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SVAZEK 18 (1973) A P L I K A C E M A T E M ATI KY ČÍSL01 

O N A SEMI-VARIATIONAL METHOD FOR PARABOLIC EQUATIONS II 

IVAN HLAVACEK 

(Received December 23, 1971) 

INTRODUCTION 

In Part I of this paper we presented a numerical procedure for approximate solution 
of abstract parabolic equations. It is the aim of the Part II to give further information 
on the proposed method and to show how to apply it to some problems, which are 
more general than those of Part L 

In Section 1 we prove the invariance of the n-th semi-variational approximation 
with respect to the polynomial bases and its coincidence with the Pade approximations 
in some sense. In Section 2 a parabolic equation with inhomogeneous mixed boundary 
conditions is solved by means of the semi-variational method. In Section 3 the ex-
extension of the method to an abstract equation with two positive definite operators 
is discussed and the convergence and stability of the first and second approximations 
proved. 

1. SOME PROPERTIES OF THE SEMI-VARIATIONAL APPROXIMATIONS 

The semi-variational approximations have been constructed by means of the La-
gran gian interpolation polynomials (cf. Section I . l) . A question arises, whether this 
is the only possible way of derivation. We are going to show that, in case of homo­
geneous abstract equation (1.1.1), any polynomial bases lead to the same n-th ap­
proximation as a result. This assertion is formulated in the following Theorems II, 1.1 
and II.1.2 exactly. Let ^ m , m = 0, 1, 2, ... denote the subspace in L2(0, T) of poly­
nomials of degree m. 

Theorem II. 1.1. Let {£&(*)£ = 0 ~ \ / O r m a polynomial basis in 0*„-i, n ^ I, and let 

(1.1) ^-"(O ="l istfaPv, 
* = 0 > = 1 
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represent an approximation of a solution to the problem 

du 

àt 
+ Au = 0 , и(0) = (p0 , 0 <; t ^ т , 

(i.e., the Cauchy problem of Section 1.1 with f = 0 and T = T). 

Then the approximation u(-n"1\t) is determined uniquely by the variational con­

ditions 

(1.2) [ V " 1 ^ ) + [A ii<"-l\z) dz - <p0 ,Sj(t) vm) df = 0 , 
Jo Jo 

0 = j g n - 1 , m = 1, 2, . . . ,N , 

bema independent of the choice of the polynomial basis. 

Proof. Consider the Legendre polynomials Pk(x), k = 0, 1, 2, ..., — 1 g x <i 1, 

and transform the interval < — 1, 1> onto <0, T>, setting x = 2t/T — 1. Thus we 

obtain polynomials Pk(2tJT — 1) = Pk(t), which form an orthogonal sequence in 

L2(0, T). Substituting Sk(t) = Pk(t) into (l . l) and (1.2), we obtain 

u(n~l)(t)Jl ipk(t)af\, 

(i 3) " l I f { a (

f

f c ) P k ( 0 P X 0 K ^ ) + r f V n W d z v , P , ( t ) v l l d ^ 
*-=o * = i Jo (, U o JAJ 

= I (^> 0 ^ m )PXO d ^ 

0 <= J' ^ n - 1 , 1 = m <; N . 

If we introduce matrices p and q with the terms 

P,* = [4(0 r/t) dt, «;* = [4(0 f 4(z) dz dt, 
Jo J 0 Jo 

the system (1.3) can be rewritten as follows 

(1.4) S£a = p0co0 , 

where 

aT = ( ( a « y , (flU>f, . . . , ( a*-" )*) , (a«y = « , fl« .. . , fl£>), ') 

^jfc = PjkG+Qjk^ > Po = (Poo. Pio> •••> JP»-i.o) • 

*) MT denotes the transpose of the matrix M. 
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Lemma II.l.l. The system (1.4) possesses a unique solution for every n ^ V 
N ^ 1 andx > 0. 

Proof. We shall proceed by induction with respect to n. Let us derive eq. (1.4) ex­
plicitly. Using the orthogonality of Legendre polynomials and the formulas 

f P2(x) dx = 2/(2/ + 1) , Pj(-1) = ( - i y , P,(l) = 1 , 

(2/ + 3) f P,.+ 1(£) d£ = P ; + 2(x) - Py(x), 0 S j , 

P0(£) d£ = P0(x) + P,(x), 
J - l 

we obtain the system (1.4), in the following form 

(1.5)0 x(G + \xs4) o (0) - iT 2 j / a ( l ) = xo30 , 

(1-5), 

, (1 -D fl(i+D 

Í T 2 ^ O < 0 ) + \xGa(u - — séa™ = 0 , 
30 

(1-5); 
2(2/ + 1) \2j - 1 2/ + 3 j 2/ + 1 

7 ^ 2 , (a(n) = 0 ) . 

