
Aplikace matematiky

Vladimír Fiřt
Surfaces of characteristic curvature

Aplikace matematiky, Vol. 19 (1974), No. 1, 36–48

Persistent URL: http://dml.cz/dmlcz/103512

Terms of use:
© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103512
http://dml.cz


SVAZEK 19 (1974) A P L I K A C E MATE M Á T I KY ČÍSLO 1 

SURFACES OF CHARACTERISTIC CURVATURE 

VLADIMIR FIRT 

(Received March 28, 1973) 

1. DEFINITION AND BASIC RELATIONS 

Let us define the surface of characteristic curvature to be a surface whose principal 
curvatures, viz. xx and x2, satisfy 

(1.1) F(xux2) = 0, 

where F is a given function.1) We shall call the relation (1.1) the characteristic 
curvature of the surface. This relation yields also the relation between Gauss' curva­
ture K = xxx2 and the mean curvature of the surface H = \(xx + x2), as 

(1.2) xl>2 = H ±(H2 - K ) 1 / 2 . 

We shall deduce the equation of the surface of characteristic curvature from (1.1) 
using (1.2) for the principal curvatures and the formulas 

(1.3) K = huh22 - h2
12 

gllg22 - 012 

H = 
1 gll^22 ~ 2 g 1 2 / t 1 2 + g22hп 

2 
gllg22 ~~ gl2 

where gtJ are the coefficients of the first basic form and hu the coefficients of the 

second basic form of the surface [2], 

In the case of a surface with an orthogonal system of curvilinear coordinates <; 

and Y\ which are identical with the principal directions of the surfaces gX2 = hi2 = 0 

1 ( The relation (1.1) is the necessary and sufficient condition for the surface to be a W-surface 
(Weingarten's surface). The number of W-surfaces, some properties of which are given in [1], 
thus includes the surfaces of characteristic curvature as well as rotary surfaces with the exception 
of the plane and the spherical surface. 
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and 
/< , \ 1 / i i i 1 h12 

(1.4) 7€X ~ — = - 1 1 , *2 = — = - ^ , 
# 1 gll # 2 g22 

where Rt and R2 are the principal radii. This means that for the six functions 

(15) xi9x29gii,gi2,hii, h22 

of the two variables £ and ^ six independent equations are valid, three of which are 
the Codazzi-Gauss equations, the other three being expressed by the relations (VI) 
and (V4). The surface of characteristic curvature is thus determined unambiguously. 

Let us note the determination of a surface of characteristic curvature is based 
on the defined state (VI) and not on the defined functions gtJ and hi} which unambi­
guously determine the form and the magnitude of the surface (Bonnet's theorem). 

In the particular case when the characteristic curvature (VI) has the form of 

(1-6) ^ ~ k , 
K2 

where k is a constant (real number), we obtain, after substituting (V2) into (V6) 
and using the formulas (V3), the following equation of a surface of characteristic 
curvature: 

(1.7) ( g u g 2 2 - g2
2) (^11^22 - h{2) -

k 
~ 7 TTiiOiJhi ~ 2g12hl2 + g22^n)2 = 0 . 

(1 + k)2 

For the surface which is determined in Cartesian coordinates x, v, z by the explicit 
equation 

(1.8) z-f(x,y), 

it holds [2] that 

(1-9) g l l - l + / 2 , Qll-fxfy, 922 = 1+fy, 

U i f U l f U l f2 
"11 — Jxxi "12 — ~Jxy-> "22 ~ ~~Jyy » 

CO CO CO 
where 

(1.10) co2 = l+f2+f2. 

By substituting (1.9) into (V7) we obtain the following nonlinear partial differential 
equation of a surface of characteristic curvature: 

' xy) (1,11) (i+f:+f;)(f*xf„-ń 

- т т Л ^ K1 + &f» ~ 2fJ*f*> + (ì+ fì>fЛ2 = ° • (i + fe)2 
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2. SOME PROPERTIES OF SURFACES OF CHARACTERISTIC CURVATURE 

In this section we give some properties of the surface for which Eq. (1.6) is valid. 

