
Aplikace matematiky

Evžen Kindler
A heuristical algorithm for simple exponential analysis

Aplikace matematiky, Vol. 18 (1973), No. 6, 391–398

Persistent URL: http://dml.cz/dmlcz/103496

Terms of use:
© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103496
http://dml.cz

SVAZEK 18 (1973) AP LI K A C E M A T E M A T I KY ČÍSLO 6

A HEURISTICAL ALGORITHM FOR SIMPLE EXPONENTIAL ANALYSIS

EVZEN KINDLER

(Received July 3, 1972)

Let us consider a finite sequence of pairs {<tf, j^JJLo where m is an integer greater
n

than 0. We can approximate the values yt by zt =]T gjeCjti. The problem to determine
i = i

the values gj and Cj forj = 1, 2,..., n, and, if necessary, even n is called the exponen­
tial analysis. If neither n nor the statistical properties of the set {yJ^Lo a r e known the
problem of the approximation has no meaning in the classical mathematical sciences.
Then we call the corresponding algorithm a heuristical one. Usually the values Cj
art to be negative, the values tt are non negative. If it is known a priori that all the
values of gj must be positive then the exponential analysis is called simple. One can
expect a suitable approximation in the simple exponential analysis only in case that
a sufficient number of yt are positive and that a sufficient number of pairs <yp yk}
satisfy the condition that yj > yk iff t} < tk.

One can order the values entering into the algorithm so that if j < k then tj < tk.
Moreover, one can norm the values yt (multiply them e.g. by a factor y^1) so that
there is a sufficient number of yt < 1. (The obtained results, i.e., all gj must be then
divided by the same factor, e.g. multiplied by y0.) Both the arrangements must be
done if we want to use the present algorithm. Let us note that the words sufficient
number etc. are rather unclear if we wish to solve a mathematically prepared problem
but they are characteristical for the machine heuristics and artificial intelligence: if
the uncelar conditions have been satisfied then and only then the results of the
algorithm are acceptable; thus the concepts originally unexact turn to be exact
parallely with any application of the algorithm, eventually their meaning is trans­
formed to the semantics of other concepts used after the algorithm work (e.g. the
concept of a suitable approximation).

The method applied in the algorithm is a game based on a comparison of the
coefficients c of the exponential functions gect which approximate certain sets of the
pairs <*,, yt} or possibly <ff, xt> where xt is a remainder of yt after subtracting

391

certain terms. The game is performed by the algorithm but there are facilities that the
user might use to enter into the game or to influence it. The complete game has been
described in [1]. Certain patterns gect are fixed during the game and they enter into
the resulting sequence. The approximation by gect is computed by the least square
method with weight factors.

The algorithm is presented as a procedure written in ALGOL 60. Its formal
parameters have the following meaning: c is an identifier of a one-dimensional
array where the values of tt come, and similarly d is a one-dimensional array where
the values of yt come; the identifier n denotes the same value as above; it is supposed
that the values of tt and yt are assigned to c[i] and d\i\ respectively. The final number
of the components g/eCj' is substituted for the parameter m at the end of the algorithm
run. The values of the coefficients gj and Cj are stored at the end of the algorithm at
the parameters g[i] and k[i] (i = 1, 2 , . . . , n). The other parameters of the presented
procedure have a different pragmatics than to be input or output values; they form
parameters only because of formal reasons (in order not to infringe the rules of
ALGOL 60); line and licence are constants determined more or less by the properties
of the used computers: line is an integer equal to or less than the number of characters
per one line (we have got clear graphical results using line = 60), and licence is a small
positive real number which protects the computation against the overflows during
division and drawing the logarithm and during further operations involving the results
of the division and logarithms (we have got satisfactory results accepting licence =
— 10"1 8). The parameters text, newline, carriage return, print and printspace are
the procedures for printing the results and the form of the game; we suppose that
a terminal is used which prints characters one by one (e.g. teletype or a typewriter);
carriage return causes that the terminal carriage returns without the linefeet, newline
causes the return of the carriage together with the linefeet, text (a procedure with one
string parameter) causes writing a string of characters, printspace (a procedure with
one integer parameter i) causes that i spaces are printed and print (a procedure with
one real parameter) causes the print of the value of its parameter; we do not specify
in more detail the form of the printing but we have got good results when printing
the integers-indices with one space before and one space after while the reals have
been printed in 12 character places: one space, one place for the sign (minus or space),
two places for the digits before the decimal point, one place for the decimal point,
6 places for the digits after the decimal point and one space after the printed number.

