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SVAZEK 19 (1974) APLIKACE MATEMATIKY ClsLo 2

SOLUTION OF THE FIRST BIHARMONIC PROBLEM
BY THE METHOD OF LEAST SQUARES ON THE BOUNDARY

KAREL REKTORYS and VACLAV ZAHRADNIK

(Received September 3, 1973)

Some problems of plane elasticity lead to the solution of biharmonic problem
(1.1), (1.2). (See, in more details, in Chap. 2, p. 103.) Many methods have been deve-
lopped to the solution of this problem (the method of finite differences, the finite
element method, classical variational methods, methods based on the theory of func-
tions of a complex variable, etc.). In this paper, the method of least squares on the
boundary is investigated, having its specific preferances. In the first part (Chap. 1 —35,
p. 101 —114), the algorithm of this method and a numerical example are given. This
part is determined first to ““consumers’” of mathematics and is written in more details.
In Chap. 6, the proof of convergence of the method is given. This part is determined
first to mathematicians.

Applied to the solution of the biharmonic problem, the method takes an essential
use of the form of equation (1.1). As to its idea itself, it can be applied — in proper
modifications — also to the solution of other problems.

1. INTRODUCTION

In problems of the theory of elasticity, we meet frequently the so-called first
biharmonic problem

(1.1) AU =0 in G,
(12) U = g4(s). ?alv] —g\(s) on T,

where G is a plane bounded simply connected region with the boundary I'. Here,
go(s), g4(s) are given functions, s is the length of arc on the boundary, dU/[dv the
outward-normal derivative of U(x, y) on I'. Assumptions concerning the boundary I’
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and the functions g(s), g,(s) will be stated later (p. 117). They will be sufficiently
general to include boundaries and loadings (single loads including) we meet most
frequently in applications of the theory of two-dimensional elasticity.

Many methods have been elaborated for solution, or approximate solution,
of problem (1.1), (1.2), having specific preferances and disadvantages: The method
of finite differences is rather simple and universal. However, it yields approximate
values of the required function U(x, y) only at discrete points of the net. If second
derivatives of U(x, y) (which are of particular interest in problems of theory of
elasticity, because they give components of the stress tensor) are then replaced by
the corresponding second difference-quotients, the accuracy of these approximations
is not satisfactory, in general. A similar property has, in a certain degree, the finite
element method. As to classical variational methods, the difficulty lies in finding
a function w(x, y) (of a certain class of functions) which fulfills conditions (1.2).
The method based on application of the theory of functions of a complex variable
is rather complicated.

In this paper, we shall investigate a method which makes particular use of the form
of equation (1.1). It can be called the method of least squares on the boundary.
It is closely connected with the method given in [2], p. 285 and with variational
methods given in [3], Part IV. Its idea is the following:

Let us consider the system of biharmonic polynomials

(1.3) (%, p),  za(x, ), e
(see, in details, in Chap. 3, p. 106), choose a positive integer n and assume the approxi-
mate solution of problem (1.1), (1.2) in the form

4n—-2

(1.4) U y) = X anizi(x.3) -

(Why we consider precisely 4n— 2 terms, becomes clear in Chap. 3.) Each of functions
(1.3) being biharmonic, the function (1.4) is also biharmonic, and thus satisfies
equation (l.l), whatever are the constants a,;. We now choose these constants in
such a way that

2 2
(1.5) (U, — go)*ds + Un _ 490 ds + WUn _ g ) ds = min.
r r\ 0s ds r\ v

among all expressions of the form

2 2
(1.6) (Ve — go)* ds + Vo _ 490 ds + <?~V—" — g1> ds,
r r\ 08 ds r\ ov

where
4n—2

(1.7) Vix, y) = i; bui 24X, ) -
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We shall see [ cf. (4.10), p. 109] that condition (1.5) leads to a system of 4n—2 linear
algebraic equations to determine the coefficients a,; (i = 1, ..., 4n—2)in (1.4). This
system will be shown to be uniquely solvable. We show further that under rather
natural assumptions on the boundary I' and functions g(s), g,(s), the expression
on the left-hand side of (1.5) can be made arbitrarily small if n is sufficiently large
(thus, in this sense, the given boundary conditions can be approximated with an
arbitrary accuracy) and that for n — oo the sequence {U,,(x, y)} converges in the
mean to a certain function U(x, y) which is uniquely determined by the given functions
9o(s). g1(s) and which is a solution (eventually in a generalized sense) of the problem
(1.1). (1.2). The proof of these assertions is not easy and, therefore, is left to Chap. 6,
because our aim is to make first the reader familiar with the method itself and its
application. In the following chapter, we show what kinds of problems of the theory
of elasticity lead to the solution of the biharmonic problem (which is typical for
application of our method). In Chap. 3 we shall briefly discuss the fundamental
system of biharmonic polynomials, in Chap. 4 our method itself in details, in Chap. 5
we present a numerical example and in Chap. 6 we give the proof of convergence.

2. THE BIHARMONIC PROBLEM

Problems of the type (1.1), (1.2) are of particular interest in the theory of the so-
called plane or two-dimensional elasticity, especially in the theory of wall-beams.
As well-known (see e.g. [2], p. 59), if a plane simply connected body G is in a state
of stress, characterized by components o,, 0,, 7,, of the stress-tensor fulfilling equa-
tions of static equilibrium and the equation of compatibility, then there exists a bi-
harmonic function U(x, y), the so-called Airy function, the derivatives of which
these components are,

2 N2 2
(2.1) oxzﬂ, a‘,:UU, r_”.=-—ﬂ]—.
oy* T ox? : Ox dy

Conversely, if U(x, y) is an arbitrary biharmonic function in G, then functions (2.1)
satisfy the equilibrium equations and the equation of compatibility, and thus cha-
racterize a certain state of stress in G.

Let s be the parameter of arc on I', 0 < s < I, where [ is the length of I' and let s
be increasing if we run through I in the positive sense of its orientation (leaving G
to the left-hand side). Let the point of I' corresponding to s = 0 be denoted by A.
Let, further, the loading on I" be given by the stress vector V(s) with components
X(s), Y(s). If we put 0U[ox = 0, 0U[dy = O at the point 4, then (see [2], p. 73),
on I', the derivatives 0U[dx, 0U[dy of the Airy function U(x, y) are given by

2) %i—](s) - - J Y1) dt, Z—i}j(s) - J X(1)dt .

[ 0
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The functions %q (s), fiy (s) being known on I', we get in the usual way the
x oy

functions ou (s), ud s),
Js ov
(2.3) w__ %, 9,
ds 0x Jdy
(2.4) w_ &, %,
ov ox dy

where v,(s), v,(s) are components of the outward normal v. Then, putting U = 0
at the point 4, we get

25) U(s) = f S %% (1) dt

In this way, we come to the problem (1.1), (1.2). See the following Example 2.1.

