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O F MULTIVARIATE DISTRIBUTIONS, WITH NINE SPECIAL CASES 

ZBYNEK SIDAK 

(Received June 20, 1972) 

1. SUMMARY 

In this paper we try to extract the core of the argument used by Y. L. Tong [15] 
for probabilities in multivariate equicorrelated normal distributions, and to generalize 
it as far as possible. The proof of the general inequalities is very simple, but these 
inequalities embrace a large number of interesting special cases. We give here nine 
illustrations: for multivariate equicorrelated normal, f, x2> Poisson, exponential 
distributions, for normal and rank statistics in comparing many treatments with one 
control, for order statistics used in estimating quantiles, and for characteristic roots 
of covariance matrices in certain multiple sampling. 

2. GENERAL INEQUALITIES 

Y. L. Tong in [15], Theorem 1, proved the following assertion: If a random 
variable X is non-negative with probability 1, then 

(1) EXk ^ (EXk/s)s ^ (EX)k + [EXkls - (EX)klsJ for k ^ s ^ 1 . 

An immediate consequence is the following chain of inequalities. 

Lemma. If a random variable X is non-negative with probability 1, then 

(2) EXk ^ [ £ * * - I j W - l ) ^ [EXk-2y/(k-2) j> _ £ -EXmJlm j> [ ^ 2 ^ / 2 ^ 

^ [EXf + [EX2 - (EXfJ12 ^ [EXf for k £ m ^ 2 . 

Namely, on putting s = k/(k — l) in (1), we get the first inequality in (2); on 

changing k into k — 1 in this first inequality, we get the second inequality in (2), 
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etc. The last but one inequality in (2) follows from (1) on putting s = k/2, and the 

last inequality is clear because EX2 ^ (EX)2. 

Now we can prove the main result of this paper. 

Theorem. Let Xt = (Xil9 ...9Xip)9 i = 1, . . . , k, be a sample of k independent 
p-dimensional random vectors with the same distribution (but where the p com­
ponents of each vector may be dependent), and let U = (Ul9..., Uq) be another 
q-dimensional random vector (with possibly dependent components) which is 
independent of all Xif s. Further, let f = f(xl9..., xp; ul9..., uq) be any measurable 
r-dimensional vector function, and A any measurable r-dimensional set. Denoting 

(3) fi(k) = P{f(Xil9...9Xip; Ul9..., Uq)eA; i = 1, . . . , k} , 

we have the following chain of inequalities 

(4) 0(k) £ [P(k - l)]*/»->) = [p(k - 2)]&/(fc"2) ^ ... ^ [p(m)]k/m ^ 

^ [P(2)J'2 ^ pk(l) + [p(2) - p2(l)Jl2 ^ pk(l) 

for ket m>.2. 

The p r o o f follows easily from the Lemma stated above on putting there X — 
= P{f(Xn,..., Xip; Ui,..., Uq) 6 A | Ui,..., Uq} , and its idea is extracted from 
the proof of Theorem 2 in Tong [15]. Namely, we have 

P(k) = P{j(X ;; U ) e A ; i = 1 , . . . , k} = £P{ j(X ; ; U ) e A ; i = 1 , . . . , It | U} = 

= EP"{j(X;; U ) e A | U} ^ ^ - ^ { / ( X , . ; U ) e A | U ] ^ ' - 1 ' = 

= [ E P { j ( X ; ; U ) e A ; i = l , . . . , / c - 1 | U } ] ^ " 1 = 

= [P{j(X ;; U ) e A ; i = 1 , . . . , k - l } ] ^ " 1 = [/?(* - I ) ]" ' " - 1 , 

and further inequalities in (4) can be proved similarly. 

The inequalities (4) are analogues of those given in Theorem 2 in Tong [15]; 
however, additional inequalities can be clearly obtained by our method from the 
second inequality in (1). 