GaU) = 0 , 

If we multiply the equation (1.5)0 by 2/T, (L5)- by 6/T, (1.5); by 2(2/ + 1)/T, we 
are led to the equivalent system 

(1.6) 

where 

(1.7) 

õjjin) 

9{n)a = 

2G + т. j/, - -

2 G , 

j / , 2G 

т т 
j / , 2G, 

2AÎ - 5 2n - 1 

2 л - 3 
j / , 2G 
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Denote the matrix (nN x nN) of (1.7) by D(n\ Suppose that (i) the inverse (D 0 0 )" 1 

exists. Divide both L)<n) and (D(n))~l into block matrices &*> and (&n))~k
l of the 

type (N x N), respectively, as has just been done in (1.7) for £)<"). Moreover, suppose 
that (ii) the matrix (&n))^Un_1 is positive definite. Then (I> + D)~i e x j s t s ' a r i d t r i e 

corresponding enty (^(n + l))~^ is positive definite, as well. In fact, the method of in­
version by partitioning yields 

£)(«+!) _ ' - w , U„ 
y„, 2G :]• 

т V„= 0,0, ..., s/\, U„7= 0,0,.. ., 

(.-.,« 2 n - 7 / Vv-^r2" + 1 

and the existence of (D<~+1>)-1, if (D*" ' ) - 1 and S _ 1 exist, where 

3 = 2G - 7„(_<->)-» U„ = 2G + — - - J £ - _ J / ^ W ) . - . 1 . . . . . s* . 
(In + 1) (2n - 1) 

From the induction assumptions (i) and (ii) both these conditions follow, because & is 
positive definite (N x N) matrix for any T, n, N. Moreover, by virtue of the relation 

(S>("+1>)„-,„1 = 9 - \ 

the latter matrix is positive definite. 

The assumptions (i) and (ii) hold for n = 1, when 

D(1) = 2G + TS/ , (_2(1))o,o = (2G + T ^ ) " 1 . 

Consequently, (i) and (ii) hold for every n _ 1, N = 1 and T > 0. 

Now we can continue the proof of Theorem II . l . l . Let {Sk(t)}o~1 be any poly­
nomial basis in ^ n _ ! . Then it holds 

(1-8) Sfc(0="lcu_
5

l(0 = [CP(0]*, 
1 = 0 

where C is a regular matrix. Consider the function 

(1.9) v^l\t)~Z is^a'^v,. 
fc = 0 i=l 

Denoting 

s'j0 = f S/r) d l , sjk = f s ^ t ) 5,(r) d t , rjk = f s / f ) f S*(Z) dZ dr , 
Jo Jo Jo Jo 

and making use of (1.8), we obtain 

rt-l B - l M " 1 

(1.10) sjk = £ cklcjrplr, rjk = J] cjtckrqlr, s'J0 = £ tyP/o • 
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From (1.2) it follows 

(1.11) "z\sJkG + rJk^)a'^ = sJ0co0. 
k = 0 

Inserting (1.10) into (1.11), we may write 

n~ 1 n—1 n- 1 

Z CkrCjl Z (PlrG + 4lr*t) ^ = Z CjlPlOfO > 
l,r = 0 k = 0 1 = 0 

which may be written in the matrix form 

(1.12) CS£CTa' = Cp0co0 . 

Multiplying (1.12) by C~J and using Lemma II.LV we can conclude that 

(1.13) C V = a , i.e., *£ ckr<>'(k) = a(r) • 
k = 0 

Inserting (1.8) and (1.13) into (1.9) we obtain 

vi.-n(t) = "£ £ Cti pi{t) a,wVi = £ "£p ( W ao)vi = „<„-.)(,) Q E D 
! , » - 0 i = l .'=1 / = 0 

Theorem II.1.2 Lct {SJT'Vj-jo"1 ^ {S(
k\t)}

n
0 form polynomial bases in 0>n__x 

and @*n, respectively, and let 

be given. Then the approximation 

и - l N 

fc = 0 i = l 

k=0 i=l 

is determined uniquely by the initial condition 

(1.14) («<">(0), vm) = (<p0, vm), m = 1, 2, ..., A' 

and the projection condition 

(1.15) fV w ) (0 ~ " ("~ 1 }(0 , Si""1^) t;m) df = 0, 
Jo 

j = 0, 1, ..., n - 1 , m = 1, 2, . . . ,N , 

bei/i<7 independent of the choice of the polynomial bases in 0>

n-l and £Pn. 

Proof. First Jet us substitute for both bases the Legendre polynomials, i.e., 
S<»--> = pk9 s[n) = Fk. Then (1.15) yields 

Z Z M% G.1 -"z Z «!%<?.,, = o, 
* = o i = 1 fc = o i = 1 

m = 1,2, . . . ,N , j = 0, 1, ..., n - 1 . 
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Hence we conclude that 

pbG = paG 

where p denotes the diagonal (n x n) matrix (ptj) and p denotes the (n x (n + l)) 
matrix, which is formed by adding one zero column to p. Consequently, 

(1.16) b(fc) = G(fc\ 0 ̂  k ̂  n - 1 . 

The initial condition (1.14) yields 

C(fpfc(0)fa«) = o)0 
fc = 0 

and therefore 

(1-17) b<"> = (-1)" [G-^ 0 -"f(- l)*aW] 
fe = 0 

Next let {S i""1^)}^"1 and {s£B)(t)}S be arbitrary bases and 

(Lis) v^\t) = i isin\t)bf\. 
k=0 i = l 

It holds 

(1.19) S[n\t) =ihkrPr(t), O ^ k ^ n , 
r = 0 

S<"-1>(0="EcyiP,(t), O ^ j r g n - l . 
i = 0 

The projection condition (1.15) results in 

(1-20) t Y b^tjkGmi = "£ i athjkGmi, 
k=0 i = l fc = 0 i = l 

m = 1, ..., N , 7 = 0, 1, .. . , n — 1 , 

where 

= Гs5--1>Sř)dř, z д = ГsJ"-1)P td< 
J 0 J 0 

We may write (1.20) in the matrix form 

(1.21) tb'G = zaG . 