It follows from (2.2) that the value of the function 0U[dy or —aU[dx at the point
B(s), is given by the y- or x-component, respectively, of the resulting vector of the
loading on I', considered between the points 4, B with parameters 0 and s. In this
sense, it is possible to take also single loads into considerations; at the points, where
these single loads are acting, the functions 0U/dx and dU[dy (or at least one of them)
are then discontinuous. In what follows, we shall assume that the point 4 (with the
parameter s = 0) is chosen in such a way that no single load is acting there. Then
the functions 0U|dx, 0U|dy are continuous at the point A [i.e. it holds

im Y=Y 0), tim Y=

s=1- 0X ox s=1— 0y dy

)]

if and only if the loading satisfies the condition of static equilibrium in forces. The
function U(s) is then continuous if and only if the loading satisfies also the condition
of equilibrium of moments.

Example 2.1. Let us consider a rectangular body G loaded as shown in Fig. 1.
Thus we have 0 < s < 2(a + b), while s = 0 at the point A(a, 0). In details, ‘
0<s<b on AB,
b<s<a+b on BC,
a+ b<s<a+?2b on CD,

a+2b<s<2a+b) on DA.
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From Fig. 1 it first follows

X(s) =0, so that g—[—](s)EO.
ay

Further, according to (2.2) (we have Y (s) = —gq on BC, etc.)

y
T T T 17 1T 1iq
C(o,b) Bfa, b)

a a a

4 o 2 o 4
T i

0=D(0,0/ S T
R1= 2 Rz= 2
Fig. 1.
(2.6) O_U (s) = on AB,
0x

= qa on CD,
= qa on DE,
=44 on EF,
2
=0 on FA.
Evidently, we have
0 f 7
_U:(?_b_ n AB, QL_J:_QL on BC, Q(_]:~QL_/ on
Js Oy 0Os ox 0ds dy
0~U = G_U on DA.
ds 0x

Integrating with respect to s and using (2.6), we get
(2.7) U(s)=0 on AB,

AV
z_ﬂ(izb)\ on BC,

CD,
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2
ga’
=-——2-+qa(s—a—2b) on DE,
z 5
———ga—+—~~l~gE s—22 _2p on EF,
2 4 2 4
=0 on FA.
Further, we have
ou 0
iaE=~—— on AB, ij:—a—g on BC, ai]=—§-q on CD,
v 0x ov dy av 0x
au = — v on DA
ov 0y
Consequently
oU
(2.8) i (s) = on AB,
v
=0 on BC,
= — qa on CD,
=0 on DA.
3. BIHARMONIC POLYNOMIALS
Let us consider a system of polynomials (cf. [4])
k ' m . .
(3.1) H{"(x,y) = (-1) <2i> xmo2iy2 for m=0,1,2,...,
i=0

k+r—1
(32) HY(x,y) = Z (1) (21 4 1) mo2ily2itl - for mo=1,2,...
(m) : i) m-2i 2i
(33) HY'(x, ) =’Z1(_1) 1(21, xm~ 2y for m=23,...

k+r—1
(4) HE(xy) = ¥ (- (2 +]>x"'_2i"1y2i“ for m=3,4,....
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Here, m is the degree of the polynomial,

m . . . .
- if m is even, 0 if m is even,

2
k=|:m]=< r=2.{m}=\_/
2  m 1 . . 2 ™ . .
N— — 5 if m is odd, 1 ifmisodd.

For example

0
HP(x, y) =_zo(—1>i<§i)x—2iy2f (1) x 100 = 1,

0+1—1 ' 1 ) '
H(zl)(x’ y) = ZO (_])z <2i N 1>x1"2‘—1y2‘“ _ (__])o x 1x%! =y,

etc.

The polynomials (3.1) —(3.4) are biharmonic [ they satisfy the biharmonic equation
(1.1)], the polynomials H{"\(x, y), Hy"(x, y) are even harmonic.

Let us order the polynomials (3.1)—(3.4) according to their increasing degree,
while polynomials of the same degree be ordered according to their increasing lower
suffix. In this way, we get a sequence of polynomials

(35) zix, ) = HO(x, ), za(x,y) = HO(x, y), za(x, ¥) = HP(x, p),s -...

Thus
(3.6) zy(x, y) =1,

(x, y) =x, zy(x,y) =y,

za(x, ) = X2 — »?, zs(x,p) = 2xy, ze(x, y) = — ¥,

zo(x, y) = x* = 3xp%, zg(x, ) =3x%y — »*, zg(x, y) = —3xp%, zyo(x, ¥) = — )3,

etc. It easily follows from the given construction that for every fixed n = 2 we shall
have precisely 4n — 2 polynomials of order <n.

The following theorem holds (see e.g. [4]):

Theorem 3.1. In every region G, polynomials (3.5) are linearly independ ent.
Every biharmonic polynomial [thus every polynomial satisfying equation (1.1)]
of degree p can be expressed, even in a unique way, as a linear combination of poly-
nomials (3.5) of order <p.
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4. METHOD OF LEAST SQUARES ON THE BOUNDARY

The basic idea of this method has been briefly mentioned at the beginning of this
paper. Let us choose a positive integer n = 2 and assume an approximate solution
of problem (1.1), (1.2) in the form

4n—2

(4.1) Ulx,y) = Z a;zi{x,y), nz?2

where z,(x, y) are the first 4n — 2 terms of the sequence (3.5) [ thus just all polynomials
(3.1)—(3.4) of degree <n] and a,; are determined (uniquely, as will be shown in
Chap. 6) by the condition that

1 1 2 3 2
(42) F(U,) = | (U, — go)* ds + Uy _ 490 ds + U _ g, | ds = min.
° o\ 0s ds o\ Ov

among all expressions of the form

2 1 2 .
43) F) = [ 0n—goas + [ (P =990V as o [(Pe - g Yas,
0 0 65 ds o\ OV

where
4n—2
(44) I/n(x’ _V) = Zlbni Zi(X’ }’) ’

i.e. that the functional F, considered on the set of functions (4.4), be minimal just
for the function (4.1).

If we write (4.3) in details, we get
1
(45)  F(V) = F(burs oo by an ) :J(b,,lzl o by 2 s — g0) ds +
0

oo ) dgo)?
| (b S8+ by, 2 SO0 g
o 0s ds ds

! oz 0z 2
+ Byy—t 4+ oo+ byagr =2 — g, ) ds.
J( o an=z o 1,

0

Obviously, the value of F(V,) depends only on b, ..., b, 4,—o [thus we write
F(V,) = F(bpys - byan—2)], because go(s), g4(s) are given functions and the values
of functions z,(x, y) and of their derivatives with respect to s and v, on the boundary,
are also known. It follows from (4.5) that F(V,) is a quadratic function in b,;. According
to (4.2), this function should attain for b,; = a,y, ..., by 4n—2 = dy 4n—» its minimal
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value. A necessary (and in our case obviously also sufficient) condition for this is
that the following equations be satisfied:

oF oF

(4.6) b (Aygsvvos Qpgn—2) = 0. ooy ———— (Apys es pgn-2) = 0.

nt a nAn—2

The form of the function F obviously permits the differentiation under the sign
of integration. For example,

: wtZ1(8) + oo by an-2Zano(s) — go(s)]* ds =
ob,,

Il

> J Toar 21(5) + oo + byaraZana(s) — go(5)] 24(s) ds =

i

2[b,,1 ﬂzl(s) 2 (5)ds + oot By s f 21(5) Zan_afs) ds — J 9o(5) 24(9) ds],

0 0

etc. Thus, the condition (4.2) yields the following system of equations:

60 5 [ [0+ [ LoD as [ 2B d]a,-

! dgo ! 0z;
= f go(s) z{s) ds + f (s )— (s)ds + J gi(s)—(s)ds, i=1,...,4n — 2.
0 0 0 ov -
Putting

(48) sz—f(sxﬂm+f310 wad+jfiu i (5) as.

