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ON THE BAYES APPROACH IN GENERAL MULTIPLE AUTOREGRESSIVE
SERIES

JIRi ANDEL

(Received September 6, 1971)

The p-dimensional autoregressive series are treated in this paper from the Bayes
viewpoint. The point estimates for the autoregressive parameters have the same form
(apart from a small modification) as the maximum likelihood estimates. The posterior
distributions are derived and used for testing hypotheses. The theory is applied to the
model with exogenous and endogenous variables.

1. INTRODUCTION

Let X,,..., X, be given p-dimensional random vectors with zero expectations
and finite covariance matrices. Let Y,.,, ..., Yy be uncorrelated p-dimensional
random vectors such that

EY, =0, EYY =1, EXY =0

for1 £ s £n <t <N, where I is the unit matrix. Define random vectors X, .1, ...
..., Xy by the formula

(1) YAX, =Y, n<tsN,

where A,, ..., A, are matrices of the type (p, p) such that |A| # 0. Then X, ..., Xy
is called the p-dimensional autoregressive series. If A, + 0, we say that the series
is of the order n.

The Bayes theory of one-dimensional stationary autoregressive series is given
in the Champernowne’s paper [3]. A conditional Bayes approach for general one-
dimensional autoregressive series is suggested in [5]. The author of the present paper
generalized this method to the p-dimensional model (1) under the assumption that
A, is diagonal [1]. This restriction is removed here. The generalization to the non-
diagonal regular matrix A, is not trivial and the derived statistical tests are asymptotic.

As usual, it shall be supposed that the vectors X, ..., Xy have simultaneous
normal distribution.
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2. PRELIMINARIES

Denote by E, the k-dimensional Euclidean space. If a matrix A is positive definite
(or positive semidefinite), we write A > 0 (or A > 0). The symbol Tr A means the
trace of A, |A| denotes the determinant of A and A’ is the transpose matrix to A.

Lemma 1. Let Q = {x“, oo Xipsy X220 ey Xaps ones .\',,p} be such a set in E . ),
that X = ”xij]f’yj:l > 0, where x;; = x;; for i > j. Let D > 0 be a matrix of the
type (p, p). Then a constant Com > 0 exists for any natural m > p such that

e . (m=1)/2 | y|m=p=2)/2 o
FulX11s ey Xpp) = o B[P X|" 777D 2 exp {1 Tr DX} on Q,
=0 on E,,i12 — @

is the probability density.

Proof. See Cramér [4], § 29.5.

Lemma 2. Denote by I the unit matrix of the type (p, p). Let A, B be matrices
of the type (p, p) such that A >0, B = 0.

Then

(@) I +Alz21+TrA,

(d) I + Al =1+ 4],

() I +Al=1+TrA+|A if p=2,
(d) |A+ B| = |A] + |B].

Proof. Denote Ay, ..., 2, all the roots of A. Then |A — 4| = (4, — 2)... (4, — A).
Putting 4 = —1 we get

(2) A+l =(1+24)...(1+2).
If A>0, then 2, 20,..., 2, 2 0. Formula (2) implies
H+A 214+ +2+...+4,=1+TrA,

W+ A 21+ 22,...2,=1+|A|
and for p =2

T+AZ1 4+ +2h+ .+ + 44 4,=1+TrA+|A.
If |A| = |B| = 0, then (d) is obvious. If A > 0, then
A + B| = |AY2(1 + A-12BA=1/2) A1I2]

and (d) follows from (b).
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Lemma 3. Consider random variables V; (1gigp1gjs k) with the
simultanceous density

1 -m/2
- c ’ ’ 2
II,’,(,,,,(V) = Cppm |l +--VV mz2,
n
where ¢, ,, is a constant and
V= fuyli-j-

Then for m — o
P k
—pk/2 (1
,ﬂvk.m(v) - (27t) CXp T2 Z Z 1/) s
i=1j=
i.e., variables Vi; have an asymptotically normal distribution with vanishing
expectation and the unit covariance matrix.