Substituting (1.19) into (1.21), we obtain 

t = CphT , z = Cp , 

CphTb' = Cj?a , 
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consequently, (cf. (1.16)), 

(1.22) {hTbJk) = a(fc), 0 £ k £ n - l . 

The initial condition (1.14) yields, if we use also (1A9), 

(1.23) G(£hkrFr(0)b'w) = coo. 
k,r = 0 

Hence we obtain from (1.22) and (1.23) 

(1.24) {hTbJn) = (-1)» [G-'coo - " f ( - l ) f t flw] • 
k = 0 

By comparison of (1.22) and (1.24) with (1.16) and (1.17), respectively, we conclude 
that 

hTV = b , i.e., £ hkrb'{k) = ->(r) 

fc = 0 

and by virtue of (1.19), we have 

»w(0 = x x s ^ f ^ = I ~7(<) V &.w». = 227,(0 &.r)«>. = «(B)(0 • Q.E.D. 
k i i k,r i r 

Theorem II.L3. Let u(n)(t), n *z 1, be the n-th semi-variational approximation of 
the solution to the initial-value problem for the ordinary differential equation 

(1.25) d - + Au = 0 , 0 < t < T , 
dt 

0 < A = const. , u(0) = cpo . 

Then 

(1.26) u^(x) = cp0Qn(-a)lQn(a), 

where 

(1-27) 6„(«) - I ( 2" " /C)! "J - « ' , * = Ar. 
k=o (2n)\ k\ (n — k)\ 

R e m a r k II. 1.1. The rational function Qn{ — a)/Qw(a) coincides with the well-known 
Pade approximation Rnn{a) of exp ( — a), consequently, the error of uin){x) is 0(a2n + 1) 
(cf. [2]). 

Proo f of Th.II.1.3. We can interpret eq. (1.25) as a particular case of the abstract 
eq. (1.1.1) if we set H = R (the space of real numbers), Jt = "V = R, N = 1, v1 = 1, 
G = 1, jtf = A. Then the Theorems II. 1.1 and 1.2 imply that any polynomial basis 
can be employed instead of the Lagrangian interpolation polynomials. Let us choose 
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the Legendre polynomials Pk(t). Then the system for QW follows immediately from 

(1.7). Here we have 

(1.28) 2 + a, - - , 
3 

a, 2 , 
5 

2 , 

2n - 5 
2, a 

2n - 3 

2rг - 1 

2 

and cO0 = cp0. Denote 

(1.29) d e t ^ ( n ) = Dn(a). 

First we shall prove the following 

Lemma II. 1.2. Let Dn(a) and Qn(oc) be defined by (1.29) and (1.27), respectively. 
Then 

(1.30) D„(a) = T Qn(a) 

holds for every n = 1,2,... 

Proof. Expanding Dn with respect to the last column, we obtain 

(1.31) Dn = 2Dn_t + 
2и - 1 

Xn_t for и ^ 2 , 

where Xn^l is the corresponding subdeterminant. Consider Dn+1, multiply its 

(n + l)-th row by a/[2(2n + 1)] and add the result to the n-th row. Then expanding 

the modified Dn + 1 with respect to the last column, we obtain 

(1.32) 

where 

Dn+l =2(A„Dn_1 + 
2n - 1 

xn-Л, 

2 + 
2(2и + 1) (2n - 1) 
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Elimination of X„-t from (+31) and (1.32) leads to the recurrence formula 

(1.33) A,+ i = 2 ö n + 
(2и + 1) (2и - 1) 

A , - i , « Ž 2 , 

which enables us to prove (1.30) by induction. It is easy to verify (1.30) for n = 1, 2, 
by direct calculation. Suppose that (1.30) holds for n = 1,2, ..., m and calculate 
Dm+l9 making use of (1.33). Thus we have 

Dm+Í ^ - 2 W + 1 X 
(2m - fc)! 

fc=o(2m)!k!(m - k)! 
ocҝ + 

2m-l £ i V ( 2 m - 2 - к ) ! ( m - ] ) ! 

a . (2m + 1) (2m - 1) k% (2m - 2) k! (m - 1 - k) 

The linear part of Dm+1 is 

2 m + 1 ( l + ia) 

and the coefficient by aJ, 2 ^ j g m + 1, may be shown equal to 

2" + i (2m + 2 - j ) ! ( m + 1)! 

(2m + 2 ) ! j ! ( m + 1 - j)\' 

Hence the formula (1.30) holds for Dm+U consequently it holds for all n :> 1. Q.E.D. 

Now recall the proof of Theorem II. 1.2. Using (1.16) and (1.17) we derive 

" ( П ^ ) = Ф o | ^ + I > W 

P„(0) k=o . {} PJLo) v . 
From there we deduce 

U<">(T) 
(1.34) 

(1.35) 

r\ m — 1 

= 1 + — £ a(2f+1> for n = 2m even , 
</>o <Po i = 0 

u(řř)(т) , 2 * ,, 
^ = - 1 + — > a ( 2 

0 for tг = 2m + 1 odd . 
cp0 cp0 i = 0 

Let n = 2m. Adding all even equations of (1.6) (i.e., those for j = 1, 3, ...) we obtain 

m - l 

aa ( 0 ) + 2 £ a(2l' + 1> = 0 , 
i - o 

consequently, from (1.34) it follows that 

(1.36) - " - ( ^ = l - ^ a « » . 
<Po <p0 
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If n = 2m + 1, we add all odd equations of (1.6) (i.e., for j= 0,2,...) to obtain 

m 

aa(0) + 2 £ > ( 2 l ) = 2cp0. 
i = 0 

Then from (1.35) we come again to the formula (1.36). 
It is easy to show, using (1.36), (1.28) and the Cramer's rule, that 

II<">(T) = Eja) ? 

cp0 Dja) ' 

where Ejoc) differs from Djoc) only in the first entry (En(oc))ll, which is equal to 2 — a. 
Multiplying every even column and row of Ejoc) by ( — 1), we can immediately con­
clude that 

Ejoc) = Dj-cc). 

