(k,f)

(see Theorem I1.3.1.d in [2] and note that

ay = N"' Y an(k.f) = Y E{o(U,.1) |R, = k} P{R, = k} =

1
=Eo(U,,f) :-[(p(u,f)du =J‘ f(x,0)dx =0,
(0] — o0 -
by the conditions (Al), (Az), where R,, ..., Ry are the ranks of the observations
Uy, ..., Uy from the uniform distribution on (0, 1). Consequently, cov (T(R)/\/N,

(R)/\/N) converges to A(d,; — A;)I(f) = cov(Z;, Z;) as N - oo. On the other
hand, we have

SO TRIN =X G0 ay(Ro /) where C(0) = 3 0(Culy/N)

i=

with C;,’s given by (12). Furthermore,

ki[(cfk = CONTL(Co = TINNT = (mIN) (5 = mN) = 4o = 7).
max(C,k— J)?IN >0 as N - co, w1thC~—ZC/N for all11_1

Thus the conditions of Corollary 5 in [7] are fulﬁlled and by this corollary

ZOL. T{(R)/\{/N is asymptotically normal with the mean zero and the variance
i=1

>, 0:0; )(‘ - j) I(f) which are the mean and the variance of the normally
1] 1

distributed random variable 2 0;Z;. Q.E.D.

i=
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Let us now return to the asymptotic determination of C, involved in (13) such that
Eo 9o(R) = 1 — . It follows from Lemma 1 that

(17) lim P{ max T(R)/\N < C,} = P{max Z; < C,}.
N-

1Ziss 1<iss

With no loss of generality we can suppose that I(f) = 1. The correlation coef-
ficient between Z; and Z; is equal to

(18) 0i; = —Aikil[A(L = &) 2,(1 = 2)]'* < 0.

Hence, according to Slepian’s result [10] and Bonferroni’s inequality, we obtain:

(19) 1Y PiZo, 2 C}} £ P{Z, < Cioy. ... Z, < Clo} < [[ P{Zifo, < C3)

with o2 = var (Z;) = A{l — 4;).
Let ®(x) be the standardized normal distribution function. Then Z,-/a,. has the
distribution function ®(x). Putting C" = C[a; we obtain

(20) 1Y [1 -] £ Pz <G Z, < O S [19(Cloy).

Let C,, C{1, C'* be the constants defined so that

(21) P{lnze}f Z;<C}=1-u,

L =3 [1 = o(CVo)] =

o < 1-

I
—_
|
R

then we have
(22) chzcC zcY.

We can expect that, with o sufficiently small, C{", C{»’ differ from each other very
little. Hence choosing, for example, C, = C{" we obtain
(23) P{max T(R)/\/N < C,} =1 —«a
1<i<s
if N is sufficiently large.

The following table provides a comparison of differences between C{!’ and C'»
for the case where ny = n, = ... = n, (then o7 = 2,(1 — 4;) =(1 — 1[5)[s) at the
significance levels 1 — o = 95% and 1 — « = 90%. In this case the constants C!",
C? are defined by the equations

(24) O[C sl (s = )] =1 —0ofs,
O[CP . s[((s — )] = (1 — ).
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Table of values C{V), C{®) with 1 — o = 95%, 90%, and s = 2 (1) 10, n; = ny = ... = n

|

& i 1— o= 95% | 1— o= 90% }
| !
s |
1 | {
| 1 ‘ | |
20 0980 | 09776 | 0824 ' 08156 |
3. 10073 | 10040 | 08652 0-8561
4 09735 09694 | 08487 0:8404
5 09305 09280 08210 0-8140
6 | 08994 0-8956 | 0-7972 } 0-7860
7. 08628 0-8593 07653 | 07561
8§ | 08306 08289 07422 | 07339 |
9 | 08040 | 08024 | 07238 | 07159
10 | 07728 i 0-7713 06979 | 06913
|

2. The shift problem. Consider the combined problem of testing and classification
where we test the hypothesis H, against the alternatives K, ..., Ky_, defined as
follows:

Let X, ..., Xy be independent random observations, which have the absolutely
continuous distribution functions with the densities f,(x), ..., fy(x), respectively.
Let

Ho :fi(x) = ... = fy(x) = f(x),
andlet K, i = 1,..., N — 1, be the alternatives under which the shift in a parameter

involved in the distribution function of X’s occurs at the i-th time point. That is, the
alternatives are defined by

(25) Kit filx) = . = fi(x) = /(x),
fi+1(x) = ... fiv(x) =f(x,A),

It

where f(x, 0) = f(x).

Suppose that f(x, 0) satisfies the conditions (A,), (A,) of Theorem 1. The alterna-
tives have the form of the regression alternatives considered in Theorem 1 with
the regression constants defined by

(26) C;=0, 1ifj<i, jzi+1, respectively, i=1,...N—1.

Applying Theorem 1 we obtain the locally optimal decision rule at the significance
level 1 — a. The decision rule is given by

27)  @o(R)=1,¢,, 0 if Ay'maxT(R)<,=,>C,,
N

¢ (R) = &(R), 0 if max T(R) =, > T(R) for j=1,...N ~1,
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where Ti(R) are defined by
N
(28) T(R) = ) laN(Rkaf)
k=i+
with ay(j, f) defined by (15) and where
N

(29) Ay =Y ai(i, f) -

=1

In order to determine asymptotically C, so that E, <pO(R) =1 — a, let us prove
the following lemma:

Consider the stochastic process

(30) Ty.(R) = i::lCN(j’ 1) ay(R;, f)

where 0 £t £ 1 and

(31) Ca(ji1) =0 if j <IN,
=j—tN if INSj<iIN+1,
=1 if IN+1=Z75.

Then Ty (R) determines a probability distribution on the space (Z, ¢) where Z
is the space of all continuous functions on [O, ]] with the usual metric

Iz =z = jnax |zu(0) = z2(0)] . z1.22€Z
<11

and % denotes the sigma-field of Borel subsets of Z, i.e. the smallest sigma-field
containing all open subsets (see Sections V.3.1 and V.3.5 in [2]).

Lemma 2. Assume that the function ¢(u, f) given by (15) is square integrable
on (0, 1), non-constant,

1
.[ ¢o*(u, f)du < o,

0
and that

(32) N~!' max a}(j,f)—0.

1SjsN

Then the stochastic process Ay' Ty (R) converges, under HO, in distribution
in (Z, %) to the Brownian bridge z,(1).

Proof. First note that the stochastic process may be written in the form
N
(33) Tv.(R) = ¥, Cu(D, 1) ax(j. f)
j=1
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where D, ..., Dy are the antiranks of X, ..., Xy defined as follows:
D; =k ifandonlyif R,=j.

The vector of antiranks (Dy, ..., Dy) has, under H,, the same distribution as
(Ry, ... Ry), i.e. (Dy, ..., Dy) is also uniformly distributed. We observe that the
stochastlc process Ay' Ty (R) takes on the form of the stochastic process given
by (2) of Section V.3.5. in [2], where our ay(j, f), Cy(D;, 1) play the role of Hajek -
Sidak’s C; — C, ay(R;, 1), respectively, since

N

1 o0
ZaN(.i,_f)=Nf<p(u,f)du=Nj f(x,0)dx =0,
j=1 0 -
by the conditions (A,), (A,)

Note that, by (32),

i
(34) Ay* max ay(j, f) ~ max aN(j,f)/NJ‘ o*(u, f)du -0
J J 0

(see (18) of Theorem V.1.4.b in [2]), hence the conditions of Theorem V.3.5 in [2]
are satisfied and it follows from the cited theorem that the stochastic process
Ty.(R)[Ay converges in distribution in (Z, %) to the Brownian bridge z,(t). Q.E.D.