“9) = f Olgo(s) Z(s)ds + ﬂdﬁgf(s) ‘Zfs— (s) ds + f :gl(s)%(s) ds

(i,j = 1,...,4n — 2), we can write the system (4.7) in the form

4n—2

4.10 2 Z)r Gy =Ch P=1,...,4n —2
( i J J 1

ji=1
which represents the system of 4n — 2 equations for 4n — 2 unknown constants

anl! LR an,4n-2'

Before giving the proof of existence and uniqueness of the solution of system
(4.10) and the proof of convergence if our method, we present, in the following
chapter, a numerical example.
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Remark 4.1. The reader may be rather surprised by the presence of the middle
integral in (4.2), suggesting the question why we do not replace the condition (4.2)
by the condition

1 1 aU 2
(4.11) J(U,, — go)?ds + [(._.’_’ - g1> ds = min.
0 Jo\ ov

The middle term plays an important role in questions of convergence as well as
in numerical questions. Examples can be constructed where the method, based
on condition (4.11), gives quite unsatisfactory results.

5. A NUMERICAL EXAMPLE

As an example, showing the application of the method of least squares on the
boundary, let us consider the biharmonic problem on a square. The reason why the
square has been chosen is that it is a sufficiently simple region to make the example
very clear, while, on the other side, the boundary of the square contains angular
points which often make difficulties in mathematical considerations as well as in
applications.

Thus, let the nonhomogeneous boundary value problem (1.1), (1.2), p. 101,
be given, where G = (0, 1) x (0, 1). Let the loading on the boundary be the same
as in Example 2.1. (see Fig. 1, p. 105, for a = 1, b = 1) and let us choose g = 2.
The boundary conditions are then given by (2.7) and (2.8), p. 105 and 106. For
numerical computation, it is convenient to express these conditions in Cartesian
coordinates. From (2.7) and (2.8) it then follows

(5.1) go=0 on AB,
= — (1 —x)> on BC,
= —1 on CD,
=2x — 1 on DE,
=x—0.75 on EF,
=0 on FA,

g, =0 on AB,
=0 on BC,
= -2 on CD,
=0 on DA.

An approximate solution of problem (1.1), (1.2) is assumed in the form

4n—2

(5:2) U, y) = 3 awi 2x, y) -
i=1
For the coefficients a,; we then get the system (4.10).
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If n is small (e.g. n < 3), the evaluation of coefficients of system (4.10) is very
simple. For example, we have [cf. (3.6)]

les(s) - (5) ds = f;ya ~ ) dy + ﬁ] (x? = 1) dx + f)'(o — )y +

0

W IN

+f10.(x2—0)dx= -

0
and, similarly,

1 . 1 1
92—3(8)6:—4(8)ds= a—zs(lay)%(l,y)dwr L x, 1) | x
o 0s ds o 0y Jy 0 O0x

x[ aaz; (x, 1)]dx+f;[—Z—ZyS(O,y)][— %Z;“»(O,y)]dw

1 1 1
+j'%ﬂ&mﬁﬂ&me=f«an¢ij~wwy=—
0 ax ’ ax 0 0

[ZoZos-[ZenZone [ e Bena

o 1o ox
el e [ ]
x[ ‘724(x 0)]dx=—£2dx=—2 |

(23, 24)1' = - % .

Thus, we have

Other coefficients as well as the right-hand side of the system are received in a si-
milar way.

Table 1

azs i as3 a4 a5 6 l

I

4-0000 2-:0000 | 2-0000 0-0000 2:0000 | —1-6667 | —1-6458
2-0000 5-6667 1-0000 .  4-6667 5:6667 | —0-8333 3-8476 |

|
| )
> I
—

i 2:0000 | 1-:0000 |  5-6667 -4-6667 5:6667 | —5-5000 | —0-8333
1 0-0000 | 46667 | —4-6667 14-8000 |  0-0000 7-4000 | 1-8983
2-0000 5:6667 l 5:6667 0-0000 16:0000 | —5-5000 | 3-8333

|

|

|
—1-6667 | —0-8333 © —5-5000 7-4000 | —5-5000 8:0667 l 0-6667

! 1 \

111



In Table 1, the scheme of system (4.10) is presented for n = 2. Solving this system,
we get the corresponding approximate solution (for “negligible” coefficients we give
only the order of the first cipher and then write the result symbolically)

Uy(x, y) = _ilaz,- z{x, y) = — 099702 + 2:18545x + 4 x 1077y —
— 1017 03(x% — ¥?) — 2 x 1073 x 2xy — 1019 66 (—y?) =
&~ — 0997 + 2:185x — 1-017x* + k x 1073(y + 2xy — »?).
As it was to be expected, this approximation is very close to the function
u(x,y) = — 1+ 2x — x?

which corresponds to the case that single loads on DA are replaced by a uniform
load with the same resulting vector.

For the case n = 3 we get similarly

Us(x, ¥) = — 0996 66 + 2:054 89x + 1 x 1072y —

— 1:056 89(x* — y?) — 3 x 1072 x 2xy + 1086 37 (—y?) +
+ 3 x 1073(x* = 3x)?) + 2 x 1072(3x%y — *) —

=3 x107%(=3xy%) —4 x 107} —)%) =

— 0:997 + 2:055x — 1-057x% +

+k x 1073y + 2xy — ¥ + x* = 3xy? + 3x%y — y).

1R

For comparison, we present also the corresponding result if we use the “method

(4.11):
Us(x, y) = — 0:990 18 + 2014 50x + 5 x 1077y —

— 1:01555(x* — y*) — 1 x 1072 x 2xy + 1:059 71 (—?) +
+ 3 x 1073(x* — 3x)7) + 4 x 1073(3x%y — y?) —
— 5 x 1073(=3xy?) — 3 x 1073(—y?) =
— 0-990 + 2-015x — 1-016x* +
+k x 1073y + 2xy — y* + x> = 3xy* + 3x%y — 7).

I

More remarkable differences between results produced by methods (4.2) and (4.11)
are to be expected first in higher approximations.