Remark . C G. Khatri in [7], Corollary 1 (ii), proved that EXk ^ (EXm) (EXk~m) 
provided X ^ 0, k ^ m ^ 0. These inequalities can also be used in our method 
of proof in place of the above Lemma, and the resulting inequalities are clearly 

(5) p(k) ^ p(k - 1) p(l) , 

P(k)*p(k-2)p(2),..., 

P(k) ^ P(m) P(k - m) for k> m ^ 1 . 
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A question now arises naturally which of the inequalities (5) or (4) yield closer 
bounds for fi(k). Clerly, in view of symmetry, we may restrict ourselves in (5) only 
to cases with m ^ k — m, i.e. with m — \k. However, for these cases (4) implies 
P(m) ^ [p(k - m)]mKk~m), which immediately gives 

(6) [p(m)]k/m ^ P(m) P(k - m) . 

Therefore, if we know the probabilities /?(!), /?(2), ..., j?(m) up to dimension m, 
[/i(m)]k/m in (4) gives the closest bound for fi(k) which can be obtained from (4) 
and (5). 

3. SPECIAL CASES 

The inequalities (4) contain a large number of interesting special cases. Nine of them 
will be mentioned here for illustration, but many more can be found. This flexibility 
is mainly due to the possibility of choosing arbitrarily the function f. 

In each of the following cases we shall display the forms of the respective function f 
and of the probability /?(k), but we shall not repeat the inequalities (4) for these 
specific probabilities. 

1. Equicorrelated normal distributions. Let Zu...,Zk have a k-variate normal 
distribution with mean values 0, variances 1, and with all correlations equal to O ^ 0. 
It is then a well known and often used fact that such a distribution may be represented 
by the distribution of Z{ = (1 - O)1/2 Xt - Ql/2U, i = 1, ..., k, where U, Xl9..., Xk 

are mutually independent N(0, 1) variables. Therefore, putting in our Theorem 
p = q - r = 1, f{Xt\ U) = (1 - Q)l/2Xi - Q1/2U, and either A = ( - c o , d) or 

A = (~d, d), we get the probabilities either 

p(k) = P{Zt < d;i = 1,..., k} or p(k) = P{\Zt\ < d; i = 1, ..., k} , 

respectively. Thus, by this specialization, we get again the inequalities proved by 
Tong [15], Theorem 2. In this special case of equicorrelated variables, the inequalities 
(4) improve the general inequality /?(k) ̂  fik(l) obtained by Slepian [12], and by 
Sidak [10] and Khatri [7], respectively. 

2. Equicorrelated Student distributions. One type of a multivariate Student 
distribution is the distribution of ZX\S, ..., Zk\S, where Z l 5 ..., Zk is as before in 
Case 1, and 

s = (v-it^r 
1=i 

where Wl9 ..., Wv are independent N(0, 1) variables, also independent of Zl9 ..., Zk. 
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We use again the same representation of Z ; 's as before, and put p = r — 1, q = 2, 

(Vu U2) = (U, S), 

f(Xi;U,S) = [(\-eyi2Xi-e*<2U-]IS, 

and either A = (— oo, d) or A = ( — d,d). Then we have either 

P(k) = P{Z,/S < d;i = 1, ..., k} or j8(fc) = P{\Zt\\S < d; i = 1, ..., k} , 

respectively. The relevant inequalities (4) are also due to Tong [15], Theorem 2. 

Another type of a multivariate Student distribution is the distribution of Z1\S1, . . . 
-.., Zk\Sk, where Z l 5 . . . , Zk is again as before, and 

S.^v-'tw.2,-)1'2, i = l,...,fc, 
1=1 

where W, = (JVi;, ..., JV -̂)- I = 1, ..., v, is a random sample of vectors, which 
are mutually independent and independent of Zu ...9Zk9 and each of which has 
the same k-variate normal distribution with mean values 0 and variances 1; we shall 
also suppose that all correlations between Wif and WhJ (i, h = 1 , . . . , k; i 4= h) 
are equal to T — 0. Clearly again as before, we can use a similar representation 