Let us now return to the problem of asymptotic determination of C, such that
E, @o(R) = 1 — a. Note that

Ty.o(R) = éGN(RJ,f) =0,
Ty {R) =‘:kﬁ+1a~(Rj,f) + (k — tN) ay(Ry. f)

for all te[(k — 1)/N,k/N], k = 1, ..., N; therefore

(35) max Ty (R) = max {0, T\(R), .... Ty_(R)} .

0sts1
It follows from (35) that if C, = 0 then

(36) ]1m P{ max T{(R)[Ay < C,} =

- 1<isN-1

= lim P{ max Ty (R)/4y < C,} =

N—o 0<t=s1
= P{ max Lm(t) <G} =1-exp(-2C})
[

(see, for example, Doob [1]). Consequently, defining

(37) C,=[(—12)Ina]? for 0<a<1,
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we obtain from (36)

(38) Eo 9o(R) » P{ max T(R)JAy < C,}~1—u

1<isN—1
for N sufficiently large.

Remark. The condition (32) is always satisfied whenever ¢(u, f) is bounded.
The following lemma states that the condition (32) is fulfilled under rather smooth
restriction placed on <p(u,f) which generates the scores aN(j,f).

Lemma 3. Assume that the function ¢(u), 0 < u < 1, may be expressed as the
finite sum of monotone, square integrable functions. Then the following relations
hold for the scores af(j) = E o(UY) and the so-called approximate scores ay(j) =

= o(il(N + D):

(39) N™!' max [a§(j)]? = 0,
15jsN

(40) N~'max ai(j) —-0.
1<jsN

Proof. First, let us prove the relation (40) for the function ¢ which is supposed
to be monotone, square integrable. We may also assume naturally that ¢ is non-
decreasing and that

lim@(u) <0, limp(u) > 0.
u—1

u—-0

In such a case we have
<p(l/(N + ])) <0, (/)(N/(N +1)>0

for N large enough and

IIA

) N a0 = (6 ) max 20108 D D

< v gy ma {0y [0 a0

0 N/(N+1)

since

1
f ¢*(u) du < oo

0

Consider the case where

r

(p(u) = i:ZI (] l-(ll)
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with ¢,(u) monotone, square integrable. Then

N~" max az(j) = N~' max [f o (jIIN + 1)) = riN‘l max @7(j/(N + 1)) =0

1<jEN 1<jEN i=1 i=1 1ZjEN

by the above result. Let [y] denote the entier of real number y.
In order to prove (39), note that, according to Theorem V.1.4.b and Lemma
V.1.6.ain [2],

j Tag(l + [uN]) = ax(l + [uN])]? du = 2 f Tas(l + [uN]) — o] du +
i 2fI[aN(1 T [uN]) = p()] du 0.

It follows from this that
N~ ' max [a§(j)]* £ 2N7! max [a'/’(j — ay()]? + 2N " max a3(j) £
J J

< 2N~ Z [a%()) — aN( )]> + 2N max aﬁ(j) =

J[aN + [uN]) = ax(1 + [uN])]? du + 2N~ max a2(j) 0 .

1<jEN

V. LOCALLY OPTIMAL RANK DECISION RULE FOR TESTING THE HYPOTHESIS
WITH SYMMETRIC DENSITY

Let us consider the combined problem of testing and classification where the
density under the hypothesis is symmetric.

Suppose that the independent observations X, ..., Xy have the densities f(x), ...
.. fu(x) with respect to the Lebesgue measure. Let Hj and K%, ..., KX be the hypo-
thesis and the alternatives where

(42) H} ‘fl(x) = =fN(x) (x) with f f(lx
K* fl(x) f(X Acxl) fN(X) = f(x’ AC:‘N)
with f(x,0) = f(x)and i = 1,...,s
Denote the probability measures and the expectations under HX K* ... K¥*
by P, P ... Pry Eo Ef 4 . L EF .| Xy by
R{,...Ry. Let r = (ry,...,ry), v=(vy,...,vy) be a realization of the vector
of ranks R* = (R{, ..., R;) and the vector sign X = (sign x, ..., sign xy).