Theorem. The ratio of the principal curvature and the normal curvature in the 
direction deviating from the principal direction of the surface by the same angle 
is constant at all the points of the surface of characteristic curvature xljx2 = k. 

Proof. According to Euler's theorem the normal curvature x of the normal 
section whose tangent forms an angle cp with the principal tangent equals [2], [3] 

(2.1) x = xx cos2 cp + x2 sin2 cp . 

After substituting (1.6) into (2.1) for a selected point P of the surface we have 

(2.2) px = px2(k cos2 cp + sin2 (p) 

and for another point R on the same surface we have 

(2.3) Rx = Rx2(k cos2 cp + sin2 cp) . 

From Eqs. (2.2) and (2.3) we obtain the relation 

( 2 - 4 ) ^ = ^ > 
X X 

which proves the above theorem. 

The consequence of the theorem is the relation 

p p 

(2.5) - i ? - = - ^ , 
V } Rx Rx2 

which yields the following property of the surface: 

At two arbitrary points of the surface of characteristic curvature x1jx2 = k the 
ratio of normal curvatures of normal sections of the surface is constant in the direc­
tions deviating from the principal directions of the surface by the same angle. 

By substituting (1.6) into expressions for K and H we obtain 

(2.6) K = kx2
2, H = i(l + k) x2 . 

After squaring the second equation and dividing both equations (2.6) by one another 
we obtain 

(2.7) _ K = _ _ - 4 k _ , 
V ; H2 (1 + k)2 

consequently, at all points of the surface of characteristic curvature x1Jx2 = k the 
ratio of Gauss' curvature and the square of the mean curvature is constant and 
equals 4k/(l + k)2. 
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(2.8) 

From the first expression of (2.6) and (1.6) we obtain 

K 1 K 

k X? x\ 
= k, 

so that at all points of the surface of characteristic curvature xljx2 = k the ratios 
of Gauss' curvature and the squares of the principal curvatures are constant and 
equal l/k and k, respectively. 

3. DIFFERENTIAL EQUATION OF THE MERIDIAN OF THE ROTARY SURFACE 
OF CHARACTERISTIC CURVATURE 

In this section we shall deduce the differential equation of the meridian of a rotary 
surface for which Eq. (1.1) has the form 

(3.1) 

where m, n, k are constants. 

^ = k 

Fig, 1, z — is the axis of rotation, /?— the angle between 
the plane of y = 0 and the plane of the directrix r = jr z 

= r(z). 
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For a rotary surface defined by the parametric equations (Fig. 1) 

(3.2) x = r(z) cos p , y = r(z) sin /?, z = z , 

where r is the radius of a parallel circle in section z = const, the principal curvatures 
are [4] 

(3.3) K I S = _ _ Z _ _ , * 2 = 
(1 + r ' 2 ) 3 / 2 ' r(1 + r ' 2 ) 1 / 2 ' 

where r' = dr/dz, r" = d2r/dz2 , 

%! — curvature of the rotary surface along the meridian, 

x2 — curvature of the rotary surface along the parallel circle. 

By substituting the expressions (3.3) into Eq. (3.1) and rearranging them we obtain 
the following ordinary differential equation of the second order for the meridian 
(directrix) 

(3.4) r"r"m - ( - l ) w k(l + r ' 2 ) ^ - " ) / 2 = 0 . 

In the case that m = n and (— l)w = — V we can give Eq. (3.4) the form 

(3.5) rr" + ar'2 + a = 0 , 

where 

(3.6) a = k1/R . 

If m = n and ( - l ) m = 1, then a = - k 1 / n . 

For n = 3m we obtain from (3.4) the following differential equation of the meridian 

(3.7) r V = - k 1 / w . 

If m = 0, Eq. (3.4) changes into a first-order differential equation 

(3.8) r V 2 + r2 = k2/" . 