Zt = (l - O ) 1 / 2 K i 0 - O 1 / 2 U 0 , i = l , . . . , k , 
and 

Wl7 = (l - T ^ J f y - T 1 ^ . , f = l , . . . , k ; j = l , . . . , v , 

where all Xf0, X0, U0, Uj are mutually independent N(0, 1) variables. If we put now 
p = q = v + 1, r = 1, 

j(X;o,X;i,...,Z;v;U0,U1,...,Uv)= a - g ) 1 / 2 ^ o - e 1 / 2 t / o f 

{v- i i [ ( i -T)^ .Y t f - t^ 7 r} i / a 

1=i 

and either A = ( — oo, d) or A = ( — d, d), we get the probability either 
P(k) = P{Zi\Si<d;i = \,...,k} or ^(k) = P{|Z,|/5, < d ; i = l , . . . , k } , 

respectively. Concerning the latter probability, the inequalities (4) improve, in this 
special case of equicorrelated variables, the inequality fi(k) ^ pk(l) which was proved 
by Sidak [11] and Khatri [7] for more general covariance structures. 

3. Equicorrelated %2 distributions. Let Z, = (Zlj9..., Zkj) be a random vector 
having a k-variate normal distribution with mean values 0, variances 1, and with 
all correlations equal to Qj ^ 0; let j run through 1, 2, ..., v, and let the vectors Zj 
for different j ' s be independent. Similarly as in Case 1, we can use a representation 
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Zu = (1 - QjY'2Xtj - Q)'2UJ, i = 1 , . . . , k; j = 1, . . . , v, where all Xip Uj are 
mutually independent N(Q, 1) variables. Putting now in our Theorem p = q = v, 
r = 1, 

/ " ( * „ , . . . , X ;v; I / . , . . . . U,) = t [(1 - j?,.)1'2 xtJ - e j / 2 U , ] 2 , 

J = t 

and A = (di, <i2), we get the probability 

P(k) = P{d1 <fjZ
2

j<d2;i = l , . . . , k } . 
I=i 

It may be observed that the inequality /?(k) ^ Pk(i) for such a probability was proved 
under different assumptions than ours by the following authors: Jensen [5] proved 
it for the case where the assumption of independence of the vectors Zj was relaxed, 
but only for k = 2; Khatri [7] proved it under more general conditions on the 
correlation structure, but only for one-sided intervals (dud2)9 i.e. where either 
d1 = 0 or d2 = oo. All of these inequalities can be clearly used for finding conserv­
ative confidence intervals for k variances simultaneously; for details cf. Jensen-
Jones [6], p. 328, or Khatri [7], p. 1855. 

4. Poisson distributions. A special case of multivariate Poisson variables Z1? ...9Zk 

may be given by the model Zx = Xx + U, ..,, Zk = Xk + U, where Xi, ...9Xk, 
U are independent Poisson variables. Note that this model includes, in particular, 
the bivariate Poisson distribution (cf. Haight [3], Section 3.12, or Holgate [4]). 
If we put p = q = r = 1 and f(Xf; U) = X{ + U, the probability /?(k) in the 
Theorem will become P(k) = P{Zt e A; i = 1, ..., k}. 

5. Exponential distributions. Similarly, a special case of multivariate exponential 
variables Zl9...,Zk may be defined by the model Z t = m i n ( X 1 , U ) , . .., Zk = 
= min (Kfc, U), where Xl9..., Xk9 U are independent exponential variables. In parti­
cular, this model for k = 2 gives the bivariate exponential distribution (cf. Marshall-
Olkin [8], Theorem 3.2). Thus, putting p = q = r = 1, f(Xt; U) = min (Xi9 U), 
we obtain the probability /?(k) = P{Zt e A; i = 1, ..., k}. 

