Aplikace matematiky

Vladimir Matas
On non-existence of periodic solutions of an important differential equation

Aplikace matematiky, Vol. 18 (1973), No. 4, 213-226

Persistent URL: http://dml.cz/dmlcz/103474

Terms of use:

© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/103474
http://dml.cz

SVAZEK 18 (1973) APLIKACE MATEMATIKY ClsLo 4
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OF AN IMPORTANT DIFFERENTIAL EQUATION

VLADIMIR MATAS

(Received September 23, 1971)

1. INTRODUCTION

The equations of variation with respect to the straight-line equilibrium points
L,, L,, Ly of the elliptic three-dimensional restricted problem of three bodies are
equivalent to the system of differential equations (see e.g. [1], p. 261)

(ifé dp 1

c 2o L paaye,
do? dv | + ecos u( )
d? d |
L) e _ — (L — A)n,
dv? dv | +ecosv
d? 1
d’¢ = (—ecos v — 4,0,
dv? | + ecosv

i=1,2,3,

where e and A4; are constants;
O<e<l,

A,> 1, i=1,2,3.

The question of existence or non-existence of nontrivial periodic solutions of the
above system is very important because of its close connection with the problem
of existence of periodic solutions — see e.g. [2] p. 250 — of a disturbed restricted
three-body problem. In the present paper our attention will be paid to a proof
of non-existence of nontrivial periodic solutions of the last differential equation
of the system given above.
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2. THE PROOF OF NON-EXISTENCE OF PERIODIC SOLUTIONS

Consider the differential equation

d% A+ ecosv
(1) Zi?z_ 1+ ecosv
and assume
2 A>1
and
(3 0<e<l.

It is sufficient to prove that equation (]) has no nontrivial periodic solution with
the period 2nq, g a positive integer.

Since the expression
©

has finite and continuous derivatives of all orders with respect to v for all real v,
equation (1) evidently yields that every its solution { has
. . d*
Q) finite and continuous e k=0,1,2,..., ve(—o0, +o).
v

A+ ecosv
1+ ecosv

Let g be an arbitrary (fixed) positive integer. Assume that a nontrivial 2rg-periodic
solution {(v) of equation (1) exists. A consequence of property (5) is that this solution
and its first and second derivatives may be written in a form of Fourier series
(of the functions {(v) and {'(v), {"(v)) convergent uniformly and absolutely on the
interval (— oo, 4 0) to {(v) and {'(v), {"(v) respectively — see e.g. [3], p. 44 — and
we have
+ oo
(6) C(u)zqq—!-z(akcoskv—l-bksinlfv).
2 k=1 q q

apk=0,1,2,.., b,k =1,2,..., are the Fourier coefficients of the function {(v).
(The Fourier series for the functions {'(v), {"(v) are obtained by means of term by term
differentiation of the series on the right-hand side of (6).) By inserting the cor-
responding series into equation (1) the formulas

(7) a, =0,

SIS (5 R T
6 oot [
+ gbkw[(k:_q)Z_ 1:| 0, k=1,..,q.9+1,...,
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are obtained (since the system 1, cos (v/q), sin (v/q), cos (2v/g), ... is a complete
orthogonal system in the Hilbert space L,(—ngq, nq)') or Ly(a — nq, a + nq), a any
real number — see [3], pp. 80, 85). Hence for given coefficients a,, ..., a,, the coef-
ficients a 4, k = 1,2, ..., may be found explicitly in terms of a4, ..., a,.
Consider some by, k = 1, 2, ..., satisfying both the third equation in (7) and the

+ o
requirement that the series Y b, sin kv/q is convergent absolutely for v € (— 00, + o0).
k=1

(Such b, surely exist, e.g. b, = 0, k = 1,2, ...) First, assume — for those b, — that

each vector with g real components, (ay, ..., a,)= (0, ..., 0), “generates” — by means

of (7) — a solution of equation (1). Let ¥, be the space of all real g-vectors. Let the
vectors

(8) a¥ = (a?,..,aMeV,, j=1,...k, 1<k<q,

be linearly independent. Denote the “corresponding™ solutions of (1) by

©) {V(v) = Z alh cos ™y + b,, sin m..
q q

Letaj,j =1,..., k,(k £ gq) be real numbers such that

(10) ¥ a,t9(0) = 0.

i=1

Taking into account the absolute convergence mentioned above (6) we have

(11) Z [Za(l) v+ bmsinmvi\ =
i m=1 q q
+ 0 k m k
=Yy [cos —v. (Z a) + sin ~v.(2ajb,,,)].
m=1 = q =
Hence it follows (see the above remark on the system {1, cos (v]q), sin (v[q), cos (2v/q),

sin (2v/q), ...})

(12) Zocja“) =0, m=1,...,q.