If the accuracy of “lower’ approximations is not satisfactory and “higher”” appro-
ximations should be taken into account, some suitable properties of biharmonic
polynomials can be used to prepare the numerical process for a computer. To this
aim, let us come back to the original notation used in Chap. 3. The approximate
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solution can then be written in the form

n n

(5.3) Ufx,y) =Y HP(x, y)at + Y HO(x, y)a),; +
i=0 j=1
+ Z H(;sj)(»V V) dhsjor Tt Z HELD(:\'» J’) Aiprjo3s
i=2 =3
denoting now the unknown constants a;, k = 0, 1, ..., 4n — 3.
Let us note, further — what is of use in preparing the program — that the follow-

ing relations hold for the outward-normal derivatives on the boundary of the square
ABCD:

‘\H(m) (m)
% 01 — ?_;L — mH(l'"—l) on AB s
v X
(m)
— ?% = — mH(Z'"—l) on BC,
)7
Sy (m)
= — (—Ig‘— = —mH{" Y on CD,
P
OE ™
z_(_;]ﬁl = mH{" " on DA for m=01,...,
y
(m) A ()
OHY — E%Z_ = mH(Z"'_l) on AB,
ov x
~Axy(m)
= 01;2 = mH{"™ P on BC,
y
(m)
_ %{L = —mH{ D on CD,
X
(m)
= — 5_1(32_ = —mH{"™ Y on DA for m=1,2,...,
y
(m) (m)
61;3- = %3* = mH{" Y on 4B,
Vv X
5Hgm) (m—1) (m—1)
— .—.ay = — m[HZ + H4 ] on BC 4
(m)
= — 6—123— = —mH{™ Y on CD,
X
oH§™ -1 -1
_ = m[HY Y+ HY V] on DA for m=23,...,
ay
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S Eom ) \
OHL” _ OHST _ Y on 4B,

ov ox
(m)
_ o mH¢"™" on BC,
dy
(m)
- _ 9& = — me{"_” on CD,
0x
(m)
= — ?%IL = —mH{" Y on DA for m=3,4, ...
y

Corresponding formulae for derivatives with respect to s can be derived similarly.
These formulae enable to express in a simple way coefficients of the system for un-
known coefficients aj, while the approximation U,(x, y) is assumed in the form (5.3).

If n is large, it is available, with regard to the numerical stability of the process,
to use polynomials z(x, y)/m instead of z,(x, y), where m is the degree of the poly-
nomial. Of course, it is also possible to orthonormalize these polynomials with respect
to the scalar product (u, v);. However, it is a labourious procedure, in general.

As to the method itself, the matrix of system (4.10) remains unchanged for different
boundary conditions, i.e. for different loadings of the boundary. If n should be in-
creased, the original scalar products remain preserved and only new terms should
be evaluated.

We come now to the proof of convergence of our method.

6. CONVERGENCE OF THE METHOD OF LEAST SQUARES ON THE BOUNDARY

a) Some Basic Concepts and Notation

In this chapter we assume that the reader is familiar with fundamental concepts
concerning functional-analytical methods in elliptic boundary value problems
explained e.g. in [1], Chap. 1 or in [3], Part IV. Speaking about a region G, we shall
assume it to be plane, bounded and simply connected, with the so-called Lipschitz
boundary I'. A definition of a region with a Lipschitz boundary can be found e.g.
in [3], Chap. 28. Note that to this kind of regions belong, roughly speaking, regions
with a smooth or piecewise smooth boundary, without cuspidal points, for example
a circle, a square, etc. The closure of the region G is denoted by G,i.e. G = G + T.
We speak briefly about the closed region G.

As usual, we denote by L,(G) the Hilbert space, the elements of which are real
functions, square integrable in G (in the Lebesgue sense), with the scalar product

(6.1) (u ) = f f e ol ) d
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By W$(G) we denote the Hilbert space, the elements of which are those functions
of L,(G) which have square integrable generalized derivatives in G, to the k-th order
included. The scalar product in W§(G) is defined by

(6.2) (u, 0w, 0006) =H\; (D'u, D'v),
i|<k

where the sum Y (D'u, D'v) means the sum of scalar products [in L,(G)] of the
lil=k

functions u, v and their generalized derivatives up to the order k included. In parti-
cular,

(63) (1, Doy = (1, 0) + (—@—Lf 6—) + (i —)

ox  ox ay’ vy
(64) (u, D)wz(z)(g) = (U, U) + (6—’/f 5 ?2‘ + g s ﬂl‘ +
0x 0x dy dy

*u 0%y o*u 0% %u 9%
+ s ) T2 o iz 53)-
ox* ox? 0x dy 0Ox 0y dy?  0y?
On base of the scalar product (6.1), or (6.2), we define, in a usual way. the norm
and the metric in L,(G), or W3(G), respectively,

(63) Jul? = (@ w). olw) = Ju —of,
(6.6) ““”fvw((;) = (t, Ww,06y> 0t Vw006 = ”u - ““W:U"(Gw

In a similar way, the spaces L,(I') and W$(I'), the elements of which are functions
on I', are defined. See e.g. [3], Chap. 30. In particular, for functions g(s). g,(s)
of Example 2.1 (p. 104) we have

goe W(I), gyeLy(I).

By C)(G)[we meet frequently the symbol E(G) in literature] we denote the set
of functions continuous with their derivatives of all orders in G. It is known (see e.g.
[1]) that for regions with a Lipschitz boundary, the space W$(G) can be defined as
the closure of the set C‘)(G) in which the scalar product (6.2) is introduced [in the
metric (6.6) given by this scalar product].

By C$”(G) [also D(G), in literature] we denote the set of functions with compact
support in G, i.e. the set of those functions u € C*(G) the support of which (denoted
by supp u) lies in G,

(6.7) suppu = G .

Here, by the support of a function u(x, y) we understand the closure of such points
(x, ¥) € G in which u(x, y) # 0. Thus, functions of C{*)(G) have in G continuous
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derivatives of all orders while [according to (6.7)] they are equal to zero in a certain
neighbourhood of the boundary I’ [which is different for different functions of
C§(G), in general]. The closure in the metric (6.6), of C§*)(G) is denoted by W $(G).
It is a linear subspace of the space W{¥(G). For every u € W$(G) we have in the sense
of traces (on the concept of a trace see, e.g., in [3], Chap. 30)

A k—1
cu 0" u
—=0,.., — =0 on I,
ov o1

where v is the outward normal') of T,

For us the converse of this assertion for k = 2 (see e.g. [1], p. 90) will be of use:
Let G be a region with a Lipschitz boundary, let u € W$*(G) and let

(6.8) u=0, 8_14:0 on I
) ov

in the sense of traces. Then u € W{(G).

Let w(x, y) be such a function of W(G) that
(6.9) w = go(s), %ﬂ =gys) on T
v

in the sense of traces.

By a weak solution of the problem

(6.10) AU=0 in G,
(6.11) U=gys) on T,
(6.12) 6U =gs) on T

we understand (see e.g. [3], Chap. 32) such a function U € W$(G) which satisfies

(6.13) U-weV,
(6.14) A(U,v) =0 forevery veV,
where
2 2 2 2 2 2
6.15 AU, v TUTv  , 0U o TUIN g
y
Bx ox? Ox 0y ox dy  0y* oy?

') Which exists almost everywhere on 7, if I"is a Lipschitz boundary, see e.g. in [1].
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and
(6.16) V=W3G).

It is well known ([3], Chap. 33) that the bilinear form A(U, v) is a so-called V-
-elliptic form which implies that there exists precisely one weak solution of the problem
(6.10)—(6.12) [ provided there exists w e W$?(G) satisfying (6.9)].

Consider now the problem (1.1), (1.2), p. 101 and let G be a bounded simply con-
nected region in E, with a Lipschitz boundary I', g, € W5(I'), g, € Ly(I').

b) The Solvability of System (4.10)

As we have shown in Chap. 4, our method leads to the solution of 4n — 2 equa-
tions
4n—2

(6.17) Y (zoz)ray=c¢, i=1..,4n—2
=t

for 4n — 2 unknowns a,;. Here, (z;, z;)r and c; are given by (4.8), (4.9). We first
prove that system (6.17) has a unique solution. To this purpose it is sufficient to
show that its determinant is different from zero.