Proof. Obviously |I + (1/m) ¥YV'| > 0. Further, according to Lemma 2(a) we have
for m = 2

I —n/2 1 ]-)1 k =m/2
J I+~ VV’. dvyy ... doy, = f <l + - X 1:,-2j> dogyooodey < oo
Ep Epi,

m mi=1 j=1
Thus a constant ¢
If m — oo, then

»um > 0 exists such that 1, (V) is the probability density.

(I + L VV’> . exp { —1VV
I
and

‘l + ! yv’ - |exp {4VV'}| 7" .

—m/2
m ‘

Denote by 44, .. l all the roots of 3¥V’. The matrix exp {1¥V’} has the roots
exp {4}, ... exp {4} (Prom 1YV’ = 0 it follows that 2, g O,,.‘, 2,2 0.) The
product of the roots gives the value of the determinant.

Therefore, we obtain

lexp {—4VV}| ™' =exp{—4, — ... =4,} = exp{=TriV¥} =

The rest of the proof is clear.

3. THE POINT ESTIMATES
Rewrite the model (1) in the form

®  x-yux

j=1

+ Ay Yt, n<t<N,

t—j
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where

(4) U =-A'A

J t=j

IIA

J

Lemma 4. Let the random vectors Xy, ..., X,, Y, 1,..., Yy have a simultaneous
normal distribution. Given X, = x,, ..., X, = x,, then the conditional density

of the random vectors X, ¢, ..., Xy is
(5) SO Xy | X0 x,) = (2m) VTR |G YR
N n n
cexp{—1 Y (x, —Z Ux,_ ;) G(x, — Y Ux,_))},
t=n+1 ji=1 ji=1

where G = AJA,.

Proof. One starts with the simultaneous density of X, ..., X,, Y., .... Y.

After the substitution (3) the density of X, ..., Xy is obtained and then the evaluation
of the conditional density gives the formula (5).

As it is well known, the density f depends on A, only through G = A(A,. The
estimate of A, cannot be determined uniquely from an estimate of G without an
additional knowledge of the structure of A,. But, fortunately, it is known in some
applications that A, is an upper (or lower) triangular matrix and this enables us to
construct estimates for A,.

Introduce the matrix

U=|u,...u,

We shall suppose that the elements of the matrices G and U are random variables
which were realized before constructing the series Xj, ..., Xy. Let the prior density
of the elements of G, U be proportional to |G| " if G > 0 and zero otherwise,
independently of X,. ..., X,.

The chosen prior density sometimes is called “vague”. The following thcorems
can be considered as mathematical consequences of our assumption, but there are
some reasons leading to our prior density. This density is a straightforward generaliz-
ation of that used in the one-dimensional case (see [5]) and in the special p-dimens-
ional case (see [1]). Furthermore, the point estimates of the autoregressive parameters
have the usual form as those derived by the maximum likelihood method (see [6],
p. 40 and p. 70).

Given X, = x, ..., Xy = Xy, then in view of the Bayes theorem the posterior
density of G and U is

g(G’ u ’ x) = C;Gl(N—n—-j)/z )

N n n
cexp{=3 3 (%, — Y Upx, ;) G(x, — 3 Upx,_ )}
t=n+1 i=1 =1

for G > 0, where x denotes the condition X, = x,, ..., Xy = xy and c is a constant.
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Introduce vectors

;Xz—lll
°x, = 1 : | n<t<N
X
and matrices
N N
Co= Y xx;, C= 3 x/x;,
t=n+1 t=n+1
N
4 C, C|
S — S qxox/’ S — ? i
0 T T e s
Theorem 5. Suppose S, > 0. Then
(6) 9(G, U | x) = ¢|G|¥ """ D2 exp { —1 Tr DG}

for G > 0, where
D = (U — U*) S(U -U*y +Cc,—csic,
@) U =CS 1,
The modus of the posterior distribution is G*, U* where
(8) G*=(N—-n—-1)(C — CS“C’)"1 .
Proof. Obviously
N
) 9(G, U | x) = |G|V P exp {—1 Y l(x, - Ux,) G(x, — U°x,)}
t=n+
for G > 0. We have
N N
Y TrUGU*xS x; — % TrUGx, x; =
t=n+1 t=n+1