Consequently, with the use of Lemma II. 1.2, it holds 

nw(T) = J ) l , ( - a ) = & ( • - « ) ^ Q E D 

<P0 E>J?) QJCC) 

R e m a r k II. 1.2. For an abstract homogeneous equation (1.1.1) we can derive an 
analogous relation (cf. [6]) 

wi = Qn{-ot) [&,(*)] " ' w0 = iQja)]'1 Qj-a) w0 , 

where w1 represents the vector of coefficients wu, (i = 1, 2, ..., N) in the expansion 

N 

uw(T) = ^w l l . t;1 . , 
i = l 

In order to prove this relation, we multiply every matrix equation (row) of (1.6) by 
G~l and introduce a regular matrix 

a = %G~lstf . 

Thus we are led again to the matrix (1.28), where 2 is replaced by 21N (lN being the 
unit matrix) in the diagonal entries. 

The set of all polynomials R(a) with the matrix argument a generates a commutative 
linear algebra. Therefore the determinants with matrix entries can be defined precisely 
in the same way as the usual determinants. Using these generalized determinants, we 
can introduce (1.29) and prove Lemma II. 1.2. Then (1.27) and (1.30) imply that 
Djoc) is a regular matrix. We deduce again (cf. (1.36)) 

wi = wo — a ° ( 0 ) 

and 

o ^ = 2[i)„(a)]-1S '1"»(a)^o, 
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where S(/i(a) is the complement of (21N + a) in the determinant Dn(a). From there it 
follows that 

w, = [ D ^ J ^ D ^ - a ) ^ . 

Finally, we use Lemma II. 1.2 and the relation 

[*(«)]-* S(«) = S(a) [*(«)]-' 

holding for any pair of polynomials P(a), 5(a) if R(a) is regular. 

R e m a r k II.1.3. Theorems II.1.1 and II.1.2 indicate that the orthogonal system 
of Legendre polynomials may be used to develop the semi-variational approximations 
even in the case of abstract parabolic homogeneous equation (1.1.1). The advantage 
of this particular version becomes evident for n _ 3, when the zero (matrix) entries 
appear in the systems for the unknowns a(/c) and the relative number of zeros increases 
with n (cf. (1.7)). The coefficients o(k) can be calculated from (1.6) and then 

»,i')=z[,i:1«f)^) + »? ,^)]'i. 
i = 1 k = 0 

where bin) is given by (V17). 

2. PARABOLIC EQUATION WITH INHOMOGENEOUS BOUNDARY 
CONDITIONS 

Let us consider the parabolic equation 

aiJ(X)^]=f(X,t), 0<t<T, 

(x l5 ..., xN) = X e Q cz EN , 

with the initial condition 

(2.2) u(X, 0) = <p0(X) 

and the mixed boundary conditions of the following type 

(2.3) u = g on Fu x (0, T> , 

N du 
(2.4) £ au(X) v, — = P(X, t) on F„ x (0, T> , 

i , j = l oXj 

* du 
(2.5) a(K) u + X «v(*) v* — = P ( X ' 0 o n r » x (0, T> . 

»,j = i d x , 

(2.1) -* - £ -i 
Őí ř, J = 1 ÖX; 
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We assume that Q is a Lipschitz region1) , its boundary F is divided into four mutual ly 

disjoint par ts 

F = ru u rh u Ft, u F0, 

where mes F0 = 0 and each of Fu, Fh, Tv is either open in F2) or empty. 

Moreover, assume that / ( ; , t), g(; t) e W2
1)(Q) (the Sobolev space of square-

integrable functions which possess the first derivatives in the generalized sense in 
L2(Q)) and P(-, t) e L2(LV u Lh) for each t e <0, T>, (dgjdt) e <#(l, L2(Q)), i.e., con­
tinuous mapping of I = <0, T> into L2(Q), atj(X) are measurable functions of 
X e Q such that the matrix (atJ(X)) is symmetric and positive definite with its spectrum 
bounded above and below by positive numbers C0 and r\, respectively, which are 
independent of the argument X3). The function a(X) is measurable and it holds 

(2.6) 0 < a0 g a(X) ^ ax , X e Fy, 

vf are the components of the unit outward noimal to F and cp0 e L2(Q). 

Assume that the solution of the problem (2.1) —(2.5) is such that 

uU 

(2.7) w = (« - fl) e L2(/, r), -E V(I, L2(fi)), 
3t 

(2.8) ( ^ y ) + ["» y]A = ( / y) + CP, f ) r , 0 < t ^ T, v e r , 

(2.9) (M (•, 0), v) = (cPo, v), v e r , 

where 

(2.10) r = {v e W^\Q), v = 0 for X e FJ and 

jv e W{
2\Q), v dX = 0 2)1 if FM = Fy = 0 , respectively, 

(2.11) (u,v) uv àX 
Q 

{) A bounded region Q cz EN is called Lipschitz, if its boundary has the following properties: 
a) to each point l e f a n open hypersphere Sx about X exists, such that the intersection Sx n F 
may be described by means of a Lipschitz function and b) Sx n F divides Sx into exterior and 
interior parts with respect to Q. 

