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SURFACES OF CHARACTERISTIC CURVATURE

VLADIMIR FIRT

(Received March 28, 1973)

1. DEFINITION AND BASIC RELATIONS

Let us define the surface of characteristic curvature to be a surface whose principal
curvatures, viz. %, and x,, satisfy

(1.1) F(x;, %) =0,

where F is a given function.') We shall call the relation (1.1) the characteristic
curvature of the surface. This relation yields also the relation between Gauss’ curva-
ture K = %%, and the mean curvature of the surface H = 1(3, + %), as

(1.2) %y, =H+ (H* - K)"?.

We shall deduce the equation of the surface of characteristic curvature from (1.1)
using (1.2) for the principal curvatures and the formulas

(].3) K = hnhzz“hfz,

911922 — 92
_ 1 gi1hyy — 2g05hi5 + gaahy,

H 2
2 911922 — 912

s

where g;; are the coefficients of the first basic form and h;; the coefficients of the
second basic form of the surface [2].

In the case of a surface with an orthogonal system of curvilinear coordinates ¢
and 5 which are identical with the principal directions of the surfaces g,, = hy, = 0

1y The relation (1.1) is the necessary and sufficient condition for the surface to be a W-surface
(Weingarten’s surface). The number of W-surfaces, some properties of which are given in [1],
thus includes the surfaces of characteristic curvature as well as rotary surfaces with the exception
of the plane and the spherical surface.
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and’
1 hyy 1 hy,

(1.4) w, = — , My = — =
R, g1t R, g2z

>

where R, and R, are the principal radii. This means that for the six functions

(145) %> %25 G11> G125 Mias Bay

of the two variables ¢ and # six independent equations are valid, three of which are
the Codazzi-Gauss equations, the other three being expressed by the relations (].1)
and (1.4)_ The surface of characteristic curvature is thus determined unambiguously.

Let us note the determination of a surface of characteristic curvature is based
on the defined state (1.1) and not on the defined functions g;; and h;; which unambi-
guously determine the form and the magnitude of the surface (_Bonnet’s theorem).

In the particular case when the characteristic curvature (1.1) has the form of

(1.6)

o k,
%2

where k is a constant (real number), we obtain, after substituting (1.2) into (1.6)
and using the formulas (1.3), the following equation of a surface of characteristic
curvature:
(1-7) (911922 - gfz) (huhzz - hfz) -

k 2
- *“‘—;(guhu — 29420y, + gzzhn)“ =0.

(1 + k)

For the surface which is determined in Cartesian coordinates x, y, z by the explicit
equation

(1.8) z =f(x,y),

it holds [2] that

(1.9) gu=1+f2, gu=/1dys Ga2=1+f],
By == fars bz = S by = f3,

where

(1.10) o =1+f2+/].

By substituting (1.9) into (1.7) we obtain the following nonlinear partial differential
equation of a surface of characteristic curvature:

(1.11) (L + 12+ 1) (ahyy = 13) =
K

— m—]—()—z—[(l +f,f)fyy - zfxfyfxy + (1 +f}’2)f’“‘]2 =0.
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2. SOME PROPERTIES OF SURFACES OF CHARACTERISTIC CURVATURE
In this section we give some properties of the surface for which Eq. (1.6) is valid.

Theorem. The ratio of the principal curvature and the normal curvature in the
direction deviating from the principal direction of the surface by the same angle
is constant at all the points of the surface of characteristic curvature x[x, = k.

Proof. According to Euler’s theorem the normal curvature » of the normal
section whose tangent forms an angle ¢ with the principal tangent equals [2], [3]

(2.1) % = 3%, cos> @ + x,sin? ¢ .
After substituting (1.6) into (2.1) for a selected point P of the surface we have
(2.2) Py = Psy(k cos® @ + sin? o)
and for another point R on the same surface we have
(2.3) Ry = Ry(k cos® ¢ + sin? @) .
From Egs. (2.2) and (2.3) we obtain the relation

which proves the above theorem.
The consequence of the theorem is the relation

Py Py,

(2.5) X

which yields the following property of the surface:

At two arbitrary points of the surface of characteristic curvature x,[x, = k the
ratio of normal curvatures of normal sections of the surface is constant in the direc-
tions deviating from the principal directions of the surface by the same angle.

By substituting (1.6) into expressions for K and H we obtain
(2.6) K=kei, H=31+k)x,.