Let us consider the functions z{(x, y), i = 1,...,4n — 2, which appear in (6.17)
and denote by M the set of all their linear combinations

4n—2

(6.18) u(x, ) = 3 @i z(xy)

with real coefficients o;. M is a linear set the zero element of which is the function
identically equal to zero in G. Denote for u, ve M [cf. (4.8)]

(6.19)  (u,v)r = j u(s) v(s) ds + jﬁ :—;E(s) %v (s)ds + Jq L;Lf (s) C:—U (s)ds =
0 0 0s " 0s 00y &y

— (u, ) + du Ov + du ov
=\ V)L P P :
0 0s  0s)ryr ov v/

1

Here
ou ou ou
(6.20) %5 ()= — ™ (s) vy(s) + o (s) vuls)
(621 H= O+ ).
ov X Oy

0 0 . ou . ,
where 2% (5), e (s) are traces of functions & (x, ), du (x,¥) onT and v(s), v(s)
0x dy O0x ay
are components of the unit outward-normal vector (and similarly for v). The integrals

in (6.19) have a sense, because traces of the functions u(x, y), g%(x v)s %(x, y)
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belong to L,(I') and I' is a Lipschitz boundary so that v(s), v(s) are bounded
measurable functions on I'([3], Chap. 28).

We prove first that (6.19) is a scalar product on the linear set M. To this purpose
it is sufficient to prove

(6.22) (u,u)p =0=u(x,y)=0 in G,

because the remaining axioms of a scalar product are obviously fulfilled. Thus, let
ue M, so that u(x, y) is of the form (6.18) and let (u, u), = 0. According to (6.19)
we have

ou|? |ou|?
(w,u)r = [uZ) + e I
r= lelier 05 || Lacry ;‘3" Ly(I)
Consequently, from (u, u), = 0 it follows
(6.23) w=0 in L) and ‘;—“=0 in Ly(I).
v

For the function u(x, y) we then have

u=20, §E=0 on I'
v

in the sense of traces.
Thus the function u(x, y), being a linear combination of biharminic polynomials,
is a weak solution of the biharmonic problem

(6.24) Ay =0 in G,
(6.25) =0 ®=0 on I.

From uniqueness of the weak solution of problem (6.24), (6.25) it follows that u = 0
in W”)(G) and, because of smoothness of this function in G,

u(x,y) =0 in G
what we had to prove.

Thus (.,.)r is a scalar product in M. But the functions z,(x, y) are linearly inde-
pendent in M (Theorem 3.1, p. 107), so that the determinant of the system (6.17)
which is the Gram determinant constructed of scalar products of these functions,
is different from zero. Consequently, the system (6.17) is uniquely solvable (for every
fixed n) what was to be proved.
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¢) Convergence of the Method

The proof of convergence of the method of least squares on the boundary is rather
difficult. We present first some known results which we shall use further. Let us note
once more that G is a bounded, simply connected region in E, with a Lipschitz
boundary.

It follows from Theorem 30. 1 in [3], applied to the functions u(x, \) (‘( y)

— (x y) and from formulae (6.20), (6.21):
oy

Lemma 6.1. The mapping of the space WS(G) into the space WS (I') x L,(I')
is bounded. In details: There exists such a constant « > 0, depending only on G
that for every ze WS$(G) we have

0
(6.26) HZ“WZU)U‘) = a”Z”Wz(Z)(G)’ ‘EI = “”Z“Wz<2>(c>-
'Lz(r)
Here
o=112
(6.27) HZ”%'ZM(F) = “Z”iz(r) + = (“Z“Wz“)(r) = 0).
Lx(I)

From this lemma and from the linearity of the spaces considered, it follows im-
mediately, if we put y = ffa:

Lemma 6.2. To every f8 > 0 there exists such a y that for every two functions
21, 2, € W(G) for which

(6.28) “21 - Zz”wzm(c) <7

we have
oz 0

(6.29) Iz = 22| wanrery < B I_l _ 9% <pB.
dv v Ly

Lemma 6.3. ([1], p. 270.) The traces of functions of the space W?(G) are dense
in the space WS'(I') x Ly(I'). In details: To every two functions go € W5(I'),
g1 € Ly(I') and to every n > O there exists such a function z € W3)(G) that the in-

equalities

oz
(6.30) |z - golw,oay < 1 l—* — g1 <n
av La(I)

hold.

Remark 6.1. From Lemma 6.3 it does not follow that to the given functions
go(s), g(s) of the mentioned properties there exists such a function we W$Y(G)
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that we have

(6.31) w(s) = go(s)

B

(s) = gs) on T

in the sense of traces. Consequently, the existence of a weak solution of the biharmo-
nic problem (6.10)—(6.12), p. 116, is not ensured, because, in formulation (6.13),
(6.14), the existence of such a function is assumed. If such a function exists [i.e. if,
for example, the boundary I' and the functions go(s), g4(s) are sufficiently smooth],
then problem (6.10)—(6.12) has a weak solution in the sense defined formerly.
In the general case, we can come, on base of lemma 6.3, to the concept of a very
weak solution:

Let us construct a decreasing sequence of positive numbers ¢,, lime, = 0 for
n — oo. According to Lemma 6.3, to given functions g, € WS(I'), g, € L,(I') and
to each of the numbers ¢,, it is possible to find such a function v, € W$(G) that the
following inequalities hold:

U"

(6.32)

<&
La(I)

|
1On — go”wwnn < &, ’ g1

y

Denote #,(x, y) the weak solution of the biharmonic problem (6.10)—(6.12),
corresponding to the function v,(x, y), thus satisfying the conditions [cf. (6.13),

(6.14)]

(6.33) U, — v, €V,
(6.34) A, v) =0 forevery velV.

Lemma 6.4. ([1], p. 274.) Let {v,(x, y)} be an arbitrary sequence of the just stated
properties. Then the sequence of corresponding functions 17,,(x, y) converges in
LZ(G) 1o a certain function U(x, y), uniquely determined by the given functions
go€ W(I'), g, € Ly(I') [thus independent of the choice of the sequence {¢,} and
of functions v,(x, y), satisfying conditions (6.32)].

The function U(x, y) is called a very weak solution of the problem (6.10)—(6.12).

Remark 6.2. If the problem (6.10)—(6.12) has a weak solution [i.e. if a function
w e WiP(G) exists satisfying conditions (6.31)], then the just defined very weak
solution is the weak solution of the problem considered. Obviously, it is sufficient
to put v, = w for every n.

Remark 6.3. The aim of this Chapter is to prove that the sequence of functions

4n—2

(635) Ui 9) = X aniz{x. )
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constructed by the method of least squares on the boundary [so that the coefficients
Ay i = 1,...,4n — 2 are given by the system (4.10)], converges, in L,(G), to the very
weak solution U(x, y) of the problem (6.10)—(6.12), given by functions g, € W4"(I'),
g1 € Ly(I'). To this purpose, we prove that not only the traces of functions of the
space W5(G) are dense in W3(I') x L,(I'), but that the same property have traces
of the set of all linear combinations of biharmonic polynomials z{(x, y), i = 1, 2, ...
First we present some known results:

Lemma 6.5. The weak solution of a biharmonic problem has in every closed
region O which is contained in G, continuous derivatives of all orders and is in O
a classical solution of the biharmonic equation.