The formal parameter button represents an array of buttons which are placed at
the terminal or at the control desk of the computer. Formally they can enter into the
procedure as parameters (and so the algorithm can be tested in any implementation
of ALGOL 60). But the main use of the buttons is that the user can change their posi­
tion during the computation; this action cannot be written by the standard means
of ALGOL 60; if we want to implement it we must transform the if-clauses of the form
if button [i] into special statements of the implementation. The buttons cause the
following actions:

392

button [1]: for every exponential function which enters the game a table or a graph
is printed which compares the modelled and the entering results; see button [8] and
button [9].

button [2]: for every exponential function which enters the game its coefficients are
printed.

button [3]: for every exponential function which enters the game the minimal and
maximal indices are printed; they show the set which is approximated by the cor­
responding exponential function.

button [4]: the game is influenced so that if it is possible it goes on and no exponential
function is fixed to be a component of the results. If the algorithm must nevertheless
finish the game the information on it is printed.

button [5]: every component fixed as a new one of the results (at the end of a game) is
printed.

button [6]: the game is influenced so that if it is possible it is terminated and the best
exponential function of it is fixed as a component of the results. If the algorithm can­
not fix any component, the information on it is printed.

button [7]: if it is in the position false the contracted form of the game is performed
by the algorithm, otherwise the pure method is performed; both the forms are
described in [1] namely in par. 2.6. We can illustrate simply the difference between
the both forms so that the pure form tries to use the maximal number of the input
data for the games while the contracted one tries to use the minimal number of them.
The pure form runs longer and gives a finer approximation but we have used the
contracted form more frequently when applying the algorithm.

button [8]: a table is printed; in the first column there are the modelled values (the
approximation entering the game or fixed as a component of the results), in the
second column there are the original values and in the third column their differences.

button [9]: a graph is printed; by crosses the original values are printed while the
modelled values are printed by zeroes. Both the reactions to button [8] and button [9]
are controlled according to the following rules: in case of a new component being
fixed the positions of both the buttons are reacted; in case of forming a new expo­
nential function entering the game the prints — though controlled by the buttons in
question — are conditioned by the position of button [1] (see the description of its
meaning).

procedure KINDLER 1 (c, d, k, g, m, n, button, line, licence, newline, print, print-
space, carriage return, text); value m;

real array c, d, k, g; real licence; integer m, n, line; boolean array button;

procedure newline, print, printspace, carriage return, text;

393

begin integer i,j, e,f; real a, b, p, q, r, s, t, u, w, x, y; real array z[0 : m];

procedure h i ;

begin comment it generates a new exponential function as an approximation of the
pairs (c[i], d[i]} or (c[i], z[i]>, where z[i] is a remainder of d[i]; the in­
dices i are not less than / and not greater than e;

if ~~\button [3] then go to 5;

newline; text^FROM^; print (/) ; text((TO}); print(e);

5: w := r := s := l := u : = 0;

for i : = / step 1 until e do

begin y := z[i]; if y = licence then go to 6;
y := Ijln(y); t : = t + 1; s := s + c[i]; w := w + j ; ;
x := c[i] x j / ; r : = r + x ; u : = u + c[i] x x;

6: end i;
x : = rf 2; if x = 0 then go to 7;
x : = x — u x w; i fx = 0 then go to 7;
p :=: (t x r — w x s)/x; q := exp((s — u x p)\r);
if ibutton [2] then go to 12; print(q); print(p);

12: if Ibutton [1] then go to 10; if Ibutton [9] then go to 14; newline;
for i := 1 step 1 until line do text((= }); x := z[0]/lme;
for i : = 0 step 1 until e do
begin newline; text((P); printspace(abs(q x exp(p x c[i])jx)); text^O^);

carriage return; printspace(abs(z[i]jx)); lexl((K})
end i; newline;

14: if 1 button [8] then go to 10;
for i : = 0 step 1 until e do
begin newline; print(q x exp(p x c[i])); y := z[i]; print(y); print(x — y)

end i; newline; go to 10;

7: newline; text((ITIS STRANGE, ONLY ZEROES^;

i f / = 0 then go to 3; p := a; q := b;f := f - 1;

10: end hi;

procedure h2;
begin x := 0; forj := 0 step 1 until n do x := x + g[j] x exp(k[j] x c[i])

end h2;

procedure h3;
begin newline; for i := 1 step 1 until line do text((—}); s := d[0]jline;

for i : = 0 step 1 until m do
begin newline; text((:}); bl; printspace(abs(x\s)); text(^$); carriage return;

printspace(abs(d[i]js)); text(i +))
end i

end h3;