— Tr UGU*S — Tr UGC = Tr UG(U*S — C) = 0,

and thus
N N
Y ‘x;UGU*x, — Y °x,UGx, =
t=n+1 t=n+1

Using this fact we obtain after some computation

N
Y (x, — Ux)) G(x, — Ux,) = Tt GD = Tr DG .

t=n+1

If S, > 0 then §$ > 0 and it follows immediately that U = U* maximizes g for
any G > 0.
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Define the matrix
| —cs!
o I

|

-

The matrix L is regular, S, > 0, and therefore

c, — Ccs~'C

I
LS,L = H ) (";l >0,

where symbol * denotes the blocks which are not interesting for our purpose. Thus
we proved C, — CS™1C' > 0.

It remains to prove that G* maximizes g(G, U* | x). We use Watson's method
(see Rao [7], Chap. 8 a 5). Denote by 4y, ..., 4, all the roots of the equation

(N —n—1)"1G(C, — €S7'C) — M| = 0.
Then
(N —n—1)7""G(C, — CST'C)| = A2, ... 4,
TrG(Co — CST'C)=(N—n—1)(4 + ... + 4,).
From G > 0, C, — CS™'C’ > 0 it follows that 1, > 0, ..., 4, > 0. This can be
proved directly or as a corollary of Exercise 1.9 in Rao’s book [7], Chap. 1. Conse-

quently
2[log g(G*, U* | x) — log g(G, U* | x)] =

=—(N—n—-1)log|(N—-n—-1)"'G(C, — CS7'C)| = (N — n - )p+
+ TrG(C, — CS™'C)=(N —n —1)[—log(44s... 4,) = p+ A4y ... + 4,] 2 0.
The last inequality follows from

—logx —14+x=20 for x>0.

We remark that the assumption S, > 0 is not very restrictive and is often fulfilled
in applications.

The values of G* and U* can be used as the point estimates of the matrices G
and U.

4. MARGINAL POSTERIOR DISTRIBUTIONS AND TESTING HYPOTHESES

Theorem 6. Suppose S, > 0 and let g(G, U| x) be defined by formula (6). If
N 2 (n + 1) p, then the posterior distribution of G is Wishart distribution

W(N —n—np+p, C, — CS™IC).
Define the mairix

(10) V=(N—n+p"2(C, — CST'C) 12 (U — U¥)§'2,
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If N—n+ p =2, then V has the posterior distribution given by the density

t V) mentioned in Lemma 3.

p,np.N‘n+p(
Proof. The marginal posterior density (G | x) of G is evaluated by the formula
hG|x) = J‘ 9(G, U | x)duyy ... du,,,.
Enp?

In order to evaluate the integral we use the substitution
Q =G'*(U - U¥),
the Jacobian of which is (in the absolute value) [Gl_"”/z. Thus we obtain
h(G | x) = ¢,|G|¥ " "~ exp {—1 Tr G(C, — CS™'C')}

for G> 0. If N = (n + 1) p, h(G|x) is the density of the Wishart distribution
W(N —n—np+ p,C, — CST'C) (see Rao [7], Exercise 11.6, Chap. 8, or
Anderson [2], Chap. 7.2).

We obtain the marginal posterior density (U | x) of the matrix U using Lemma
1. We get

(1) g(U|x)

f 9(G. U|x)dg,, ... dg,, = ¢,|D| "I =
Q

,|Co — €871C + (U — U¥) S(U — Uxy|~W=ntnrz,

Il

Let us use the linear substitution (10), the Jacobian of which is constant. Then
we get the density

(V]| x)=c|l + (N —n+ p)! vy T NmmEniz

which is the same as 1, ,, y—n+,(¥). The constant ¢, depends, of course, on x, but
it is fixed in the Bayes approach.