This lemma is a consequence of Theorem 1.1 or 1.2 in [1], p. 197 and 199 and
of Sobolev’s Imbedding Theorems.

Further, it follows from Theorem 2.4.1 in [2]. p. 63 and from the construction
of functions ¢(z), x(z) on p. 63 and 64 of the quoted book:

Lemma 6.6. If u(x, y) is a biharmonic function in G (thus a classical solution
of the biharmonic equation in G), then there exist such functions ¢(z), #(z) of complex
variable z, holomorphic in G that in G we have

(6:35) u(x, y) = Re[Zo(z) + x(=)].

Conversely, if ¢(z), x(z) are holomorphic functions in G, then the function (6.36)
is biharmonic in G.

If, moreover, the function u(x, y) and its derivatives of all orders are continuous
in G [ie. if ue CNG)], the functions ¢(z), x(z) and all their derivatives (with
respect to ) are continuous in G.

Lemma 6.7. (The Walsh Theorem, [2], p. 490.) Let f(z) be holomorphic in G and
continuous in G. Then to every » a polynomial P,(z) (of a sufficiently high degree m)
can be found that in G we have

1f(z) — Pu(2)] < .

Remark 6.4. If ¢(z) and ¢'(z) are holomorphic functions in G and continuous
in G, then to every ut > 0 it is possible to find such a polynomial P(z) that in G

lo(z) — P2)| < . Jo'(z) = P(z}| < m
holds simultaneously. Indeed, it is sufficient to find, according to Lemma 6.7, such
a polynomial P'(z) that |¢'(z) — P’(z)| be sufficiently small in G and then to integrate
this polynomial over G, taking a proper constant of integration.

Similarly, if ¢(z), ¢'(z), ..., () are holomorphic in G and continuous in G,
it is possible to find, to every v > 0, such a polynomial P(z) that in G we have

(6.37) |rp(z) — P(z)| <v, |o(z)— P'(z)| <V, ... [(p("’(z) — P""(z)’ <v.
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Let, now, the function u(x, y) be biharmonic in G and continuous, including
derivatives of all orders, in G. According to Lemma 6.6, the functions ¢(z), x(z) and
their derivatives of all orders are then continuous in G. Let k be an arbitrary, but
fixed positive integer. Then to every v > 0 it is possible to find such a polynomial
P(z) that (6.37) holds. Similarly, to the same v > 0 we can find such a polynomial
Q(z) that for the functions x(z) and Q(z) similar relations hold as in (6.37). From
(6.36) it follows that when calculating partial derivatives of the function u(x, y) up to
the order k including, we use derivatives of the functions ¢(z), x(z) also up to the
order k including. Consequently, if we replace in (6.36) the functions ¢(z), y(z) by
their “sufficiently close™ [in the sense (6.37)] approximations P(z), Q(z), then there
will be ““sufficiently close’” not only the functions

(6.38) u(x,y) = Re[Zo(z) + x(z)] and p(x,y) = Re[Z P(z) + O(z)],

but also their partial derivatives with respect to x, y up to the order k including.
Here, P(z) and Q(z) are polynomials in z, so that p(x, y) is a polynomial in x and y,
according to Lemma 6.6 biharmonic (thus satisfying the biharmonic equation).

If we take into account that the region G is bounded and that the expression for
the norm of functions from the space W{(G) contains only these functions and their
derivatives to the order k including, we can present the following lemma which is
itself of interest:

Lemma 6.8. Let the function u(x, y) be biharmonic in G and let it be including
partial derivatives of all orders continuous in G [thus u e C*)(G)]. Let k be an
arbitrary positive integer. Then to every ¢ > 0 there exists such a biharmonic
polynomial p(x, y) that

(639) ”u - P”WZ(k)(G) <ao.

Further we shall use this lemma for the special case k = 2.
We now prove the fundamental lemma of this Chapter.

Lemma 6.9. To every function ze W (G) and to every t > 0 it is possible
to find such a function %(x, y), biharmonic in G that

7 e C*°)(G)
and
07 _ oz

v Ov

<T.
Lx(T)

(6.40) 12 = zlw.nry < 7

Proof. Let us construct such a sequence of plane bounded simply connected
regions G; with Lipschitz boundaries I'; that

(6.41) Gc Gy, Gjy, =G, forevery j=1,2,..,
(6.42) lim m(G; — G) =0,
j= o
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where m(G; — G) is the Lebesque measure of the region G; — G. Thus, the region G
is “approximated from outside™ by a sequence of regions G; with a Lipschitz boun-
dary (Fig. 2). Such a sequence exists — to its construction we can use — if we want —
conformal mapping of the complement of G on the complement of a unit circle K
and choose the regions G; in such a way that they correspond to circles K; with
centres at the origin and with radii r; = 1 + ]/j,j =1, 2,....Inthis case, the boun-
daries of G; will be even very smooth.

Fig. 2.

To the given function ze W$(G) there exists a unique function u, e W{(G)
which is a weak solution of the biharmonic problem given by the condition

(6.43) uo — z€ WP(G).

However, this function does not belong to .C‘*(G), in general.

Let us extend the function uy(x, y) in a usual way ([1], p. 80) on the whole region
G, (thus on the “largest” of regions G;) in order that the so extended function —
denote it by Uo(x, y) — belongs to W$(G,). Let us denote by U, (x, y) the restriction
of the function Uy(x,y) on G,, thus the function Uy(x, y) considered only on the
region G;. [Here, Uoy(x, y) = Uy(x, y), of course.] Evidently, U,; € W§(G;). Denote,
further, by uj(x, y) the weak solution of the biharmonic problem on Gj, given
by the condition ’

(6.44) u; — Uy e W(G))
and by U(x, y) a function, defined on G, as follows:

u {x,y) on G;j
(6.45) Uj(x, y) =
Ug(x,y) on G, —G;

j-
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Thus the function U(x, y) is a weak solution of a biharmonic equation in G; and is
equal to Uy(x, y) outside of G, Because the function Uoj(X, ) is the restriction
of Uy(x, y) on G, the traces of Ugy,(x, y) and Uy(x, y) on I'; are the same. From
(6.44) it then follows U; — Uy € WS(G,). Further U(x, y) = [U(x, y) — Uo(x, y)] +
4+ Uy(x, y)and U, € W(G,), consequently U; € W5(G,).

Intuitively, we can expect that the restriction #(x, y) of the function u(x, y)
on G will be very close, in the metric of the space W$*(G), to the function uo(x, y),
if j will be sufficiently large. If we prove this assertion, i.e. if we prove that
(6.46) lim li; = uolwrr) =0,

jo o
then we can first affirm, on base of Lemma 6.2 that the traces of functions uo(x, y),
#(x, y) [and thus, according to (6.43), also the traces of functions z(x, y) and
ii(x, y)] will be sufficiently close in W{(I') x L,(I') [so that inequalities of the
type (6.40) be fulfilled if j will be chosen sufficiently large]. Moreover, according to
Lemma 6.5, each of the functions #(x, y) will be biharmonic in G and #; e C'™ (G),
because G = G ;. Consequently, for the function Z(,\’, y) to be found it is then possible
to take the restriction i (x, ) of a function uj(x. y) on G, for j sufficiently large.
Thus, if we prove (6.46), our lemma is proved.
Denote

(6.47) Zix,y) =Ufx,y) — Uy(x,») in G,.
t '
According to the definition of functions Uy(x, y) and U(x, y) we have
Zx,y) = ujx,y) = Upfx,») in G;,
Z{x,»)=0 in G, —G;.