Theorem 2. Suppose that the function f(x, 0) involved in K satisfies the following
conditions:

(B1) ]gifl [f(x,0) = f(x)]/0 = f(x,0) ae..
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Further, there exist two functions t(x) defined only for x = 0 and u(x) (u(x) is not
necessarily defined for x + +1) such tl1atf(x, 0) may be expressed in the form:
f(x,0) = u(sign x) 1(|x|). Besides it f(x, 0) is supposed to be absolutely continuous
in 0 on some interval containing the point zero.

(B2) iﬂffummmxszmxmmx<w

with f(x, 0) = of(x, 0)/00.
Define a (1 — a)-level rank decision rule by

(43)

@o(R",sign X) =1, &, 0 if ]n:zi( T{(R*,signX) <, =, > C,,
@;(R*,sign X) = &(R*,sign X), 0 if ln;?},T‘(R+’ sign X) =, > T(R", sign X)
where o

(44 T sign X) = 3 Cyalsign X0 EXTHX] ) (X|)

for j=1,...5.

Then there exists an ¢ > 0 such that
S
Y Ef, o(R", sign X)
i=1

is maximum within the class of all (1 — o)-level decision rules depending only
on R* and sign X for all0 < A < e.

Proof. Note that R* and sign X are mutually independent under H{ and
PH{R* = r,sign X = v} = 1/(N!2"), hence, applying the generalized Neyman -
- Pearson’s Lemma, we obtain the optimal decision rule within the class of all
(1 — a)-level decision rules depending only on R* and sign X for the combined
problem of testing and classification of Hj against K%, ..., KX with each 4 fixed.
The decision rule is defined by:

oo(r,v) =1, &, if  max P{,R" =r,signX =v; <,=,>(,,
45 1, & 0 if FAlRT i J C

1=iss

@;(r.v) = &(r,v), 0 if max P} {R" = r,signX

1<iZs

=, > P/ ,{R"

I
=

Il

r,sign X = vy
forj=1,...,5s.

In the same way as in the proof of Theorem 2 in [7] we easily obtain
lim [2"N! P} {R* = r,sign X = v} — 1]/4 = T(r, ).
A4-0

164



Consequently there exists an ¢ > 0 such that (45) is equivalent to (43) for all
0<4=e QE.D.

Corollary 1. Put in (42) f(x, 0) = f(x — 0) and suppose that
(B 1*)  f(x) is absolutely continuous and f(x) = f(]xl) ,
(B2*) [2,]f"(x)] dx < oo where f'(x) denotes the a.e. derivative of f(x).

Then the rank decision rule defined by (43) with (44) replaced by
N
(46) Tj(r, sign X) :k; C sign X E5[ —f'(1X[ ™)/ £(|X]")]

is locally optimal within the class of all (I — a)-level decision rules depending
only on RY and sign X for the combined problem of testing and classification
of H against K¥, ..., K.

Proof. Itis easy to verify that the conditions (B 1), (B 2) are satisfied with u(x) = x,
t(x) = f'(x) provided the conditions (B 1*), (B 2*) hold, since f'(x) = (sign x) .
.f(Jx]). Consequently, Corollary 1 follows from Theorem 2.

Corollary 2. Put in (42) f(x, 0) = exp (—0) f(x exp (=0)) and suppose that the
condition (B 1*) and

(B 2%%) r |x //(x)] dx < oo

-

hold. Then the rank decision rule defined by (43) with (44) replaced by

N
(47) T(r,sign X) =Y, Cy EX—1— [X|¢,-,(>f,(|X[(rk))/f(lxl(rk))]
k=1
= T/(r), say, for j=1,....5
is locally optimal in the sense described in Corollary 1.

Proof. Suppose that the conditions (B 1*) and (B 2**) hold, then (B 1) and (B 2)
are satisfied with u(x) = 1, #(x) = —1 — x f'(x)/f(x) since f(x,0) = f(|x],0) =
= —1 — xf'(|x)[f(|x|). Consequently, the assertion of Corollary 2 follows from
Theorem 2.