Theorem 6 enables us to test some statistical hypotheses. The simplest case is the
testing hypothesis U = U°, where U° is a given matrix. The test statistic will be the
sum of the squares of the elements of the matrix

Vo =(N —n+p)?(C, — CS'C)" 12 (U° — U*) §'/2.
This sum equals to
TrVoVo = (N — n + p) Tr [(U° — U*) S(U° — U*)(C, — CS™'C)7'].

The last formula is more appropriate for the evaluation.

If the hypothesis U = U° is true, then V, has the distribution with the density
tympn-n+p(¥). Unfortunately, the exact distribution of the statistic Tr V,¥; is not
known. Some work on this problem would be useful. We give only the asymptotic
solution of the problem.
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In view of Lemma 3 the elements of V, have for N — oo an asymptotically normal
distribution with vanishing expectation and with the unit covariance matrix. Thus
the sum of the squares of the elements of V, has an asymptotically y>-distribution
with np? degrees of freedom. If the value Tr V,V, exceeds the x per cent critical
value of x*(np®), we reject the hypothesis U = U° on the level « per cent.

If we put particularly U® = 0 then it is tested that random vectors X, are mutually
independent. (The covariance matrix EX,X; is not specified.)

We defined U = HU], U,,H. We often want to test the hypothesis U, = U,
where U? is a given matrix. This hypothesis does not specify the values of the matrices
U,,...,U,_. Particularly, the hypothesis U, = 0 means that the order of the
autoregressive model is smaller than n. In order to construct such a test we derive
the marginal posterior distribution corresponding to the matrix U,.

Denote

N

I [
-1 _ _|! R |
S _R_fR R., |’

where the block R, is of the type (p, p). S > Oimplies R > 0. Thus we have R;; > 0,
R,, > 0 and R;, — R,,R;,'R,; > 0 (the last assertion can be proved in the same
way as in the proof of Theorem 5). Introduce matrices

P1 = (Rn - R12R2_21R21)-”2 »
_R2—21R21(R11 - R12R2~21R21)~1/2 s
Py = R3,"?,

v
™
Il

polrio

We can verily easily that § = PP’. Consider the density g(U [ x) given in (11) and
write U* = [|UY, ..., Uy|, where U, ..., Uy are the blocks of the type (p. p).
Obviously

g(U| x) = ¢5 | I+ (C, — €57'C) "2 (U — U*) PP'(U — U¥) .
. (C() _ Cs—-lcz)~l/2|—(NAn+p)/2

holds, where c5 is a positive constant. Make the linear substitution
(12) (Cob—CS™'C)y "2 (U—-UsP=W
the Jacobian of which is a constant. Write W in the form

W= [w. W[,

where W, is of the type (p, np — p) and W, is of the type (p, p). Note that (12)
implies
W, =(C, — CST'C) "2 (U, — U¥R;,2.
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The probability density of the matrix W is

AW | X) = co|l + WW/|[~Vmmtnlz

call + W WL+ WoW |~ (Nmmtnrz

= el + WoW5| "m0 01 (1 WoWg)m 12
W W1+ WoW5) 2 m (N mmeiz

Il

In order to obtain the marginal distribution of the matrix W,, we make the
substitution
(I + W,Wy))T12 W, =V,

The Jacobian is
ll + wlwé[(np—ll)/l .

This leads to the marginal density
q3(Wy | x) = o]l + W2W£I_(N_"'"l’+21’)/2

and thus the posterior density of the matrix V, = (N —n — np + 2p)'? W,
is given by the formula

(13) qa(V2 | X) = ¢l + (N = n — np + 2p)~ ' V, V|~ (Nonmmwtzni

(¢4, ¢5 and cg are constants). The result may be formulated as follows:

Theorem 7. Suppose S, > 0 and let the density g(G, U ] x) be given by the formula
(6). Then the marginal posterior distribution of the matrix

V,=(N—n—np+2p)?(C, — CS'C)"*(U, — UY) R;}!?

has the density q4(¥, | x) given in the formula (13).