J
Further, in G we have

Uj(x, y) = ﬁj(x, y) N UO()C’ y) = Uo(x, y)
and consequently,

(6.48) Zix,y) =ii(x, y) — up(x,y) in G.

Thus, if we prove that
}im 1Z;]w.c@0) = 0,
Jj—r o

we shall the more have

lim 1Z;llw.cra) = 0
Jj—ow

and this is just the required result (6.46).
As we shall see further, we prove a rather weaker assertion: We prove that it is
possible to find such a subsequence {Z, (x, y)} of the sequence {Z(x, y)} that

(6.49) klim Hka“WZ(Z)(Gl) =0.
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From here, we get

(6.50) lim [i;, — uo|w ) = 0
k— o

which is, indeed, a weaker result than the result (6.46), but quite sufficient for our
aim, because, for the required function z(x, y), it is possible to choose the restriction
i(x,y), on G, of a function u;(x, y) with a sufficiently large j,. Consequently,
in order to prove Lemma 6.9, it is sufficient to prove the assertion (6.49).
Therefore, let us proceed to the proof of this assertion.
Denote by A;(u, v) the form (6.15) considered on the region G, i.e.

2, A2 2 ~2 2, A2
(6.51) Afu,v) = Jf a—ﬁ L 2 Fu v + ou 9*> dxdy.

/

2 0x? dx 0y 0x oy dy* oy?

As shown e.g. in [3], p. 408, for the weak solution u(x, y) of the blharmomc
problem, given by the condition (6.44), the following estimate holds:

(6.52) luslw.ne,y = KlUojiwaora, »

where K is a constant given by the constant of V;—ellipticity of the form Aj(u, v)
in the region G;. Because G; c G, for every j = 2,3, ..., it is possible to choose
the same K in (6.52) for all j = 1, 2, ...%). Now, the function Uy (x, y) is a restriction,
on G}, of the function Uy(x, y). From (6.52) we then get

”ujHW:“’(Gj) = K“UOHWM(GI)-

\

2) Let (a, b) or (c, d) be projections of the region G, into the x- or y-axis, respectively. For
every v € Vi/él)(Gj), j=1,2,..., the Friedrichs inequality holds,

[ seo < ][ (&)

where we can put [see (18.46) in [3], p. 205]

ot taa)

Now, from (23.35), (23.36), (23.38) in [3], p. 285 and 286, it casily follows

cy =

AJ(U’ v) = 1 toe + 1 “ ”wz(l)((;,)

Consequently, the forms Aj(u, v) are “uniformly V-elliptic™.

125



From the definition of the functions U (x, y) it follows immediately

U860 = [uillicown + 1Uolio,
so that

WWilw.o@n £ [uilwaorey + [Vollwaoen
and in consequence of (6.52)

(6.53) Ul

wamn = (K 4+ 1) [Uoflw,ry) -

Thus the functions U(x, y), j = 1, 2, ..., and according to (6.47), also the functions
Z(x, y) are uniformly bounded in W$Y(G ). Consequently, a subsequence {Z;(x, y)}
of the sequence {Z(x, y)} can be found, converging weakly in W{*(G,) to a function
Ze WP(G)),

(6.54) Z,—~Z in WYA(G)).

Without loss of generality we can assume that corresponding subsequences of
(generalized) derivatives of functions Z;(x, y) up to the second order including
converge weakly in L,(G,) to corresponding (generalized) derivatives of the function
Z(x, y), so that we have

(6.55) D'z, -~ DZ, |i|£2 in L,G,),

because Z(x, y), being uniformly bounded in W$(G,), all these derivatives are
uniformly bounded in L,(G,). For |i| = 0 we get, in particular, Z; — Z in Ly(G,).
We prove now that

(6.56) Z=0 in WZG,).

We prove first that the function Z(x, y) cannot be different from zero on any set
of positive measure lying in G; — G. Let the contrary be true, i.e. let

1Z]| a6~y > O
But Z;, — Z in L,(G,) and, consequently, also in L,(G, — G), so that

(6.57) inm (Z,Z)126.-6) = (z, Z)Lz(cl—cn >0.

Further, Z;(x, y) = 0in G, — G,,, thus
(6.58) (2, Z;)1.6.-0)| =
=z, Z;)1sie-0| = 2] caei- ||Zik”Lz<ij—c)-
The sequence {Z;,(x, )} is uniformly bounded in L,(G,) and at the same time

lim ||Z| ., Gj-a) = 0
k= o0
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in consequence of (6.42). From here and from (6.58) we get

:im (Z,Z;)1,6,-6)=0
in contradiction with (6.57).
Thus Z = 0 in G, — G. Because, moreover, Z € W$(G,), it follows for its traces

and for traces of its first derivatives

Z=0, f?-Z-=0, iZ=O on I’
0x dy

which implies (see p. 116) for the restriction Z(x, y), on G, of this function
(6.59) Ze WP (G).

Let v(x, y) be an arbitrary function of V'ng’(G). Let us extend it by zero on the whole
region G, and denote the so extended function by V(x, y). For the restriction ¥, (x, y)
of this function on G;, (k = 1,2, ...) we have obviously ¥, e W$(G,,).

Let us denote by Z;,(x, y) the restriction of the function Z;(x, y) on G;,. It follows
from (6.47) [see the text following (6.47)]

ij(x’ y) = ujk(x’ y) - Uoik(x’ y) in Gfk .
In consequence of (6.55) we then have [about A4; see in (6.51)]
Ji

(6.60) A(Z,v) = A(Z,V) = 1lim A((Z;,,V) = lim A,(Z;,. V},) -
k— o0 k— o

But for every ji, k = 1,2, ..., we have [consider that V,(x, y) = 0 outside of G]
Ajk(zjk’ ij) = Ajk(ujk’ ij) - Ajk(UOjk’ ka =
A;(u;, V) — A(ug,v) = 0,

because u;,,
spectively, so that we have [cf. (6.14), p. 116]

Ajk(ujk’ I7.1:«) =0

or u, is a weak solution of the biharmonic equation in G;,, or G, re-

and

A(uo, v)=0.
Thus, from (6.60) it follows
(6.61) A(Z,v) =0

for every ve W )(G) [because ve (l;V(ZZ)(G) has been chosen arbitrarily |. Consequently,
the function Z(x, y) is a weak solution of the biharmonic problem

A(u,v) =0 for every ve Wgz’(G) X
ue W(G).
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From unicity of the solution of this problem it follows Z = 0 in W(G). As we
have shown in the preceding text (p. 127), Z(x, y) = 0in G, — G so that

Z=0 in WP(G,).

From
Z,—0 in w(G,)

and from (6.55) it then follows

(6.62) D'Z, =0 in LyG,). [i|=2.