Hence, since the vectors o, j = 1,2, .

., k, have been assumed to be linearly inde-
pendent, we find

(13) =0, j=1,...k, 1<k<gq

Thus it is seen that the functions {¥)(v) are linearly independent which is for k > 2
a contradiction with the assumption that {9 are solutions of equation (1). Hence the

series on the right-hand side of (9) can converge for at most two linearly indepen-
dent g-vectors a'¥.

) Ly(a, b) denotes the space of functions square-integrable on the interval (a, b).

215



The vectors
(14) e;=(8,,...0,)€V,.") i=1..4,

form a basis of the vector space V,. Now, we are going to prove that

(15) (o) :Eam

diverges if

(t6) a, =26,;, m=1...,q, ianarbitrary(fixed)integer, | <i <gq,
(17) a,, given according to (7) and (16) for m = g + 1,4 + 2, ...
It follows from (16) and (17) that
+ o
(18) Zlam= | t At Aai F Aygpi + 3+
if i=1,..,9—1, i+qg—1i
and
+x: +»
(19) Y A= Apyr;
m=1 n=0
for i=¢q or i=q—1i,
where by (7)
(20) :
[(." -a+ ']2_ | (’?qf" gy
q 2 q
ag, i = 5 Ayn- T —s ng+i >
T [ot e T e [T "
q q
<,"fi:")2_ [ i [(”+ 4 ;’]2_ 4
q < q
Aini2ya-i Aipg—i + - - Ay —i
(n+2)q ]__[:("'*'2)‘/__’]2 Ina—i] el_[(n+2)q—i]2 (n+1)q
q q

n=20,1,2,...,i=1,...,q9 — 1, fori = g only the first formula is valid.

1 d;; is the Kronecker symbol.
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We know from the foregoing consideration that if series (15) converged it would
converge absolutely. Thus with respect to (18) and (19) it is sufficient to study the
convergence of the series

+ o + o
(2‘) anq+i’
0

n=

A+ 1)g—i »
0

n=

For n great enough instead of recurrence formulas (20), the following ones may be
written:

(22)

1 i? 2
e (-
At Dgti | q 2 4
ng+i | — l:(” +1)q+ i:lz Ang+i € _ I:(L+_llq_i_l]2
q An—1)q+i q
gz, 1=i=gq
and

A+ 1)g-i 1 — [(" +2)q - i]z An+1)g—i | - [(n +2)q-— i:lz ’
q anq—i q

It is easy to see that the system (23) is included in (22) (after inserting j = q — i,
i=1,..,q9—1,in(23)).

Let us denote

— i\? T2
1 ("i_’) [(_'ljl_)i,_’] — A
An+2)q-i + q 1 z q
e

(24) Gs sl — p (g, ),

anq+i

{ (n=1)q+i]
(29) . %n ¥ ]:)H%z = d(q.1).

Thus relation (22) implies the existence of

(26) lim [b,,(q, i) + M] -t

s+ oo b,-1(q, i) e

217



with — according to (25) —
(27) lim dy(q, i) = 1.

n—ao

Using Lemma [ (see Section 3) it follows from (26), (27) that there exists a finite limit

(28) lim |b,(q, i) = 1.
n—++ oo

Moreover, by Lemma 1 the value of this limit does not depend on i or q.

Hence — by means of the ratio test — either series (15) diverges for all i, ¢ (¢ 21,
1 < i < g) or, “on the contrary”, series (15) converges absolutely for all these i, g.
However, in our case, this convergence would cause existence of more than two
linearly independent solutions of equation (1) — see (8), (9), (10), (13). Accordingly
we are compelled to substitute in (6)

(29) a=0, k=01,..,

only.
Assume now the existence of a g-vector (by,..., b,) + (0,...,0) such that the
series

+ o
(30) S by sin <2
k=1 q

converges absolutely and represents a solution of (1), when b, (k > q) are determined
on the basis of the corresponding recurrence relation in (7). In virtue of the preceding
considerations — now applied to the Fourier coefficients b, — the necessary con-

clusion reads
+
(31) kzllbkl = +4+00.

But this is a contradiction with the condition (see [3], p. 44)
(32) lbnl§£2, n=1,2..,
n

where K is a positive constant. Consequently the relation in (7) is necessarily satis-
fied by
(33) b,=0, k=12,...,

only.