For n = 0 Eq. (3.4) acquires the form 

(3.9) r"2 + k2/w(l + r ' 2 ) 3 = 0 

and for k = 0 we obtain (r + 0) 

(3.10) r" = 0 , 

which is the differential equation of the meridian of conical and cylindrical surfaces 
(r = Ctz + C2). 
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4. SOLUTION OF EQS. (3.5), (3.7) AND (3.8) 

The first integral of Eq. (3.5) is determined by the introduction of a new function 

y — y(r) which is defined by the relations [5] 

(4.1) y = p\ p{r)-r'(z). 

According to (4.1) we have 

r'2(z) = y , 

(4.2) r-/(r)r-/^JA[p2(r)]J/5 
2 dr 2 

where 

p' = dp/dr , r' = dr/dz , v' = dy/dr . 

Substituting (4.2) into (3.5) we obtain for the function y a linear equation of Euler 

type 

(4.3) ry' + 2ay + 2a = 0 , 

whose solution has the form 

(4.4) y = Cxr~2a - 1 , 

where Cx is the integration constant. 

By substituting the first expression of (4.2) into (4.4) we obtain the following 

first integral of Eq. (3.5) 

(4.5) r 2 V 2 + r2a = Cx . 

The separation of variables in Eq. (4.5) and integration yield the common integral 

of Eq. (3.5) 

(4.6) {Cлr-la~ l ) - 1 / 2 d r + C2, 

where C2 is the second integration constant. 

If k = — 1 and n is an odd number, then according to (3.6) a — — 1 and from (4.6) 

we obtain the following equation of the meridian in the catenary form 

(4.7) z =-j-In [rjCl + V ( C / - 1 ) ] , 
VCi 

whose rotation about the axis z yields a catenoid. 

If k = 1, then — according to (3.6) — a = 1 and from (4.6) we obtain 

(4.8) r 2 + (z - C2)
2 = C, , 

which is the equation of a semicircle of the radius of R = C2 = *S/C1. 
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For a = — \ (k = ( —i)n) we obtain from (4.6) the equation of a parabola 

(4.9) r = ± +
 ci{z-c2y 

C i 4 

and for a = */2 we obtain 

(4.10) z = - 2( | r2 - iCYr + C2
2)(Ct - r ) , / 2 , 

which is the equation of a cycloid (See Section 6). 
Now we shall deal with the solution of Eq. (3.7) by means of the substitution 

(4.11) p(r) = r' , r" = p'r' = p'p = - ~-(p2) . 
2 dr 

By substituting (4.H) into (3.7), separation of variables and integration we obtain 

(4.12) ^-k1/m = p2 + Cl 

r2 

and the application of the first relation of (4.11) yields 

(4.13) r'2 = - k 1 / m - d 
r2 

and thus 

(4.14) r ' = i(fei/»_ d r 2 ) 1 ' 2 . 
r 

Hence, after the separation of variables and integration we obtain a general solution 
of Eq. (3.7) in the form of 

(4.15) (C,z + C2)
2 + Ctr

2 - k1/m = 0 . 

If in Eq. (4.13) we put C1 = 0, then 

(4.16) i A ( r 2 ) = ^ / 2 , ? 

2 dz 

from which we obtain the following solution of Eq. (3.7): 

(4.17) r2 = 2k1/2mz + C. 

The solution of Eq. (3.8) has the form of (4.8), 

(4.18) r2 + (z - C)2 = k1/n. 
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5. PARAMETRIC EQUATIONS OF THE MERIDIAN 

In the structural design of membrane structure in the form of a rotary surface, 
Eq. (3.2) is often replaced by parametric equations in the form 

(5.1) x = r(a) cos f$ , y = r(a) sin /?, z = z(a), 

where the parameter a represents the angle contained by the normal of the surface 
and the rotation axis z (Fig. 1). 

In this section we shall deduce the parametric equations r = r(a), z = z(a) of the 
meridian of the rotary surface of characteristic curvature for which the differential 
equation (3.5) is valid. 

According to Fig. 1 

(5.2) r = R2 sin a , r' = tg # = cotg a , 

where R2 = \\x2 is the principal radius of the surface in the section a = const. 