2) A set G cz F will be called open in F, if for any point X0 e G there exists an n > 0 such 
that each X e F, satisfying dist (X— X0) < n, belongs to G. 

3) From there it follows, with the use of Schwartz theorem, that all the functions ajjC^Q are 
bounded on Q. 

) Or an equivalent condition — see e.g. [3]. 
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(2.12) [u, v\A = f _ > y — — dZ + f am- dE , 
Jn ' .V ' 5x ; <3x; J r o 

(2.13) (P, v)r = PvdF. 
JEh^Et-

Moreover, we suppose that 

(2.14) lim ||i#(-, 0 = «(-, 0)1^(1,(0) - 0 . 
t->o + 

Note that the formula (2.8) can be obtained, if we multiply (2A) by v, integrate over Q 
by parts and make use of the boundary conditions (2.4), (2.5) and the definition (2.10) 
o f f . 

Setting u = g + w, the formulation (2.7), (2.8), (2.9) can be rewritten as follows 

(2.15) WEL2(I, y/-), — G<€(1,L2(Q)), 
dt 

(2.16) (— ,v\ + [w,v]A = < / , v > , 0 < t ^ T , v e r . 

(2.17) (w(% 0), v) = (IAO, v) , ve-T, 

where 

(2.18) </, v> = / / - ^ , tA - [g, v]A + (P, v)r , 

(2.19) iAo = </>o - g ( ' , 0 ) . 

The problem (2.15) — (2.19) can be interpreted in the form similar to (1.1.1.), (IA.2) 
in the sense of functional on V, i.e., 

(2.20) — = A w(t) = f(t) , 0 < t ^ T, 
dt 

w(0) = i//0 , 

where A is the second order differential operator of (2.1) with 

D(A) = {w e C(2)(w), w satisfies the homogeneous boundary conditions (2.3), (2.4), 

_ (2-5))> 
f(t) is a linear functional on ir for each t e I, defined through (2.18) and ij/0 is defined 

in (2.19). 

Using the assumptions o n / , dgjdt, atj, a, g, P, the Cauchy-Buniakowski inequality 
and the embedding theorems, we can deduce easily thatf(t) is continuous on ir. Let 
us compare the notation of the present problem with that of Section 1.1. If we set 
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H = L2(Q), define iT by (2.10) (with j|u | | = | |w||,r2<iW a n d [w> V]A by (2.12), then 
the assumptions on [u, v\A, (1.1.3) and (1.1.4) hold. In fact, from the boundedness 
of the spectrum of a(j, (2.6) and the embedding theorem we obtain that 

(2.21) [u, v\A S CH H , u, v E W?\Q) , 

i.e., the bilinear form is continuous on i r x i r . The inequality (1.1.3) is evident. The 

first part of (1.1.4) is an immediate consequence of the integration by parts. In order 

to prove the inequality 

(2.22) c 0 | | t t | | r 2 o) ^ [u,u\A, 

we may deduce 

[ f i . u L f c f j f Z ( | - - Y d x + a 0 f u2dr^ 

^ min (ГJ, a0) u2 áГ + 
гv J ß mп 

and consider the following cases separately: 

a) fv 4= 0. Then the square root of the expression in brackets defines a norm equi­

valent with ||M||JK2O) ( s e e e-S- M Th. 1.1.9), consequently (2.22) holds. 

b) rv = 0, ru 4= 0. Then the norms ||u||jr2(-) a n d 

.2 -11/2 

u2 áГ + 
L J Tu J ß Ï(SM 

are equivalent (according to the same theorem in [4]), consequently (2.22) holds 
again, because u e if vanishes on FM. 

c) rv = 0, ru = 0. Using Poincare's inequality (or Theorem 2.3 and Remark 3 of 
[3]) we obtain the inequality 

?Ш 
du\2.v^ „ | | 2 

which yields (2.22). 

Hence all the derivation of the semi-variational approximations of Section 1.1 
can be applied, with the following minor changes: the functions f(t) have to be re­
placed by the functionals/(t), all the products of the form (f(t), v) by the expressions 
</(t), v> and cp0 by \j/0. For example, we come to the Crank-Nieholson-Galerkin ap­
proximation (1.1.17), (1.1,22), where now 

» 0 j = ( ^ 0 , Vj) , 

(2.23a) F°mj = K / M + f(™ + T), VJ> or 

(2.23b) F^ = < J ( m T + i T ) , v .> . 
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Douglas and Dupont proved in [5] some a priori estimates for the latter procedure 
applied to non-linear equations of the type (2A) with atj (u, dujdxk, X, t), the bound­
ary conditions (2.3), (2.4) (Fv = 0) and for its linearization by means of the predictor-
corrector method. The proofs of Theorems 7.2, 7.3 and Lemma 7.1 of [5] may be 
extended also to the mixed boundary conditions of the type (2.3) —(2.5) and con­
sequently, the estimates from [5] hold for the linear C.N.G. approximation (1.1.22), 
(2.23b), as well. For the procedure (1.1.22), (2.23a), the estimate of Theorem 7.2 [5] 
can be proved easily with the norms in H0