Thus it is seen from (29) and (33) that the only periodic solution of equation (1)
is the trivial solution.
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3. LEMMAS 1 AND 2 AND THEIR PROOFS

Lemma 1. Consider sequences {b,,}, {d,,} of real numbers such that there exist (1)

lim (bn+bd">=c=i=ioo, le| > 2

n—+ o n—1

and (ii)
lim d,, =1.

n—+ o

Then there exist lim b,, lim 1/b, and we find either

n—+ oo n—+ oo

. 2\ 2 2
lim b, = - + Nl him Lo Yo
n—+o 2 2 n++w b, 2 2
2 2
fim b, =~ (<Y =1], 1im L=C4 %_ﬁ‘
n—+w 2 2 n—+o b" 2 2

Proof. (I) Consider the case ¢ > 2, put c =2+ 4, 4> 0. Let 0 < ¢, < 34
and g, < 1. Then according to (i) and (ii) there exists a number n, such that

or

(34) 0<1—gy<d,<1l+e¢ forall n>n,

and

(35) b,,+bi>2+A"(A—2so)=2+2£0 forall n>n,.
n—1

(a) Let for some n > n,
(36) b,y <0.

From (34) and (35) it follows that

(37) b, > b, + d. >2 4+ 2¢ > 1.

n—1

(b) Forsome n > n, let there be a number & such that
(38) b,21-6>0, 620.

From this and by means of (34) we find

(39) 0 <1 o nvr 1 +2
b, ~1-29 1-9
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Consequently, on the basis of (35) and (39), we have

(40) byr1 > 24 28 — i"hL‘ > 2+ 28 — %% :(1 +80) (1 — jﬁ>

If moreover

(41) 5 <0

then it follows from (40) that

(42) by > 1.
Provided
(43) 0=0

relation (40) yields
(44) by > 1+ ¢

Resulting the considerations a and b we conclude that there exist both a number ¢}
and (an integer) n,,

(45) 0<er <1, n,>n,

such that it holds either

46 b,,>1+e*©0<——]4<- ! - <1, forall n=n,
0 *
b, 1+¢
or
1
(47) 0<b, <1 —gper—>-— ;> 1, forall nxn,.

n 1_"EO

Next we are going to study the sequences

d, "
(48) {bn :'=0C’3u+1 ’ {dn n+=°f|2+1 ) {bn + E }

n—=1)n=ny+1

First, we state and prove Lemma 2.

Lemma 2. Let all the assumptions of Lemma 1 be satisfied. Then there exists

(49) ’ lim (b,, + -d—l;ﬂ) =c

n—+ o n
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Proof. For our purpose it is sufficient to prove Lemma 2 for ¢ > 2 only.
It holds

b1 +51';3—+1 — |+ |by = byl

n

(50) b, + Qo1 _ cl £

n

Thus — by (i) — it is sufficient to prove that

(51) lim |b, — byyy| = 0.

n—+ oo

(A) First, consider the case characterized by the relation (46). Let ¢ be an arbitrary
positive number such that

&
52 g = —————— < gy .
2) Lo(1fek 1+ ed)

From (i) by means of Cauchy’s condition for convergence it follows that there
exists an ns, n3 > n,, such that

|
(53) b,y1 — b, + d’};—‘- — EdL <¢g forall n>nj.
n n—1
Further by (ii)
(54) lim B2y

n—+ o dn+1

Therefore there exists a number ng4, n, > nj, such that

£ &

(55) l—g<d, i <14+e, |-

d
;‘;< n+2 <1 + - ;
1 +e5 dyyy 1+ ¢

forall n>n,.

Choose an arbitrary fixed integer n, n > n,, and introduce a fixed number 6, such
that

(56) v Ay | _ 5.
bn n—1
Hence, as follows from (53),
(57) —& — 6 <byyy — b, <e + 6,
from which we find by means of (46)
o [T
b, 1+ &)
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Consequently, using (46), (52) and (55), we have

(59) dn+2 _ du+l - dn+1 bn(dn+2/ldn+1) - bn+l <
bn+1 bn bn+1 bn
< bn(dn+2/dn+1) — by < dusa _ 1‘ + b, — b,y < 2, + ‘11 .
bn dn+1 bn 1 + 80
Put
(60) 5, = 20t
1+ &p
Continue in this way and find
(61) ‘bn+j+1 - bn+jl <& + 0541,
where
2e, + 6;
(62) S, =" =12 ..
! 1+ ey

or

2¢ 1 1 1)
63 Sip; = —2 |1+ + ..+ — |+ L
(63) AR +s§[ 1+ ¢} (1 + gg)y ™! (1 + &g)
For our ¢§ (see (45)) we have

+ o 1 i * N
(64) Z * =1+80’ hm—'ﬁ—‘_zo

i=o \ 1 + &g ey jm+wo(l + €g)
and hence there exists j, such that

1 by 1 1 -
(65) — & + +*£°<1+..‘+ 7 < +*6°+el,
g (1 + &) £g
O _ <e
(L+exy

for all integers j > j,.
Thus we have found an n,,
(67) Re =n + jo

such that for all integers m > n, we have

1
(68) Ib'"+1 - me <281 <1 +-—*+8:>=g.