By substituting (5.2) into the first integral (4.5) of Eq. (3.5) we obtain 

R\a sin2fla(l + cotg2 a) = Cx , 

which yields, after rearrangement, 

(5 .3) R2 = Csin(1-a)/aa, C = C\la . 

According to (3.1) and (3.6) x1\x2 = a and hence 

(5.4) K1 = ^ 2 = - s i n ( 1 - f l ^ a , 
a a 

where Rl = \\xl is the principal radius of the surface in the section ft = const. 

Fig. 1 makes it obvious that 

'(5.5) Rl da = ds = , -— = sin a 

cos (a + da) ds 

and, consequently, (cos (a + da) = cos a) 

/ . ,x dr dz _ . 
(5.6) — = -M

 c o s a , — = Kj sin a . 
da da 

From the first relation of (5.2) and (5.6) we obtain the Codazzi - Gauss equation 

d , 
R! cos a = — [R2 sin a) . 

da 
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After the substitution of (5.4) into the first equation (5.6) and integration we obtain 

(5.7) r = - j sin ( 1 ~ f l )/a a cos a da + Dx , 

hence 

(5.8) r = Csin1/aa + D, , 

where C and Di are integration constants. 
If we substitute (5.4) into the second relation of (5.6), we obtain 

C 
(5.9) Z = s i n 1 / a a d a + D2 , 

where D2 is another integration constant. The integral on the right hand side of 
Eq. (5.9) can be expressed, for some values of parameter a, by goniometric functions 
and their logarithms, in other cases by elliptic integrals. 

If / is a natural number and \\a = 21, we obtain from (5.9) the expression [6] 

For \\a = 2/ + 1, 

(5.11) 
C ,(-o-t(-.y(^)^f^]^ 

For \\a = —21 the relation (5.9) can be expressed as follows [6]: 

C cos a 
(5.12) 

Ű 2 Í - 1 
cosec a + 

+ £ 2'(Z - ! ) ( / - 2) . . . ( / - ; ) 
j=i (21 - 3) (2/ - 5 ) . . . (2/ - 2j - 1) 

аnd for 1/a = -(21 + 1), 

(5.13) 

-cosec 
21-2} 1 л + D2 

C cos a Г 9 / 

z = _ | cosec a + 
a 2/ L 

+ £ ( 2 / - l ) ( 2 / - 3 ) . - ( 2 / - 2 J + l ) 

2 ^ ( / - l ) ( / - 2 ) . . . ( / - j ) 

+ 

; = i 

C ( 2 / - 1)!! a 

' - 2 j a l + 

2Ч\ 
In tg - + D2 . 

2 

Eq. (5.8) and (5.9) or (5.10), (5.11), (5.12) and (5.13) are parametric equations 

of the meridian of the rotary surface of characteristic curvature (3.1) for m = n. 
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6. APPLICATION 

In air-supported membrane structures in the form of a rotary surface the mem­
brane force Fi in the direction of the meridian tangent and the membrane force T2 

in the direction of the tangent to the parallel circle due to internal overpressure q 
equal [7] 

(6.1) T1=-R2q, T2 = R2q(l--^ 
2 \ 2R! 

The membrane forces Tx and T2 are referred to unit length in the middle surface 
of the membrane and have the dimension of kpjcm, kpjm, Mpjm, etc. 

The skin of these structures consists in an air-tight technical fabric capable of 
transferring tensile forces only; for this reason it should hold that 

(6.2) Fi > 0 , T2 > 0 . 

If one of the conditions (6.2) is not complied with in a major vicinity of any point 
of the membrane, undersirable folding of the membrane takes place and large 
shearing forces originate which can break the membrane (fabric) or reduce its life. 
Apart from that, the membrane in such a place is considerably deformed by the wind 
and snow loads which considerably reduce the overall rigidity of the air-supported 
structure and its structural and useful function as well as its resistance to wind 
loads [8], [9]. 

For the surfaces with positive Gauss' curvature the following geometric condition 
follows from the second relation (6.1) and (6.2) 

(6.3) ----- < 2 (2RX > R2) . 
x2 

In rotary surfaces of characteristic curvature we can always comply with the 
condition (6.2) in advance by a suitable choice of the relation between the principal 
curvatures xt and x2. 