Remark. It is easy to verify that (46), (47) may be written in the form
N
(48) T,(r,sign X) = Y Cj, sign X,a \(r, f),
k=T

(49) T;(’) :kzl Cjk a;N(rk,f) >
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where

afs(k.f) = E@,(JUY + 4. 1) with o,(u,f) = —f'(F ")) [f(F ()],
aj\(k,f) = E@y(3U® + 1, f) with ., f) =
= =1 = F '(u) f'(F~ ' (w)/f(F'(w)),

fork=1,..,Nand for 0 < u < 1.

In order to determine asymptotically the constant C, such that the rank decision
rule given by (43) with Tj(r, sign X) defined by (48), (49) has the significance level
1 — a, let us note that if K7, ..., K* are the s-sample slippage or shift alternatives,
i.e. the regression constants C;, take on the form (12) or (26), then the method of the
asymptotic determination of C, in Paragraph IV remains valid for the rank descision
rule defined by (43) or (49) since R™ is, under Hj, uniformly distributed.

As to the signed rank decision rule defined by (43) and (48), it is difficult to deter-
mine C, for the regression constants of the form (26). On the contrary, it is easy
to determine C, for Cj, of the form (12).

Actually, suppose that Cj, take on the form (12), then (48) reduces to
(50) Tj(r,sign X) =Y sign X, ay(r. f) -
el j

We have, for i + j
cov (T(R*, sign X), T(R*, sign X)) =

=Y Y Ej{sign X, sign X, a{y(R, ) ain(RS, )} =0

mel; kel j
since sign X, sign X,, R* are mutually independent for m =+ k and Ej sign X, = 0
because f(x) is symmetric about zero. Furthermore it is easy to see that the joint
distribution of the vector (Ty(R*,sign X)/\/N, ..., T(R", sign X)[{/N) converges
to the s-variate normal distribution with the mean zero and the covariance matrix

{6,;} where o;; = O for i + jand o;; = A, I(f) forall i,j =1,...,s.

Consequently,

(51) lim P{ max T(R", sign X)/\/N < C,} =

N—- o 15j<s

= P{maxZ, < C,) = f[lp{z; <c) = f[lm(c,/\/(g, 1))

15jss

where Zi, ..., Z, denote the normally distributed independent random variables
with the mean zero and the variances A, I(f), ..., A, I(f), respectively. It follows
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from (51) that C, may be defined so that
Ef po(R*, sign X) ~ P{ max T(R",signX) < C,} =~ | —«
<jss
for N large enough.
Remark. Omitting the classification of Ky, ..., K and of K¥, ..., K* we obtain

rank tests from the locally optimal decision rules given by (6), (7) and (43), (44).
The rank tests are defined as follows:

(52) Y(R) =1—¢o(R) =1, &, 0 if maxT(R) >, =, <C,,
1<iss
(53) Y(RY,sign X) = 1 — go(R*, sign X) = 1, &, 0 if
max T(R",signX) >, =, <C,.
1<i<s

We expect that the rank tests for testing Hy, Hy against K, ..., K,and K}, ..., KX,
respectively, will have some good properties. However, the investigation of the
properties of the above rank tests is out of the framework of this article.
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Souhrn

PORADOVA ROZHODOVACi PROCEDURA PRO KOMBINOVANY
PROBLEM TESTOVANIi A KLASIFIKACE

NGUYEN VAN Huu

Clanek se tyka problému testovani hypotézy nahodnosti proti skuping regresnich
alternativ, kombinovaného s nasledujicim rozhodnutim, kterd z alternativ plati.
Jsou navrzeny potfadové rozhodovaci procedury pro tento problém, které jsou
lokalné optimalni. V nékterych specialnich pfipadech jsou téZ studovana asympto-
ticka rozloZeni testovacich statistik.
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