After squaring the second equation and dividing both equations (2.6) by one andther

we obtain

(2.7) K _ L,
H> (14 k)?

consequently, at all points of the surface of characteristic curvature x,/x, = k the
ratio of Gauss’ curvature and the square of the mean curvature is constant and

equals 4k/(1 + k)%
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From the first expression

(23)

of (2.6) and (1.6) we obtain
K 1 K

b
2
wi kol

so that at all points of the surface of characteristic curvature »,/x, = k the ratios
of Gauss’ curvature and the squares of the principal curvatures are constant and
equal 1/k and k, respectively.

3. DIFFERENTIAL EQUATION OF THE MERIDIAN OF THE ROTARY SURFACE
OF CHARACTERISTIC CURVATURE

In this section we shall deduce the differential equation of the meridian of a rotary
surface for which Eq. (1.1) has the form

(3.1)

where m, n, k are constants

Vs

Fig. 1, z — is the axis of rotation, f# — the angle between
the plane of y = 0 and the plane of the directrix r = rz

= r(z).

X

m
1

bt R

®3
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For a rotary surface defined by the parametric equations (Fig. 1)
(3.2) x=r(z)cos B, y=r(z)sinf, ==z,

where r is the radius of a parallel circle in section z = const, the principal curvatures
are [4]
" 1
(33) VAR (N —
(l + r!2)3/2 r(l + rfl)llz

where r’ = dr[dz, ¥ = d*r[dz?,

%, — curvature of the rotary surface along the meridian,

%, — curvature of the rotary surface along the parallel circle.

By substituting the expressions (3.3) into Eq. (3.1) and rearranging them we obtain

the following ordinary differential equation of the second order for the meridian
(directrix)

(3.4) P — (=1 k(1 4 2)Cmmz Z
In the case that m = n and (—1)" = —1, we can give Eq. (3.4) the form
(3.5) " +art+a=0,
where
(3.6) a= k',

If m =nand (—1)" =1, then a = —k'/".
For n = 3m we obtain from (3.4) the following differential equation of the meridian

(3.7) = —ktm,

If m =0, Eq. (3.4) changes into a first-order differential equation
(3.8) r2r'? 4+ r* = k2.

For n = 0 Eq. (3.4) acquires the form
(3.9) 24 kP + )P =0

and for k = 0 we obtain (r + 0)
(3.10) r"=0,

which is the differential equation of the meridian of conical and cylindrical surfaces
(r = Ciz + Cy).
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4. SOLUTION OF EQS. (3.5), (3.7) AND (3.8)

The first integral of Eq. (3.5) is determined by the introduction of a new function
y = y(r) which is defined by the relations [5]

(4.1) y = p2 S p(r) = r’(z).
According to (4.1) we have
r’z(z) =y,
1 d 1

(4.2) r’ —p(r)r—pp~5d—[l’()] 57

where
p' = dp/dr N )’/ = dr/dz N y' = dy/dr .

Substituting (4.2) into (3.5) we obtain for the function y a linear equation of Euler
type
(4.3) ry' + 2ay +2a =0,
whose solution has the form

(4.4) y=Cpr2—1,

where C, is the integration constant.

By substituting the first expression of (4.2) into (4.4) we obtain the following
first integral of Eq. (3.5)

(4.5) P22 4 g2 = (.

The separation of variables in Eq. (4.5) and integration yield the common integral
of Eq. (3.5)

(4.6) = J'(qr—“ — ) dr 4 G,

where C, is the second integration constant.

If k = —1 and n is an odd number, then according to (3.6) a = —1 and from (4.6)
we obtain the following equation of the meridian in the catenary form

(4.7) c= e ye, + Y - 1,
VG
whose rotation about the axis z yields a catenoid.
If k = 1, then — according to (3.6) — a = 1 and from (4.6) we obtain

(4.8) P+ (z = C)? =Cy,

which is the equation of a semicircle of the radius of R = C, = \/C,.
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For a = —} (k = (—%)") we obtain from (4.6) the equation of a parabola

1 ¢t
49 r = — ~1 z —C 2
(49) L+S6-c
and for a = [, we obtain
(4.10) 7 = — 2(%,.2 —3C,r + C3)(C, — 1)'2,

which is the equation of a cycloid (See Section 6).
Now we shall deal with the solution of Eq. (3.7) by means of the substitution

1d
4.11 rV=r, r=pr=pp=-—
(4.11) p(r) p =

(p?)-
By substituting (4.11) into (3.7), separation of variables and integration we obtain

1 2
(4.12) — ktm=p* + C,
r

and the application of the first relation of (4.11) yields

1

(4.13) r'? = r_z Jet/m _ C,

and thus

(4.14) r o= l(kllm _ Clrz)l/z .
r

Hence, after the separation of variables and integration we obtain a general solution
of Eq. (3.7) in the form of

(4.15) (Ciz + Cy)> + Cyr? — kMm=0.
If in Eq. (4.13) we put C; = 0, then

rd

(4.16) S

(rZ) — kl/Zm s

from which we obtain the following solution of Eq. (3.7):
(4.17) r? = 2k'*"z 4+ C.