394

procedure h4;

begin if 1 button [5] then go to 13; newline;

text^NEWCOMPONENT^; print(g[n\); print(k[n\);

13: if button [9] then h3; if button [8] then h5

end h4;

procedure h5; for i :=- 0 step 1 until m do

begin h2; newline; print(x); y := d[i] ; print(y); print(x — y) end i;

for i := 0 step 1 until m do z[i] := d[i] ; n := 1; e := m;f := 1;
17: hi; if p = 0 then go to 3; if e > 1 then go to 11; k[n\ := p; g[n\ := q; h4;

18: newline; text^RESULTS*);
for i := 0 step 1 until n do begin newline; print(g[i\), print(k[i\) end;
if button [8] then h5; if button [9] then h3; go to 9;

3: newline; text ((I CANNOT DO IT BETTER));

22: n := n — 1; go to 18;

l l : / : = / + l ;

24: a := p; b := g; hi;
if p > a then go to 21; if ~l button [4] then go to 4; / : = / + 1;
newline; text ((FOR FHF BUTTON 4: I DO NOT FIX));

iff < e then go to 24; / : = / - 1; newline; text ((TAKE OFF BUTTON 4});

4: k[n\ := a; a[n] := b; h4; n := n + 1;
if button [7] then/ : = m; e : = / ;
for i := 0 step 1 until/do z[i] := z[i] — b x exp(a x c[i]);

15: if e = 0 then go to 22; if z[e\ > licence then go to 16; e := e — 1; go to 15;

16: / : = 0; if z[e — 1] > licence then go to 17; e := e — 2; go to 15;

21: if "1 button [6] then go to 26; if p = 0 then go to 25; a := p; b := q;

newline; text ((I FIN FOR THE BUTTON 6>); go to 4;

26: / : = / + 1; i f / < e then go to 24;

if button [4] then text (^BUTTON 4 OFF}); go to 4;

25: if button [4] then text (^BUTTON 6 CONTRA 4}); go to 4;

9: endKINDLEK 1;

The algorithm has been programmed in the language MOST which is a certain dialect
of a very limited ALGOL 60 (see [3]). As the presented form has followed the original
text as much as possible, we can observe that it uses only minimal facilities of ALGOL
60. Namely: all the identifiers needed in the algorithm are specified and declared in
the beginning of the algorithm; the variables are identified by only one letter (except
those presenting the metaconstants); labels are integers; there are no sub-blocks of
the the main block; the procedures are without parameters and their identifiers have

395

the united form of the letter h followed by an integer; the name of the algorithm and
the strings are in capital letters while the variables and the procedures used in the
program are in small letters.

The algorithm has been tested at the computer ODRA 1013. It is a small computer
with its central memory in a magnetic drum, completed by a small memory (its
capactiy being 256 machine words) realized in cores [2]. The run time of the algorithm
is substantially influenced by the time for the prints: if we have used the buttons so
that there were only prints of the results, the time necessary for the computation and
prints would be about one minute for m = 8 and about 4 minutes for m = 25.
Simulating the computer ODRA 1003, which has only the drum memory and per­
forms about 70 operations per second we have obtained a suitable approximation
of the run time: the algorithm runs m minutes (where m is the number of input pairs).

Let us make a note on the relation between the presented algorithm and the
description of its game in SIMULA 67 in [1]. The original implementation has been
in the machine code at the mentioned computer. One could use the wired facilities
as indexregisters, maskering, address substitution and their chains; there was no
suitable possibility to transform them into any language of the first or the second
generation, but the language SIMULA 67 with its facilities of remote identifying,
structure definitions and quasiparallel programing was well prepared to express the
used hardware facilities (see [4]). Later we have tried to program the algorithm in the
algorithmic language MOST. It was necessary to eliminate the chains: in order not
to prolongate the run time it was necessary to reorganize the algorithm techniques, to
assign the values accessible through long chains to auxiliary identifiers and to mini­
mize the paths of the game. The resulting algorithm presented here needs approxi­
mately the same run time, it can be written in ALGOL 60 but it is rather undecipher­
able: one cannot join comments to it which might characterize the meaning of various
statements in simple words.