6. Comparison of k groups with one control — normal variables. Let us have 
a sample Y01,..., Y0m in a control group, and the samples (of the same size) Yil9.. .9Yin, 
i = 1, . . . , k, in k experimental groups. Let each Yu have the normal distribution 
N(ni, a2) with the same known variance a2 and let all of them be mutually inde­
pendent. The question is to find which }ii9 i = 1, ..., k, differ significantly from ju0. 
For this purpose, Dunnett [2] (or, cf. also Miller [9], Section 2.5) proposed the test 
statistics 

2 v j i / / _ = _ ) . , . , t i 

a yj\m + nj 
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where 
n 

Y. = n'ly£Yu for i = 1, . . . , k, 
1 = i 

and 
m 

Yo^m-1^^. 
1 = i 

If /^ = fi2 = ... = ^ , we may put p = n, q = m, r = 1, Xu = Ya, ..., X/n = YflI 

for i = l , . . . ,k , U! =Y 0 1 , . . . ,U m = Y0m, f(Xn,...,Xin; U1,...,Um) = Z i, and 
either A = ( — co, J) or A = (~d, d). Then 

f?(k) = P{Zt <d;i = 1, ..., k} or p(k) = P{|Z,.| < d; i = 1, ..., k} , 

respectively. The inequalities (4) in our Theorem can be used e.g. for approximating 
the critical values for the relevant test based on the variables Zl, ..., Zfc; in fact, 
the inequality f}(k) ^ [/?(2)]fc/2 was used for this purpose for the twosided test already 
by Dunnett [2] himself. 

If the variance o2 in this problem is unknown (this problem was also considered 
by Dunnett [2]), everything is only slightly modified. Namely, in the definition 
of Zt we need to replace o by its estimate 

m k n 

s _ x/{(w + kn _ k _ i)-i [ I ( y 0 . _ Y0f + E l(Yu - Y)2]} , 
1 = 1 i = l 1 = 1 

and the remaining discussion is completely analogous. 

7. Comparison of k groups with one control — nonparametric tests. Let us 
consider the same situation and the same question as in Case 6, except that the Yj/s 
may have any continuous distribution. For this problem, Steel [13] (or, cf. also 
Miller [9], Section 4.3) recommended the rank statistics 

Zi = f j R i j , i = l,. . . ,k , 
1 = i 

where Rtj is the rank of the observation Ytj in the pooled sample Yn,..., Yin, Y01, . . . 
..., Y0m. (I.e. Zt is the common Wilcoxon statistic for the f-th group and the control 
group.) If all observations Ytj in all k experimental groups have the same distribution, 
we may again identify p = n, q = m, r = l,Xn = Yn,..., Xin = Yin for i = 1, ..., k, 
Ui = Y01,..., Um = Y0m, and put 

f(Xn,...,Xin;Ul,...,Um) = £Rij, 
1 = i 

A = (du d2) . Then 
/?(k) = P{d, < Z , <d2; i = 1, . . . , k}, 
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and the inequalities (4) can be again used for approximating the critical values of the 
corresponding test. (Note that the inequality /?(k) ^ fik(\) leads to approximating 
the critical values in question by those of the common Wilcoxon test.) 

Further, if the problem is modified so that the observations are arranged in blocks, 
we can use the so-called many-one sign statistics (cf. Steel [14], or Miller [9], 
Section 4.1); the developments for this case are similar as before. 

8. Estimation of quantiles in equicorrelated normal distributions. Let us have 
a sample of n independent vectors Yj = (Ylj9 ..., Ykj), j = 1, ..., n, where each Yj 
has a k-variate normal distribution with an unknown mean vector (nu ..., jik), 
an unknown vector of standard deviations (au ..., ak), and with all correlations 
equal to Q ̂  0. Let yia denote the a-quantile of the normal distribution N(fib a2), 
and let Y£

(1) ^ Y/2) ^ . . . g Y/n) denote the ordered observations YiUYi2,...9Yin. 
We are interested in finding a lower bound for the confidence coefficient of simul­
taneous confidence statements 

Y? <yix<Yi'\ i = l,...,fc, 

for some fixed 5, t, 1 :g s < t ^ n. To this end, define first the vectors Zj = 
= ( Z u , . . . , Zkj) by Ztj = (Ytj - ^jai9 i = \, ..., k; j = 1 , . . . , n. Similarly as 
before, let Z\l) g Z\2)