1} replaced by norms in W^XO), if we sup­
pose also (1.2.5). Replacing f by J and the products (f(t), v) by <J(i), v} also in Sec­
tion 1.2, the proofs of Theorems 1.2.1 and 1.2.3 remain without any other change. 
In Theorem 1.2.2 and its proof we have to replace only W^ by W^\ 

3. A CLASS OF MORE GENERAL EQUATIONS 

The method of semi-variational approximations may be easily applied to a class of 
abstract problems of more general type, namely to the following initial value problem 

du 
(31) B— + Au=f, 0<t^T, 

dt 

u(0) = cp0 , 

where A and B are linear symmetric and positive definite operators in a real Hilbert 
space H, which do not depend on t. We assume that two Hilbert spaces *f~0, V ± with 
the norms ||w||0 and ||w||i, respectively, a bilinear form \u, v]A, continuous and sym­
metric on i^Q x i^0, a bilinear form [u, v]B, continuous and symmetric on ir

1 x ir
l 

and positive constants c, a, /? exist, such that *f"0, if x a H, the domains D(A) CZ f^0, 

D(B) cz r„ 

(3.2) (Au, v) = \u, v]A , u, v e D(A) , 

(Bu, V) = [u, v]B, u, v e D(B) , 

(3.3) a I H | 0 =. [w> U]A J u e ^ o ? 

j3||u||i ^ [w> U]B -> ueir
1, 

(3.4) i^0 cz ir1 , \u\x g c||tt||0 ' uei^0 . 

Furthermore, f(t) is assumed to be a linear continuous functional on 'V = 
= T~0 n ir

1 for each t e I = <0, T> and (p0ei^v 

Obviously, if B is the identity operator, *¥\ = H and i^0 = i^, then the present 
problem reduces to that of the abstract parabolic equation (I.LI.) and all the as­
sumptions (1.1.4) are satisfied. 
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The derivation of the first semi-variational approximation goes through similarly 
to that of Section 1.1, with the following minor changes: 

a) all the scalar products of the type (u, v) in (1.1.9) — (I. 1.16) should be replaced by 
[w, v]B, consequently G{j by £%V} = \y{, vj]B and the matrix G by the matrix <%, 

b) all products concerning the right-hand side of the form (f(t), v) should be sub­
stituted by </(*), v>. 

The projection condition (1.1.18) remains unchanged. Thus we obtain the system 

(3.5) (^ + ~s/\am = @wm + - [F(mT) + F(nn + T)] , 

®w0 = co0, wm+1 = 2am - wm , 

which is equivalent to the Crank-Nicholson-Galerkin scheme 

(3.6) - [Um+1 - um, v]B + i[Um+1 + um, v]A = K / ( O ) + M vy, 
T 

0 = m STJT - 1, V=vj, j = l , . . . , N , 

[U09 V]B = [cp0 ,V]B . 

As the second approximation is concerned, similar modifications lead to the fol­
lowing system 

(3.7) acm - (± st + i a\ bm = ®wm + - 1 [F(mz) - F(mT + T)] , 

$tcm + - @bm = - F(mx) + 4 F ( mx + - J + F(mT + T) 

together with (1.1.42) and (1.1.43). Remark 1.1.2 remains in force. Modifications of 
the third approximation are analogous. 

R e m a r k II.3.L It is easy to see that the matrix & is also positive definite. Hence 
(3.5) has a unique solution for every m and any T. The solvability of (3.7) at each time 
step can be proved like in Remark 1.2.1, replacing only G by J \ 

Let us investigate the convergence of the first and second approximations. Assume 
that the mapping/(t) is continuous on I and the solution u of the problem (3.1) is 
such that (cf. Section 1.2) 

(3.8) u e L2(I, 1T), du/dt e r€(I, rrt) , 

(3.9) [dti/df, v]B + [w, v]A = </, v} , 0 < t = T, v e ir , 

(3.10) [w(0), v]B = [<p0, t;]B , u G f , 

(3.11) limj|u(t) - w(0)||0 = 0 . 
t-»o + 

Using the basic ideas of the proof of Theorem 1.2.1, we obtain 
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Theorem IL3.1. Suppose that the solution u of (3.1) satisfies (3.8) — (3.11), possesses 
continuous derivatives in i r

l up to the second order and the norms ||d3u/dt3||1 are 
bounded for 0 < t < T. Denote zm = um — Uw, where Um is the solution of (3.6), 

N 

um = u(/w), u any function of the form u(t) = £ cc^t) vi9 sm + 1 / 2 = i(sm + sm+1), 
i = 1 

<5ik the Kronecker's delta. 

Then there exist positive constants C and T0, independent of T, such that for 
T ^ T0 and any k, 1 ^ k g T/T, it holds 

(3.12) |î + I ф и + i / a | U 

(u - u ) m + 1 / 2 | | o + (1 - <5lк) <S(u — u) ш - 1 / 2 = C X T 
[m = 0 

+ | | (" ~ ")o| | l + | |(W - ")l/2||l + 1 (" ~ fi)k-l/2||l + T f ' 

R e m a r k II. 3.2. In case that (3.4) fails to hold, Theorem II.3.1 remains in force, 

if the term ||(u — u) m + 1 / 2 | | i is added in the square bracket of the right-hand side of 

(3-12) 

The system (3.7) of the second approximation is equivalent to the following finite 
difference scheme (cf. (1.2.2)-(1.2.3)) 

4 
(3.13) - [Um - 2U m + 1 / 2 + Um+1, Vj]B + [Um+1 - Um, Vj]A = < f w + 1 - f m , Vj} , 

- [Um + 1 - Um, Vj]B + i[Um + 4U m + 1 / 2 + Um+1, Vj]A = Kfm + ¥ m + 1 / 2 + fm + 1 , Vj} , 

[U0, vf]B = [cp0, Vj]B , 

0 ^ m ^ T/T - 1 , j = 1,...,N. 

