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SVAZEK 18 (1973) APLIKACE MATEMATIKY ČÍSLO 5 

OPERATOR OF THIN PLATE REINFORCED WITH 
THIN-WALLED RIBS 

JAN LOVISEK 

(Received October 10, 1970 

In the engineering practice structures have been used since long which have the 
shape of a thin plate reinforced with ring-shaped stiffening ribs. The methods of 
analysis of such plates have not, hitherto, reached full generality. It is, therefore, 
necessary to put up with approximate solutions obtained by the methods of variational 
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Fig. 1. 

calculus. If this method using the methods of Hilbert spaces is applied, approximate 
solutions may be found which constitute a minimizing progression. If the operator 
of a thin plate reinforced with stiffening ribs is positively definite, then this progression 
converges in an energy space to the exact solution. In this paper it is proved that 
this operator is positively definite on a linear subset M. The middle plane forms 
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a multiple connected region Q in the plane Oxy with a Lipschitzian boundary dQ. 
dQ = Uy^i dQj, where dQj are closed sufficiently smooth curves (Lipschitzian 

boundary) and all curves dQj forj + m + 1 lie in the interior of dQm+i. 
The stiffening ribs are made of a material which is different from that of the plate, 

they are ring-shaped and of rectangular cross-section. The axis of every ring yk lies 
in the plane Oxy. The line F = U[yk divides the region Q into (/ + I) regions. 
It is supposed that all curves yk are sufficiently smooth. 

Then Q = Q0 + Q1 + ... + £>.. For the sake of simplicity it is supposed that the 
region Qk (k = 1, 2, ..., /) is simply connected and that the region Q0 is multiple 
connected and defined by the set of curves dQ = U™ + 1 dQj. Furthermore it is assumed 
that the curves F and dQ are not tangent to each other at any point. 

The vertical continuous forces acting on the region Qk are denoted by pk(x, y). 
In addition to pk(x, y), a singular moment and singular forces may act on the region 
Qk, too. It is, furthermore, assumed that the plate is perfectly built-in on its contour 
dQ, which means that on the boundary dQ kinematic conditions are given (the second 
boundary-value problem) 

(i) w = w% = U 

dw 

dn 

dw* 
= — * = 0 on 

dn 

dQ 

The stiffening ribs are regarded as thin-walled rings of constant flexural and tor­
sional rigidity. The behaviour of the ribs is given by the theory of small strains of thin 
curved bars. 

Further, it is assumed that one of the principal central axes of inertia lies in the 
plane Oxy. In that case the principal axis of inertia in every cross-section of the rib 
coincides with the principal normal to the axis yk (k = 1, 2, ..., /). The connection 
between regions Q0 and Qk is considered to follow the individual curves yk. 

The bending moments and forces acting on the k-th ring on the Q0 side are denoted 
by m0k(s) and p0k(s) respectively and the same forces acting on the Qk side by mkk(s) 
and pkk(s) for k = 1, 2, ..., / where s is a parameter equal to the length of arc of the 
curve yk measured clockwise from an arbitrarily chosen initial point. 

The k-th ring is then subjected to the total load 

(2) mk(s) = m0k(s) - mkk(s) 

(3) pk(s) == p0k(s) - pkk(s) 

Under the loads (2), (3) the ring deforms together with the adjacent plates. The fol­
lowing kinematic conditions must be satisfied on the curve yk: 

tA\ A dw0 dwk 

(4) w0 = wk = A , , —-> = - - k = 9xk 

on dn 
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where w0 is the deflection of the plate in the region Q0, \vk is the deflection of the 

plate in the region Qk (k = \, 2, ..., /), Ak is the deflection of the k-th ring, n is the 

normal external with respect to the region Q0, 0rk is the angle twist of the elastic 

axis of the ring, i.e., the angle of rotation of the ring cross-section about the tangent t 

along the curve yk. The direction of the tangent is parallel to the direction of growth 

of the length s. 

Let further the following notation be used 

(5) 0,, 
ds 

dw0 

ds 

where 0nk is the angle of bending of the ring, i.e., the angle of rotation of the tangent 

to the axis of the ring about the normal at the given of the axis. 

Without proof, which is presented in [1], let the internal forces of the rings Lrk 

and Lnk be expessed in terms of the deformation quantities (0nk, 0rk). 