For example, if we make in (3.1) m = n = 1 and k = \, then 

(6.4) ^ = ; < 2 
x2 2 

which complies with the condition (6.3). The parametric equations of the meridian 
of the rotary surface of characteristic curvature (6.4) have, according to (5.8) and 
(5.10) the form (a = \, I = 1) 

(6.5) r = C sin2 a + Dl , 

z = C(a - \ sin 2a) + D2 . 
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If we identify the origin of axes z, r with the intersection point of the meridian 

with the axis z, then r = 0 and z - 0 for a - 0, and from (6.5) we obtain D{ = 

= D = 0. The integration constant C represents the maximum value rn 
of the 

radius of the parallel circle (C 

in the form 

r m a x ) and, consequently, Eqs. (6.5) can be written 

(6.6) r = rп 
sm a , x(a — \ sin 2a) , 

which are parametric equations of the cycloid (Fig. 2). We come to the conclusion 

that the rotation of the cycloid characterized by Eqs. (6.6) about the axis z yields 

a rotary surface of characteristic curvature (6.4). Its principal radii are, according 

to (5.3) and (5.4), 

(6.7) Ki = 2r m a x sin a , R2 = r m a x sin a . 

46 



From the relations (6.1) for this surface we obtain 

(6.8) Ti = \R2q = irmaxg sin a , 

T2 = lR2q = | rm a xg sin a . 

Consequently, the conditions (6.2) are complied with at all points of the rotary 
cycloidal surface with the exception of both poles, i.e., the points corresponding 
to a = 0 and a = 7i, where Tt(0) = T2(0) = 0 and T^n) = T2(n) = 0. 

The ratio of the principal membrane forces due to inner overpressure which 
characterizes, to a certain extent, the spatial rigidity of the membrane structure, 
is constant in the given case, viz. 

(6.9) £ = ?. 
T2 3 

This means that any part of the rotary cycloid surface is a suitable form for the 
skin of an air-supported structure in the same way as a part of a cylindrical tube with 
TiJT2 = L or a part of a spherical surface with T1\T2 = 1. 

In conclusion let us note that the surfaces generated by the rotation of quadratic 
curves about the axis z are the surfaces of characteristic curvature 

(6.10) ^ = Bo = const 
x2 

and their principal radii can be expressed by the formulas [10] 

(6.11) R, = ^ , R2 = — — ^ , 
V } (1 + y sin2 a ) 3 / 2 (1 + y sin2 a)1 / 2 

where R0 is the value of the principal radii at the pole, i.e. for a = 0. The value of 
7 = 0 corresponds to a spherical surface, y — — 1 to a paraboloid, y > — 1 to 
ellipsoids and y < — 1 to hyperboloids. 

The surfaces of characteristic curvature (6.10) and those of characteristic curvature 

(6.12) (x, - ^ - r ^ = c o n s t 

are investigated in [10]. 

sin2 a 
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S o u h r n 

PLOCHY S CHARAKTERISTICKOU KŘIVOSTÍ 

VLADIMÍR F l Ř T 

V práci jsou odvozeny rovnice ploch, mezi jejímiž hlavními křivostmi platí defino­
vaný vztah (1.1), který představuje charakteristickou křivost plochy. 

Diferenciální rovnice plochy s charakteristickou křivostí (1.6) má v kartézských 
souřadnicích tvar (1.11). Některé vlastnosti této plochy jsou uvedeny v odst. 2. 

V odst. 3 je odvozena diferenciální rovnice (3.4) meridiánu rotační plochy s charak­
teristickou křivostí (3.1). Zvláštní případy této rovnice (3.5), (3.7) a (3.8) jsou řešeny 
v odst. 4. 

V odst. 5 autor odvozuje parametrické rovnice meridiánu rotační plochy užitím 
prvého integrálu (4.5) rovnice (3.5) a v odst. 6 uvádí jejich použití v technické praxi. 
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