€o

With respect to (50) and (i) the statement (49) has been proved for the case (46).

222



(B) It remains to prove this statement for the case (47), i.e. the case when

—1—> ! -=14+¢& >1 forall n2=n,.
b, 1 —¢&}

(69)
Let ¢ be an arbitrary positive number such that

&
70 g = — < 1.
(70) Y25, + 3

According to (i) and (ii) — in virtue of Cauchy’s condition for convergence — there
exists an n;, ny > n,, so that

(7]) d"b+_l - ;ﬁd—"— + bn+l - bn < 81
n n—1

and

(72) ld,, - ll < 1e

hold for all integers n > ns.

Let n be an arbitrary positive integer, n > nj. In virtue of (69), for every n > n;
and for every positive integer j, it holds:

(73) Bus jer — bus)| <1 =35,

Hence in virtue of (71) and (69) we have

o b (Bt )| e
by ; by 1L+ &

Moreover by means of (69) and (72) we find

(75) lbn+j - bn+j—1| é |bn+j—1(dn+j+l - 1)[ + |bn+j(dn+j - I)I +
by breson (d.,+j+1 _dyy )I < 2¢, +~5, =s,.
b+ buyj-1 L+ &
Consequently
2e, + Oy _ .
(76) Basjokez = Busjoras] < 8= LT %20 =g j + L
1+ &,

Particularly, for k = j + 1 we have — see (62), (63) and (73) —
(77) ]bn+l - bnl < 5j+l =

- P + .o+ 1 T
1+ & L+8 (U +&)y ] (1 +5&)]

where j is an arbitrary positive integer.
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Thus it is seen on the basis of (64), (65), (70) that

(78) [byst — bu| < g <~2 + 3> =¢

&o

forall n > ny.

Q.E.D.*)
We now come back to continue the proof of Lemma 1.
Put
(79) ¢, = b, + s
b,
By Lemma 2 there exists
(80) lime,=c¢>2.
n—+ %
Therefore
2 2
(81) lim 9£=%>1.

Hence there exist numbers ¢, and ns, 0 < ¢, < 1, ng > n,, such that the inequatities

2

C C,
82) >l 4+e, 2>14e,,
() ’ 2 4 2

are valid for every integer n > ns.

It follows from (ii) that there exists ng, ng > ns, so that
(83) —1—¢, < —d,,; < —1 + ¢, forallintegers n > ng.

Accordingly

(84)

2
Cn

Z —d,.; >0 forallthe n > ng.

Thus we get from relations (79), (82), (83) and (84) that (see also (46) and (47)) either

2
(85) b, = 32" + \/[(%) - d,,ﬂ] > 1 forallthe n > ng > n,

or

2
(86) 0<b,=""- \/[(fi> - d,,H:I <1 forallthe n > ng > n,.

2 2

*) If ¢ << —2 the proof would be analogous to part II of the proof of Lemma 1 (see below).
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Consequently there exist lim b, and lim 1/b, and we have either

n—=+ oo n=++x

(87) lim b, =

¢ c\?
-+ ) —=1f{>1,
n—>+ o 2 2
2
0 < lim —[—:————}--..-ZE_ ¢ 1l <1
n—+ o b,, lim b" 2 2

2\ 2
n—=+ o 2 2
3 2
im =S TSy ==
n—+ bn 2 2

Thus we have proved Lemma 1 for the case ¢ > 2, ¢ &+ + 0.

(II) It remains to consider the case ¢ < —2, ¢ + — 0. Put
(89) b¥ = —b, forevery positive integer n, ¢* = —c > 2.

Then in accordance with part I of the proof there exist lim b}, lim (1/b)). Now

n—+w n—+ oo

on the basis of (87), (88) and (89) lim b, and lim (1/b,) easily can be found, viz.
n—+ o n—+w

either

(90)

e [ 1 e s ]
or

©n

/ 2 N\ 2
i<timb, =S4 (Y =t]l<o, dim oS (N =)< 1.
n—=+o 2 2 n4+whn 2 2

Q.E.D.
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Souhrn

O NEEXISTENCI PERIODICKYCH RESENI
JEDNE VYZNAMNE DIFERENCIALNI ROVNICE

VLADIMIR MATAS

Variaéni rovnice ,,pfisluiné* pfimkovym libraénim centriim trojrozmérného elip-
tického restringovaného problému tfi té€les jsou ekvivalentni systému dvou diferen-
cialnich rovnic druhého ¥adu a Hillové rovnici

d?(, A+ ecosv

{=0,
d®? 14 ecosv

kde 0 < e < 1, A > 1 jsou konstanty. V piedlozené praci je podan dikaz, Ze pro
vSechny uvedené hodnoty parametrit A, e dana Hillova rovnice nema zZadné netrivialni
periodické feSeni.
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