Note that here Um + 1 / 2 = u{2\mx + iT),fm + 1 / 2 = f(mT + fr). 

Theorem II.3.2. Suppose that the solution u Of(3.1) satisfies (3.8) — (3.11), possesses 
continuous derivatives in Y\ up to the fourth order on <0, T ) and the norms 
||d5u/dt51| 1 are hounded for 0 <t <T Denote zm = um — Um where Um is the solution of 
(3A3), um = u(mi), u as in the Theorem II.3.1, sm = i(sm + 4sm + 1 /2 + s m + 1 ) , 
Osm = s m + 1 sm. 

Then there exist positive constants C and T0, independent of T, such that for 
T ^ T0 and any k, 1 < k S T\x, it holds 
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(3.i4) W? + Z<1-:|S + I&-1S + W ? ) á 
m = 0 

= c|^[||(«-C|o- 5(u - u\ \ \\d{u - u)Jil\ + 

+ Z 
1 ||2 } 
-5(tt - tt)m+i/2 + ||(tt - fi)0||? + (||tt - u)0

A||? + ||(tt - uV-ifi + T8^ • 

Moreover, for k = lwe have the estimate 

(3-15) I M | i + < l * o | | o + \\§z0\\l)^ 

11 
< C j т ||(u »u)oЛ||o + õ(u - й)0 + « - ü)o\\2o\+ ||(tt - tt)o||i + ? 8 | . 

P r o o f is nearly the same as that of Theorem 1.2.1 with some obvious minor 
changes. Namely, instead of (u, v) and \u\ we employ the bilinear form \u, v\B and 
[w, u\y2 = ||ti||B, respectively and use the inequalities (3.3). Note that, in contrast 
with Remark II.3.2, we are not able to modify the proof of Theorem 1.2.1 so simply, 
unless (3.4) holds. 

The estimates (3A2) or (3.14) —(3.15) can be used to get rates of convergence. To 
this end, let us consider the following mixed problem 

(3.16) - A — + AAu=f, 0 < t ^ T , 

u(-, 0) = (p0 , 

u = 0 , dujdv = 0 , (xl9 x2) e dQ , 

where Q = (0,1) x (0,1), A is the Laplace operator, v denotes the normal to the 
boundary dQ, cp0 e W2

l)(Q) and f a linear continuous functional on W2
2)(Q). The 

problem (3.16) represents a particular case of (3A). In fact, if we set 

H = L2(Q), B = - A , A = AA, 

D(B) = {ue C(2\Q\ u = 0 on dQ} , 

D(A) = {ue C(4\Q\ u= dujdv = 0 on dQ] , r o = W(
2

2)(Q), 

rx = W^XQ) , ir = r0 n r 1 = W(
2

2\Q) , 

[w, v\Á Au Av dX , \u, v\B = YJ — ~~~ ^K , 
i JQi = idXidXi 

then the assumptions on the bilinear forms and domains, (3.2), (3.3) and (3.4) can be 
verified easily. 

Let us employ the Hermite interpolation theory in the (x1? x2)-p\sinQ, as in Section 
1.2. Then we come to the following 
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Theorem II.3.3. Let M = H[n) n W(
2

2)(Q), n ^ 2. Let u, Um, zm, zm + 1/2 be as in 
Theorem II.3A, related to the problem (3.16). Suppose that for each te <0, T> u 
and dujdt satisfy the hypotheses of Lemma 1.2.1 and that 

I |DM-,t)|U_.C', 
[ a | = 2 n 

I 
| a | = 2n 

Gt 
< x(t), 

where C is independent of t, x e L2(0, T), Da denotes spatial derivatives only. 
Then there exist constants C, T0, independent of h, T such that for T rg T0 and 

any' k, 1 ^ k :g T/T it hOliis 

IMV2<» +*E Tlz«+i/2||-Vl(») ^ C(A2(2"~2) + T4). 
m = 0 

Theorem II.3.4. Let Ji, u, dujdt be as in Theorem II.3.3 and Um, zm, zm, 8zm as in 
Theorem II.3.2, related to the problem (3A6). 

Then there exist constants C, T0, independent of h, T such that for T :g T0 and any 
k, 1 < k g 77/T it holds 

& - i 

II I I 2 i V til A l i 2 i II s i l 2 _ J I I ^ I I 2 \ <r 
| | z /c | |°W2

( 1> -T ZJ T\\\Zm ||°W2(2> + | r - m | | ° W 2 ( 2 ) "*" | | Z m | i 0 W 2
( 1 V = 

m = 0 

S C(h2(2n~2) + T8). 

P roofs of both Theorems are analogous to that of Theorem 1.2.2. 

Theorem II.3.5. Let f = 0 in (3.6). Then 

(3.17) Pll2\\Um+1l g ||Um+1||B :_ \\Um\\B =_ \\q>0\\B ^ Ci|<?o||i 

holds for every m = 0, 1, ..., T/T — 1. 