They are 

(6) Lл = Cå 
dJKi 

ds 
- - „k L„Ь Л h 

d0„ 
r 

where Ak is the flexural rigidity of the ring with respect to the axis n% 

Ck is the tersional rigidity of the ring, 

Lnk is the bending moment (about the axis n), and 

Lxk is the torsional moment in the section s. 

It is easy to prove the following differential relationships between the internal 

forces of the ring and the load pk(s) mk(s). They are given in [1]. 

(?) 
ds 

^nk 

Qk 

mk(s) 
dLи 

+ Vы 
Qk 

where Vbk = — j 0 P f c (s)ds + const. — is the shearing force acting in the cross-

section s of the ring with the axis yk. 

The internal forces of the plate and the ring are defined in terms of the deflection 

function of the plate with stiffening ribs as follows: 

Bending moments: 

/a2w d2w\ 
м ; 

м„ 

-D 

-D 

+ џ 
дx2 Õy2 

^2 a2 

д w o w 

Yy2 + Џ Ihc2 

- d íd^\ i dw\ 
_ ds \dsj Qh dn\ 
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Twisting moments: 

(8) Hxy = -D{{ 
v õ2w 

- џ) — — , 
Ox Oy 

LГk = Ck 

~õ 

Js 
/őw\ 1 дwl 

\дn) Qk дs\ 

Shearing forces: 

"x = - D — (Дw), 
л 

Nз. = -D—(Aw 
ćx дv oy 

where D = E/?3/l2(l — /i2) is the cylindrical rigidity of the plate and 0 _ /* g ^ 

is PoissoiVs number. 

Let further Mn, Hnz, Nn be respectively the bending moment, the twisting moment 

and the shearing force taken with respect to the unit length of the edge of the plate, 

on the cross-section of which the external normal is n. 

Between the quantities (Mn, Hnx, Nn) and (Mx, My, Hxy, Nx, Ny) the following 

transposition formulas hold 

(9) Mn = Mx cos2 (n, x) + My cos2 (n, y) + 2Hxy cos (n, x) cos (n, y) 

Hn 
(My — Mx) cos (n, x) cos (n, y) + Hxy[cos2 (n, x) — cos2 (n, y)] 

Nn = + [Njc cos (n, x) + Ny cos (n, y)] 

where n is the external normal to dQ; 

the sign + is used on the external boundary curve of the plate dQm+i 

the sign — is used on the internal boundary curve of the plate dQj, where j #= m + 1. 

Let us further define some concepts and quote some theorems of functional analysis. 

Definition 1. By a region we understand an open connected set the boundary 

of which is constituted by a finite number of piecewise smooth simple curves, 

either finite and closed or infinite. 

Definition 2. Let an arc (curve) dQ be given in a parametrical form by the equa­

tions x = x(s), y — y(s), a ^ s :g /? where s is the parameter of length. We say 

that the arc (curve) dQ is sufficiently smooth if the functions x(s) and y(s) have three 

continuous derivatives in <a, /J} and for no s it is at the same time x'(s) = y'(s) = 0. 

If the curve is a closed one it is required that in addition to the relationships x(a) = 

= x(p); y(a) = y(/>) the relationships for all three derivatives are satisfied, i.e., 

we have x'(a) = x'(fl) up to yw(a) = y'"(fi) where by the derivative at the point a 

we understand the derivative from the right and at the point p the derivative from 

the left. 
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Definition 3. s(Q) is the set of all functions having derivatives of all orders conti­

nuous in the region Q and continuously prolongable to Q = Q + dQ. 3>{£$) is the 

linear space of all functions from s(Q) having a compact carrier in Q. We say that 

the continuous boundary dQ of the defined region Q is, L^pschitzian if the functions 

at(x) for i = 1,2,..., n, describing the i-th continuous part of the boundary are 

Lipschitzian. 

Definition 4. The set of all metrizable functions w in Q for which 

1/2 

IL2ÍÍ-") = (jV(*))2 doj' < 00 

Jя 

will be denoted by L2(Q). 

L2(Q) is a separable Banach space. The proof is given in [4]. 

Definition 5. Let u, v e L2(Q), then the intergral 

u(x) v(x) dx 

is definite and finite. The equations 

(u, v)Q = u(x) v(x) dx 

defines the quantity (u, v)Q which is called the scalar (inner) product of functions u 

and v in the region Q. 