We now prove

(6.63) Z, -0 in WGy

(strongly, not only weakly). Because the form 4, is W$?(G,)-elliptic,
(6.64) Ai(u,u) = afuly o, forevery ue W(Zz‘(G,)

(« > 0), it is sufficient to show that

lim A4,(2;,2;) =0,

k= oo

which implies [according to (6.64)]

(6.65) ,‘lim 1Z5dlw.cr) = 0
what we have to prove. But )
(6.66) klim AZ;. Z;,) =k1im AU, — Uy Z;,) =
= :im AU Z5) = :im A(Uo, Z;,) =
i‘i‘i A;u;. Z,) —klin; 'iizzszGIDiU(,D"ij dxdy =0,

because, first
Ajk(ujk’ ij) =0 >

u;, being a weak solution of the biharmonic equation in G;, and Z;, e WG, ), and

limff DU, D'Z; dxdy =0
Gy

k= oo
for every |i| < 2 in consequence of (6.62).
In this way (6.63), i.e. (6.49), is proved. According to the text following (6.50),

the proof of Lemma 6.9 is finished.
Now, it follows from Lemma 6.3, from the just proved Lemma 6.9, from Lemma

6.8 in which we put k = 2 and from Lemma 6.2:
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Lemma 6.10. The traces of biharmonic polynomials are dense in Wi'(I') x
X Ly(I'). In details: To every pair of functions go€ WS'(I'), g, € L,(I') and to every
€ > 0 there exists a polynomial p(x,y) which is a solution of the biharmonic
equation in G and for which the inequalities
ap

<e&
La(T)

(6.68) 1P = gollw,oy < 2.

g

A
ov

hold.

Theorem 6.1. Let g € W'(I), g, € L,(I'). Then the sequence of functions U,(x, y),
constructed by the method of least squares on the boundary, i.e. the sequence of
functions (4.1) where the coefficients a,; are given by the system (4.10), converges
in Ly(G) to the very weak (p. 120) solution of the biharmonic problem

(6.69) AU =0 in G,

0
(6.70) U = gyfs), L;U =g,(s) on TI.

(&%

Proof. Let the functions go e Wi'(I'), g, € L,(I') be given and let {¢,} be a non-
increasing sequence of positive numbers, lim ¢, = 0. According to Lemma 6.10,
to every ¢, such a polynomial p, (x, y) of a sufficiently high degree k, can be found
that the inequalities (6.68) hold, where p and ¢ are replaced by p,, and ¢,. But p, (x, »)
being biharmonic, we can write

4kn—-2

Pl ) = X bua ey,

where z,(x, y), z5(x, y), ... are biharmonic polynomials (3.5) and the coefficients
by, ; are by the polynomial p, (x, y) uniquely determined (p. 107). Thus we have

4kn—2

(6.71) Iy buuzi — go”wz(l)(r) < &,
i=1

<eg,.
La(r)

But for the functions
4k, —2

(672) Ukn(x’ y) = Z Ay, i Zi(x’ y) >
i=1

where the coefficients a, ; are determined by the method of least squares on the
boundary [see (4.1), p. 108], it the more holds

9 _UJ‘J,'

A
oy

<&
Ly(T)

(6-73) HUk,, - go”wztl)(r) <&, = 9 n -
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Thus, we have

(6.74) limU,, =g, in W (r), lim . _ g, in LyT).

n— o n—wo v

In this way, the convergence [in the sense (6.74)] of the subsequence {U, (x, y)}
of the sequence {U,(x, y)}, constructed by the method of least squares on the
boundary, is proved. However, we assert that the whole sequence {U,(x, y)} is
convergent, in the sense (6.74). In fact, our method being a least squares method,
the approximation in the sense (6.74) by polynomials of higher degree can be only
better. More precisely: If inequalities (6.73) are valid, then the same inequalities hold
for Uy, 4 1(x, ¥), Uy, +2(x, y), etc. Thus we really have

’a
(6.75) limU, = g, in WOI), lim ‘5‘5 —g, in LyI).
n—oo n—o vV
From Lemma 6.4 it then follows
(6.76) limU,(x, y) = U(x,y) in LyG).

n—o0

what completes the proof of Theorem 6.1 and, consequently, the proof of convergence
of our method.
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Souhrn

RESEN[ PRVNIHO BIHARMONICKEHO PROBLEMU
METODOU NEJMENSICH CTVERCU NA HRANICI

KAREL REKTORYS @ VACLAV ZAHRADNIK
Neékteré ulohy teorie pruZnosti, zejména problémy nosnych stén, vedou k feSeni
biharmonického problému (1.1), (1.2), str. 101 (podrobng&ji o ném viz v kapitole 2).

K jeho feSeni lze aplikovat fadu metod (metodu siti, metodu kone¢nych prvki,
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klasické variaéni metody, metodu zaloZenou na pouziti funkci komplexni proménné,
atd.), které maji své specifické pfednosti, ale také mnohé nedostatky. Metoda nej-
mensich ¢tverct na hranici, vySetfovana v této praci, pfedpoklada priblizné feSeni
dané ulohy ve tvaru

4n—2

(1) Ufx,y) = Y auzdx,y), n=2,
i=1
kde z(x, y), i = 1, ...,4n — 2, jsou biharmonické polynomy stupn& nejvyse n-tého,
popsané v kapitole 3 (str. 106). Koeficienty a,; v (1) jsou uréeny podminkou, aby
funkcional (4.3), str. 108, nabyval pravé pro funkci (1) minima na mnoZiné viech
funkci tvaru
4n—-2

Vix,v) = ¥ byzidx v).
i=1
Tato podminka vede na feSeni soustavy (4.]0), str. 109, 4n — 2 linearnich rovnic
pro hledané koeficienty a,;, i = 1,...,4n — 2. V kapitole 6 (str. 114—130) je doka-
zano, Ze tato soustava je pro kazdé pfirozené n jednoznaéné fesitelna a Ze posloupnost
{U,(x, y)} konverguje v L,(G) k tzv. velmi slabému feSeni problému (1.1), (1.2),
zavedenému na str. 120. Pfitom se pfedpoklada, Ze G je rovinnia omezena jednoduse
souvisla oblast s lipschitzovskou hranici I" a Ze g € W3(I'), g, € Lo(I'). Pro aplikace
v teorii pruznosti jsou tyto pfedpoklady dostate¢né obecné.

Prvni kapitoly préce (str. 101 —114) jsou uréeny pfedeviim &tenattim, ktefi aplikujt
matematiku k feSeni svych teoretickych problémi. Jsou proto psany podrobnéji
a v kapitole 5 je uveden numericky pfiklad. Dikaz konvergence je ponékud obtizn&jsi
a byl odsunut az do kapitoly 6 (str. 114—130). Tato kapitola je urdena predevsim
matematikm.

V pfipad€ biharmonického problému vyuzZivd uvedend metoda podstatné tvaru
rovnice (1.1). Lze ji v8ak — vhodn& modifikovanou — pouZit i k feeni problémii
jinych.

Authors’ addresses: Prof. RNDr. Karel Rektorys, DrSc., Ing. Viclav Zahradnik, Stavebni
fakulta CVUT, Trojanova 13, 121 34 Praha 2.
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