P roo f follows directly from (3.6), if we insert V =Um + Um+1, use (3.3) and the 
Schwartz's inequality. 

Theorem II.3.6. Letf = 0 in (3.13). Then (3.17) and 

M I B - S ll^mlB, | |^m+i/2||B^2||Um |!B 

hold for every m = 0, 1, ..., T/T — 1 . 

P r o o f is analogous to that of Theorem 1.2.3. 

APPENDIX 

There exists an alternative approach to derive the semi-variational approximations. 
Let us consider again the case of homogeneous equation (1.1.1). 
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Theorem II.3.7. Denote {S(

k

m)}m

=0 a basis in 0>m (cf. Section l). Let us set 

(A.1) _<*> = £ ib?>&Xt)v„ 
k = 0i=1 

(A.2) £ ^ + >ii*w S j - ^ o O d t = 0, j = 0, 1, ..., n - 1 , 

(A.3) (vm, ii<">(0)) = (i;m, cp0) , m = 1, 2, ..., N . 

Then the n-th semi-variational approximation is determined uniquely by the condi­
tions (A.2), (A.3), being independent of the choice of the polynomial bases. 

Proof. First let us consider the Legendre polynomials Pk = S(

k

n) = S*""1*. Using 
the formula 

1 -%.*) = I (2k-4s- l )P k _ 2 s _ 1 (x) , 
dx 2s+lśk 

s > 0 

the equations (AA)-(A.3) with bf} = fif} lead to the following system 

(A.4) £ X P'ik\GimRjk + JimVik) = 0 , 0£jgn-l, 
i = 1 

I Gm,( £ #*> P,(0)) = o)0 m, m = 1,..., N, 

k = 0 i = l 

Лľ 

i = 1 k = 0 

where 

Pj*> ~ ^ T 
2} + 1 

was introduced in the proof of Theorem II. 1.1 and 

(A.5) Rjk=LPj d _ . [2 if j = k - 2s - 1, s > 0 , — Pk dt = ^ > _ , 
di I 0 otherwise. 

The system (A.4) may be rewritten as follows 

(A.6) Bp = g , 

(A.7) 

B = 

G, - G , G, . . ., (-1)"G 

т_/, 2G, 0, 2G, 

3 
2G, o, 

T - _f 2G, 0 _£У , 

2n - 3 
2G, 0 

т 
г 
_/ o#̂  

2n - 1 

"/* 0 ) - a >o 

/» :» ( ) 

, ß = , 9 = 

ŕ n) ( ) 
_ L J 
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Recalling the system (1.14) (or (1.17)), (V7) and comparing it with (A.6), (A.7), we 
observe that, in the block matrix form, 

where 
D' = 0 ( n ) , 0] , 

Liy = 6{j 

L2j = 25 ij + (S2j — S3j) for n = 2 or L2j = 2<53i + S2j for n = 1 , 

Lkj = <5k-i j - <5fe+1J for 3 = k ^ n , 

I-n+i,j = ^ 5 for n ^ 2 . 

We can see easily that det |L | = 1. As D is regular [cf. Lemma II .LI] , by virtue of 
(A.8) the matrix B is also regular. Moreover 

(Lg)T = (cD0, 2co0, 0, 0, . . . ,0) 

and consequently, the system (A.6) is equivalent to the system (1.17), (1.7) of Section L 
In order to prove the independence of the choice of bases, let us recall (1.19) with 

regular matrices h and C and set 

,<»>(.) = f ibrsi"\t)Vi. 
k=0 i = l 

We obtain from (A.2), (A.3) and (1.19) 

(A.9) C(GR + dp) hTb = 0 , 

G PT(0) hTb = co0 . 

By comparison of (A.9) with (A.4) we conclude that 

hTb = /? 

and using the latter result, we deduce 

„<»>(*) = l £ S<k
n\t) bf\ = I lPr(t) hkrb«\ = Iff Fr(t) Vi = «<">(.), Q.E.D. 

k = 0 i=l k,r i r,i 

References 

[I] I. Hlavdcek: On a semi-variational method for parabolic equations I. Aplikace matematiky 
17(1972), 5, 327-351. 

[2] A. Ralston: A first course in numerical analysis. Mc Graw-Hill, 1965. 
[3] /. Hlavdcek, J. Necas: On inequalities of Korn's type. Archive for Rational Mechanics and 

Analysis, 36, 4, 1970, 305-344. 

63 



[4] J. Necas: Les méthodes directes en théorie des équations elliptiques. Prague, Academia 1967. 
[5] J. Douglas, Jr., T. Dupont: Galerkin methods for parabolic equations. SI AM J. Numer. 

Anal. 7, 1970, 4, 575-626. 
[6] R. S. Varga: Matrix Iterative Analysis, Prentice-Hall, 1962. 

S o u h r n 

O JEDNÉ PÓLO VAŘÍ A ČNÍ METODĚ PRO PARABOLICKÉ ROVNICE II 

IVAN HLAVÁČEK 

V druhé části práce jsou dokázány další vlastnosti n-té polovariační aproximace 
řešení daného problému s homogenní rovnicí: nezávislost na volbě polynomiální báze 
v t a úzká souvislost s Padéovou aproximací. Dále je metoda aplikována na počáteční 
úlohu pro parabolickou rovnici s nehomogenními okrajovými podmínkami a na 
obecnější abstraktní problém se dvěma positivně deíinitními operátory. 
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