The solution of Eq. (3.8) has the form of (4.8),
(4.18) r* 4+ (z — C)? = k.
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5. PARAMETRIC EQUATIONS OF THE MERIDIAN

In the structural design of membrane structure in the form of a rotary surface,
Eq. (3.2) is often replaced by parametric equations in the form

(5.1) x =r(a)cos B, y=r(a)sinf, z=z(a,

where the parameter o represents the angle contained by the normal of the surface
and the rotation axis z (Fig. 1).

In this section we shall deduce the parametric equations r = r(a), z = z(«) of the
meridian of the rotary surface of characteristic curvature for which the differential
equation (3.5) is valid.

According to Fig. 1

(5.2) r=R,sina, r =tg9 = cotga,

where R, = 1[x, is the principal radius of the surface in the section o = const.
By substituting (5.2) into the first integral (4.5) of Eq. (3.5) we obtain

R3%sin** (1 + cotg? ) = Cy ,
which yields, after rearrangement,
(5.3) R, = Csin!=@ay  C =C}".
According‘to (3.1) and (3.6) 5,/», = a and hence

(5.4) R, = R

C . -
= —sin! " g
a a

where Ry = 1/x, is the principal radius of the surface in the section ff = const.

Fig. 1 makes it obvious that

(5.5) R,da = ds = __L’ dz _ sin o
cos (a + da)  ds

and, consequently, (cos (o + da) = cos a)

(5.6) gﬁ:Rlcosa, E=Rlsino:.
do do

From the first relation of (5.2) and (5.6) we obtain the Codazzi - Gauss equation

d
Ricosa = -—(R,sina).
do
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After the substitution of (5.4) into the first equation (5.6) and integration we obtain

(5.7) r= EJ\sin"‘“)/“occos ada + Dy,
a

hence

(5.8) r=Csin/"a 4+ D,

where C and D, are integration constants.
If we substitute (5.4) into the second relation of (5.6), we obtain

(5.9) z= gJ\sin”"acda( + D,,
a

where D, is another integration constant. The integral on the right hand side of
Eq. (5.9) can be expressed, for some values of parameter a, by goniometric functions
and their logarithms, in other cases by elliptic integrals.

If 1 is a natural number and 1/a = 21, we obtain from (5.9) the expression [6]

o G = S

228\ ] 221-1 21 —2

For 1/a = 21 + 1,

(5.11) Z:(_Z[I( Py é:( )<2l+1>cos(2l-l-1—21):|+D2.

a [ 2% j 21+ 1 —2j

For 1/a = —2I the relation (5.9) can be expressed as follows [6]:

It

(5.12) z=-— € cosz [cosecz"_1 o+

2= 1)1 =2)...(1 —))
+§4y_my—$mw_y~n

cosec?!72/71 oc:] + D,

and for 1f/a = —(21 + 1),

(513) z= - Ccosa cosec?l a +
a 21

=121 = 1) (20 = 3) ... (2 = 2j + 1)
+J_; 2(1=1) (1 =2)...(1 =)
L Clr-

a 2m

cosec?!~2J oc:I +
o
In tgi + D2 .

Eq. (5.8) and (5.9) or (5.10), (5.11), (5.12) and (5.13) are parametric equations
of the meridian of the rotary surface of characteristic curvature (3.1) for m = n.
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6. APPLICATION

In air-supported membrane structures in the form of a rotary surface the mem-
brane force T, in the direction of the meridian tangent and the membrane force T,
in the direction of the tangent to the parallel circle due to internal overpressure gq

equal [7]

1 R
(6.1) T, =-Ryq, T2=R2q< ﬁ?}i)'

ya

The membrane forces T, and T, are referred to unit length in the middle surface
of the membrane and have the dimension of kp/cm, kp[m, Mp|m, etc.

The skin of these structures consists in an air-tight technical fabric capable of
transferring tensile forces only; for this reason it should hold that

(6.2) T, >0, T,>0.