 = ... g Z ^ be the ordered observations ZiUZi2, . . , Z l V 

Now, for these Zij9 we can use (cf. Case 1 or 3) a representation Zu = (1 — o)1/2Xij — 
— Ql/2Uj9 where all Xij9 Uj are mutually independent N(0, 1), variables. Further, 
if za is the a-quantile of the distribution N(0, 1), then clearly yia = atza + fit. Finally, 
let p = q = n, r = 2, let the coordinates of the two-dimensional function f be 

JlV^il? • • •> Xin'-> U u ..., Un) = Zt , 

f2(Xn,...,Xin;Ul,...,Un) = Z?, 

and let A = (— co, za) x (zx, oo). Then we obtain the probability 

£(/c) = P{Z^ <zx< Zf; i = 1 , . . . , k} = 

= P{(Y^ - ^ ) M < za < (Y/<> - n^at; i = 1 , . . . , k} = 

= P{Y^ < yia < y<"; i = l , . . . , f c } , 

and our Theorem may give us the desired lower bound for fi(k). If we specialize yia 

to be the medians, our result /?(k) ^ />*(1) may be compared with those presented 
by O. J. Dunn [1]: she showed that /?(2) ^ P2(\) for any bivariate population with 
continuous marginal distributions, but that p(k) ^ j8*(l) need not hold for k ^ 3. 
Our result shows that, for a very special type of distributions, /?(k) ^ fik(\) does hold 
for any k. 
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9. Characteristic roots of covariance matrices in a case of multiple sampling. 
Clearly, our Theorem and its proof may be also modified so that the function / takes 
on for its values measurable r-dimensional sets, and that 

p(k) = P{f(Xn,...,Xip; Uu ..., U9) cz A; i = 1 , . . . , k} . 

The following case will illustrate this modification. Let us have k -f 1 random 
samples of s-dimensional vectors: the 0-th sample consists of vectors Y0j = 
= (Yioj, •••> Ys0j), j = 1, ..., m; for i = 1, ..., k, the i-th sample consists of vectors 
Ytj = (YUj, ..., Ysij), j = 1, ..., n; let all of these vectors be independent and possess 
the same distribution. Then, for each i = 1, ..., k, let us combine the 0-th sample 
and the i-th sample into one sample Y01, ..., Y0m, Yn, ..., Yin, and let Ct denote the 
set of characteristic roots of the empirical covariance matrix of such a combined 
sample. We are interested in the probability that Ct cz A, i = 1, . . . , k. In our 
Theorem, we put p = sn, q = sm, r = 2, 

xi = {Yin, •••>Jrsii> -->Ylin, ...,Ys/„) for i = 1, ..., k, 

V = (Yi0l, ..., Ys0i, • ••? Y10m, ..., Ys0m), /(X j i , ..., Xip; Ul9 ..., Uq) = Ct, 

and we obtain 
ß(k) = P{Ct cz A; i = \,...,k) 
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S o u h r n 

ŘETĚZ NEROVNOSTÍ PRO JISTÉ TYPY MNOHOROZMĚRNÝCH 
ROZLOŽENÍ S DEVÍTI SPECIÁLNÍMI PŘÍPADY 

ZBYNĚK ŠIDÁK 

Článek se snaži extrahovat jádro důkazu, pomocí něhož Y. L. Tong [15] dostal 
jisté nerovnosti pro pravděpodobnosti v mnohorozměrném ekvikorelovaném nor­
málním rozložení, a pak toto jádro co možno daleko zobecnit. Výsledkem je obecná 
věta ukazující, že pro pravděpodobnosti (3) platí řetěz nerovností (4). Důkaz je velmi 
jednoduchý, ale tyto nerovnosti v sobě obsahují mnoho zajímavých speciálních 
případů, z nichž devět je dále v článku uvedeno pro ilustraci: případy mnohoroz­
měrného ekvikorelovaného normálního, t, y2 rozložení, mnohorozměrného Pois-
sonova a exponenciálního rozložení, případy normálních a pořadových statistik 
při srovnávání více populací s jednou kontrolní, odhadování kvantilů pomocí 
pořádkových statistik v ekvikorelovaném normálním rozložení a případ charak­
teristických kořenů kovariančních matic při jistých mnohonásobných výběrech. 
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