It is interesting that if one uses the classical mathematical methods to solve the
same problem on the same computer one needs not only a more detailed mathematical
information about it (the statistical properties or the number n of the components)
but also more computer time: if we compute by the gradient method or by the least
square methods we need about 50 times more computer time. One may hope that this
comparison holds also for other computers.

The algorithm has been invented as a part of the effort to equip the computer with
such a software which would not demand the user to express his problems mathema­
tically; the users of computers who are not mathematicians often base their com­
putations on contradictory axioms risen by abstraction of various physical properties.
The presented algorithm can diminish the number of components according to
errors of measurement in case that it has been originally determined great rather by
a very fine physical properties which have not been reflected in the measurement
(about that methodology of modelling, see [6]). Naturally, one can join any iterative
method, which would modify the results of the presented algorithm to be more

396

exact according to certain criterion. The results of the presented algorithm, used as

the first approximation, lead then to absolutely (and not only locally) optimal

results and give to the iterative methods necessary input data (e.g. the number of

components).

In Table 1 we can see an example. The first column contains the values of tt while

the second one contains the values of yt which enter the algorithm. The results are

z{t) = 0-2929le-°- 4 0 9 2 U + 0-448e~3-3 4 5 7 6 f + 0 - 2 5 9 0 8 ^ 1 4 ' 9 8 4 6 1 f .

Tab. 1.

Һ Уi z i
zi - Уi ì

0000 1000 100000000 000000000 0
0125 0-613 0-61300000 000000000 1
0-250 0-402 0-46464430 006264430 2
0-500 0-335 0-32295292 -0-01204708 3
1000 0182 0-21033030 002833030 4
2000 0-129 0-12976795 000076795 5
4000 0086 0-05699932 -002900068 6
5000 0023 003785696 0-01485696 7
7000 0017 0-01669966 -000030034 8

The third column of Table 1 presents the computed approximations of yh the fourth

column of the same table contains the differences between the original values and the

computed ones. The reader can find more information in the article [5], which — in

spite of its radiobiological specialisation — offers a series of 16 problems solved by

the algorithm completed by reproductions of computer prints corresponding to

various buttons.

References

[1] E. Kindler: Simple use of pattern recognition in experiment analysis. Kybernetika 5, No. 3,
pp. 201-211, ACADEMIA, Prague 1969.

[2] Automatic computer ODRA 1013 — General description (in Czech), Kancelafske stroje,
Hradec Kralove, 1966.

[3] J. Sczepkowicz: Programming in the autocode MOST 1 (in Polish), Wroczlaw, Elwro,
Publication 03-VI-l.

[4] O. J. Dahl K. Nygaard: SIMULA 67 common base definition. Norvegian computing center,
Oslo 1967.

[5] E. Kindler F. Vitek: Automatic preparation of computer models. Acta Universitatis Carolinae
medica 16, No 3/4, pp. 261-280, 1970.

[6] E. Kindler: L'intelligence artificielle et determination de modele (in French). Materials of the
International congress on natural and artificial intelligences (Nice, 1971). Published in
REMESTA 1972/4, pp. 16 -27 , Prague 1972.

397

Souhrn

HEURISTICKÝ ALGORITMUS PRO JEDNODUCHOU ANALÝZU
EXPONENCIÁLNÍCH FUNKCÍ

EVŽEN KINDLER

V článku je popsán v jazyce ALGOL 60 algoritmus, který zpracuje množinu bodů
n

tak, že ji aproximuje funkcí]T g$ekjt
9 kde t je nezávisle proměnná. Algoritmus určí

1=1
nejen hodnoty všech gj a kj9 ale i číslo n. Výsledky jsou následujících vlastností:
všechna gj jsou kladná a všechna kj jsou záporná. Vzhledem k tomu, že algoritmus
nepotřebuje ani počet členů n ani statistické vlastnosti vstupujících hodnot, nejde
o algoritmus statistiky, nýbrž oboru rozpoznávání forem; algoritmus napodobuje
heuristickou práci výzkumníka, který analyzuje naměřené hodnoty graficky, aby
získal vhodný matematický model (včetně jeho struktury) zkoumaného systému.
Modelovaná inteligence algoritmu počítá s možností synthésy s podněty uživatele,
který pomocí vnějších zásahů (realizovaných tlačítky na terminálu počítače) může
ovlivnit hru, která je v algoritmu simulována.

Authofs address: PhDr. RNDr. Evžen Kindler CSc, Biofysikální ústav Karlovy university,
Salmovská 3, 120 00 Praha 2.

398

		webmaster@dml.cz
	2020-07-02T01:50:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