If one of the conditions (6.2) is not complied with in a major vicinity of any point
of the membrane, undersirable folding of the membrane takes place and large
shearing forces originate which can break the membrane (fabric) or reduce its life.
Apart from that, the membrane in such a place is considerably deformed by the wind
and snow loads which considerably reduce the overall rigidity of the air-supported
structure and its structural and useful function as well as its resistance to wind
loads [8], [9].

For the surfaces with positive Gauss’ curvature the following geometric condition
follows from the second relation (6.1) and (6.2)

(6.3) ¥t <2 (2R, > R)).
K2

In rotary surfaces of characteristic curvature we can always comply with the
condition (6.2) in advance by a suitable choice of the relation between the principal
curvatures », and »x,.

For example, if we make in (3.1) m = n = 1 and k = 4, then

(6.4) . 1,
%, 2

which complies with the condition (6.3). The parametric equations of the meridian
of the rotary surface of characteristic curvature (6.4) have, according to (5.8) and
(5.10) the form (a =4, I = 1)

(6.5) r=Csin?a + D,,
z=C(e —4sin2a) + D,.
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If we identify the origin of axes z, r with the intersection point of the meridian
with the axis z, then r = 0 and z = 0 for « = 0, and from (6.5) we obtain Dy =
= D, = 0. The integration constant C represents the maximum value rg,, of the
radius of the parallel circle (C = Tpy) and, consequently, Egs. (6.5) can be written
in the form
(6.6) Fo= P SN0, 2= Fo(o— 4sin 24),
which are parametric equations of the cycloid (Fig. 2). We come to the conclusion
that the rotation of the cycloid characterized by Eqs. (6.6) about the axis z yields
a rotary surface of characteristic curvature (6.4). Its principal radii are, according
to (5.3) and (5.4),

(6.7) R, = 2rpSina, Ry = r, sina.

Fig. 2.



From the relations (6.1) for this surface we obtain

(6.8) T, = 4R,q = Yrpqsina,

T2 = %qu = %rmaxq Sin o
Consequently, the conditions (6.2) are complied with at all points of the rotary
cycloidal surface with the exception of both poles, i.e., the points corresponding
to « = 0 and o = 7, where T,(0) = T,(0) = 0 and T,(n) = T,(n) = 0.

The ratio of the principal membrane forces due to inner overpressure which
characterizes, to a certain extent, the spatial rigidity of the membrane structure,
is constant in the given case, viz.

T, 2

(6.9) =l

This means that any part of the rotary cycloid surface is a suitable form for the
skin of an air-supported structure in the same way as a part of a cylindrical tube with
TI/T2 = 1 or a part of a spherical surface with TI/T2 = 1.

In conclusion let us note that the surfaces generated by the rotation of quadratic
curves about the axis z are the surfaces of characteristic curvature

X1

"

(6.10)

= RZ = const

and their principal radii can be expressed by the formulas [10]

Ro R,

6.11 R=—2>  Ry,=—°% |
(611 T + ysin? o)3/2 : (1 + ysin? «)'/?

where R, is the value of the principal radii at the pole, i.e. for & = 0. The value of
y = 0 corresponds to a spherical surface, y = —1 to a paraboloid, y > —1 to
ellipsoids and y < —1 to hyperboloids.

The surfaces of characteristic curvature (6.10) and those of characteristic curvature

|
(6.12) (%, — x,) ——— = const
sin? o

are investigated in [10].
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Souhrn
PLOCHY S CHARAKTERISTICKOU KRIVOSTI

VLADIMIR FIRT 1

V préci jsou odvozeny rovnice ploch, mezi jejimiz hlavnimi k¥ivostmi plati defino-
vany vztah (1.1), ktery pfedstavuje charakteristickou k¥ivost plochy.

Diferencialni rovnice plochy s charakteristickou kfivosti (1.6) ma v kartézskych
soufadnicich tvar (1.11). N&které vlastnosti této plochy jsou uvedeny v odst. 2.

V odst. 3 je odvozena diferencialni rovnice (3.4) meridianu rotaéni plochy s charak-
teristickou kiivosti (3.1). Zvlastni pfipady této rovnice (3.5), (3.7) a (3.8) jsou feSeny
v odst. 4.

V odst. 5 autor odvozuje parametrické rovnice meridianu rotaéni plochy uZitim
prvého integralu (4.5) rovnice (3.5) a v odst. 6 uvadi jejich pouZiti v technické praxi.

Author’s address: Ing. Vladimir Fiit, CSc., Ustav teoretické a aplikované mechaniky CSAV,
Vysehradska 49, 128 49 Praha 2.
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