Definition 6. Let k be a natural number. Then W2

k)(Q) is the linear space of all 

functions w e L2(Q) which have generalized derivatives Daw up to and including 

the k-th order and for which Daw e L2(Q). The following notation will be used 

a = V a , ; Daw = 
1 ' iti dxV dxa

2

2 

The norm is defined by the equation 

k 

\Hw^{n) = ( i wm2W)m 

| a | = 0 

The space W2

k)(Q) is the closure of functions from @(Q) in the norm W2

k)(Q). 

Definition 7. Let H be a Hilbert space, M c H a linear subset. Introduce the 

scalar product w, u by [w, w] = (Aw, u) for w, w e M, A being a positive definite 

operator on M. The complete envelope of M with the scalar product w, u is a Hilbert 

space which is denoted by HA and called the energetic space of the operator A. 
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Definition 8. The concept of a minimizing progresion. A progression {wn}, wn e HA 

is refferred to as a minimizing progression if 

lim F(wn) = inf F(w) 

where F(w) = [w, w] — 2(w, / ) , a, f being a fixed element of the space II. 

The total potential energy of the system of the plate with stiffening ribs is (See [1]) 

(10) 

where 

(11) 9(v 

E = э(w) - pw áQ 

2 j „ 

+ 2 Ч 
k=í 2 

(Aw)2 + 2(1 - /І) 
d2w V d2w d2w 

ôx дy дx2 дv2 
áQ + 

"d íдw 

ás\д 

D 

w\ 1 dw~]2 

n) Qk ds] 

[G 

+ Ak 

dw á ídw 

_Qk dn ás \ds 
ds 

x i / B2w \ 2 d2w d2w 

~ *'\\frd~y) ~!hŠ~dy2. 
áQ + 

+ s 

k=\ l 

jZ jZ 
тk

 _ L
 fc 

D Г [Yð2 

ľk \ w f c 

2 , 

d- = Z 
1 

Lj> Ai-

+ Д — | +(1 
+ 2(l-»( ) > 

where w(x, y) is the deflection of the plate with stiffening ribs, gk is the curvature 

at the given point of the curve yk. Let E be the total potential energy of the system. 

Then the principle of virtual work holds which implies 

(12) SE = S3(w) - SA = 0 

where SA is the virtual work of external forces on the virtual displacement Sw. 

The equation of equilibrium: 

a) the equation of Sophie Germain 

;iз) D Л2w = p(x, y) 

b) two equations of equilibrium (7) for an element of the stiffening rib are repre­

sented by Euler's equations for the functional (10). 

Let M = 9(Q). It is known that 

(14) 
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Let A2 be a biharmonic operator, defined on a linear subset M, and let operators b, 
c be introduced as products of adjoint operators B*, C* in the sense of the scalar 
product in L2(F) with operators B, C. Operators B, C are differential operators given 
on functions w(x, y) e M where (x, y) e F and 

В = L,/V(DQ) 

С = Lnky{DAk) 

(15) 

(D, Ck, Ak are constants). 

Then 

(16) b - B*B, c = C*C 

Further, it is assumed that p(x, y) e L2(Q), mk(s) e L2(f), Vbk(s) e L2(F). 

Definition 9. Let H = [u e W2

2)(Q), the traces u and dujdn in yk are such that 
Lxk(u), Lnk(u) e L2(yk)} represents a Hilbert space which scalar product 

(17) (u,v) = X D * w D«vdQ + X 
| a | ^ 2 j í 2 fc=lft 

\Lzk(u) Llk(v) + Lnk(u) Lnk(v)~] ás 

Theorem 1. Operator A2 = A2 + b + c is symmetric on the linear subset M a H. 

Proof. The bilinear form (A2wu w2) on the linear subset M is defined by 

(18) (A2Wj, w2) = (A2wl7 w2)Q + D(bwx, w2)r + D(cw{, w2) r = 

f f 
A2w1w2 d.Q + D bw^'2 ds + D cw1w2 ds 

n }r Jr 

where wl5 w2 G M and hence it is possible to show that this bilinear form has all the 
required properties of a new scalar product in H. Thereby the operator A2 in M 
is defined, too, as follows from Riesz's theorem on the representation of linear 
functional. 

Then, according to (18) the operator A2 is formally equal to the sum of three 
operators 

(19) A2 + b + c, 

where A2 is the biharmonic operator on M and operators b, c are given by formulas 
(16). 

Operator A2 will be called the operator of a thin plate reinforced with stiffening 
ribs. 
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Operator A2 is symmetric on the linear subset M. The proof is given in [3]. 1t is 

easy to verify that operators b and c are also symmetric on the linear subset M, 

because 

(20) (bw,, w2)г = bwxw2 ds = (B*Bw l5 w 2 ) r = (Bw,, Bw2)r = Bw^w^ ds 
r J r 

(21) (bw2, w,) r = bw2w, ds = (B*Bw2, w,) r = (Bw2, Bw,)r = Bw2Bw, ds 

Then it follows from (20) and (21) 

(22) (bw,, w 2 ) r = (bw2, w,) r 

Similarly the following equality holds for the operator c: 

(23) (cwu w2)r = (cw2, wx)r 

This means, however, that the operator A2 is symmetric on the linear subset M. 

It is easy to prove that for w e M the following identity results after taking into 

account (11) and (19) as well as the symmetry of operators A2, b, c on the linear 

subset M: 

(24) < \ D 

(Aw)2 dß + 
J Sì i'Ш á ídw\ 1 dw 

ds \dnj qk dsm 
+ 

+ Aк 

Qк 

dw d /dw\l2) 1 D/A2 , D ,. , 
7" ~ T T" f d s =

 T ( A w> w)<> + 7 ^ w ' w^r + 

G/i ds V ^ 5 / J J ^ 2 

or 

(25) 

H (cw, w) r = — (A w, w) 

(A2w, w) = — -3 (w), where w e M 
D 

Lemma 1. Let the following relationships be true for the linear operator A 

defined on M a H: 

(P) (Awn, wn) —> 0 => ||wn|| -> 0, fOr a// progressions {wn}f, where wn e M. Then A 

is a positive definite operator on M. 

Proof. Let A be not a positive definite operator. Then there exists a progression 

{un}i\ uneM, which is such that ||u„|| = 1, (Aun,un) < ijn. This, however, is in 

contradiction with (P). 

Using the preceding definitions, Lemma 1 and Theorem 1, the following theorem 

may be proved: 
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Theorem 2. Operator A2 is positive definite on the linear subset M. 

Proof. It is sufficient to prove (P) for the operator A = A2. According to Defini­
tion 9 the scalar product in H is given by the relation (17). 

Then, if formulas (11), (29) are considered, it is 

(26) (32w„, w„) = 2 9 ( w „ ) ^ 0 = > X f ( O X ) 2 dO - 0 
D l«l = -Jn 

I 

I 
k= 1 

[L2
rt(w„) + L2„,(w„)] ds - 0 

For the region Q with a Lipschitzian boundary the following inequality is true for 
functions wn e W(

2
2)(Q). (See [4].) 

z IVo 
a\=2 JO 

(27) X (DX) d"̂  ̂  COnSt h'n | W 2 ( - ) ( ß ) 

The following relation results from the inequalities (27) and formulae (26): (w„, wn) -> 
-> 0 (i.e., in the sense of the norm generated by the scalar product (17)). 

In this way it has been proved that the operator A2 has the property (P). From 
Lemma 1 the positive definiteness of operator A2 follows immediately. According 
to the above Definition /, the linear subset M may be considered another Hilbert 
space, H£2. 

In the set M the new scalar product is given by (17). 
The basic variational problem consists in finding an element w from the set M 

which realizes the minimum of the functional F(w) = [w, w] — 2(w,f) where f 
is a fixed element of the space H. 

Such a problem has in general no solution. It has a solution if the functional F(w) 
extends to cover the whole space H. 

The following important theorem is valid: 

Theorem 3. If the operator A2 is positive definite, then each minimizing progres­
sion for the functional F(w) — [w, w] — 2(w,f) converges in H^i to the element 
which realizes the minimum of the functional F(w), [2]. 

Hence, if the operator A2 is positive definite, the progression of approximate 
solutions according to Ritz of the basic variational problem in the metrics of H^i 
converges to the exact solution of the problem. 
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S ú h r n 

OPERÁTOR TENKEJ DOSKY ZOSÍLENEJ TENKOSTENNÝMI REBRAMI 

JÁN LovíŠEK 

V tejto práci sa definuje riešenie tenkej dosky zosílenej tuhostnými rebrami. 
Je zavedený diferenciálny operátor A2 (operátor tenkej dosky zosílenej tuhostnými 
rebrami). Tento operátor je symetrický a pozitivně definitný na lineárnom pod-
priestore M cz W[2\Q). 
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