Thus the density of V, is the same as t, , y—y-up+25(¥2). The testing of the hypo-
thesis U, = Uy (where Uy is a given matrix) can be done quite similarly as in the
previous case. The elements of the matrix V, have an asymptotically normal distribu-
tion with vanishing means and the unit covariance matrix. Therefore, the sum of the
squares of the elements of the matrix

V2= (N = n = np + 2p)' (C, — €571C)" 1 (UD — UF) R7

has an asymptotically y*-distribution with p? degrees of freedom. The sum is the
same as

TrVyVy = (N —n —np + 2p) Tr [(Uy — UF)R3;(U) — UFy (C, — €S71C)™'].
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If the value Tr VIV9’ exceeds the a per cent critical value of the y2-distribution with p>
degrees of freedom, we reject the hypothesis U, = U? on the level a per cent. As we
mentioned, the hypothesis U, = 0 occurs most often in the practice.

5. MODEL WITH EXOGENOUS AND ENDOGENOUS VARIABLES

The model (1) may be regarded as a pure autoregressive model. Sometimes a more
general model is used.

Let X, ..., X, be (p-dimensional) random vectors with vanishing mean values
and finite second moments. Let Y, , ..., Yy be uncorrelated random vectors such
that

EY, =0, EYY, =1, EXY =0

non—random) vectors, where m is a non-negative integer. Define random vectors
X,. ..., Xy by the formula

for 1 £s<n<t<N. Further let @, .1, @y_mi2. ..., @y be given (generally

(14) X,=.Zlujx,_j+zovj(p‘-j+Ag‘Y,, n<t=<N,
Ji= Jj=

where U}, V; and A, are matrices of the type (p, p) with real elements. The elements
of the vectors X, are called endogenous variables and those of ¢, exogenous ones.

The main problem is to find estimates for the matrices U}, V;, A,. This problem
sometimes is complicated with respect to the fact that some elements of these matrices
are dependent on the others or that they have given values. We shall not consider
such conditions and we deal with the simplest case.

Let the random vectors X, ..., X,, Y,.q,..., Yy have a simultaneous normal
distribution. Then given X, = x,, ..., X, = x,, the conditional density of X, .. ...
o, Xy is

T Xy | Xy, 00 x,) = (2m) "N 7mr2 [G[“"'")/z .

N m

cexp{—1 > (x "Zl Ux,-; - _Zovj(Pt—j)’G(xt - _Zlujxr—j - ZOVJ‘Pt—i)} ’
j= j= i= i=

t=n+1

where G = AGA,. Introduce a matrix U = |U,, ..., U, ¥y, ¥, ..., V, ||, vectors
| i
°x, = H s p= (Pz—l" s Iy = };O‘Pt;i , n<t=N,
th'nl !1 1{
[ Pim]
and matrices
N N N
Co= ) xx;, C= 3 xz;, S= Y zz,
t=n+1 t=n+1 t=n+1
So = I‘C? C"
€ Si
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Using this notation we have

(X 1s oo Xy | Xy, oy x,) = (2m) "N TP |G|V T2
N
cexp{—1 Y (x, — Uz)G(x, — Uz)},
t=n+1
which is analogous to the formula (5). But in our case the matrix U is of the type
(p, np + mp + p) and the vectors z, are (np + mp + p)-dimensional. Taking into
account these differences, we can proceed analogously as in the previous Section
and construct the estimates by the Bayes method.

Theorem 8. Suppose that the elements of G and U are random variables with
the prior density proportional to |C:?|_”2 for G > 0 independently of X,, ..., X,.
Let S, > 0. Then under the assumption of normality the modus of the posterior
density is U¥ = €S, G* = (N —n - 1)(C, — CST'C)" " If N = np + mp +
+ 2p, then the posterior distribution of G is the Wishart one W,,(N —n — np — mp,
C, — CS7'C'). The posterior density q(U | x) of the matrix U is given by the
formula

g(U|x) =c|Cy — €CS7'C" + (U — U*¥) S(U — y*y| - N-mimiz
and the elements of the matrix

V=(N—-n+p)?(C—CS'C) (U - US>

have for N — oo an asymptotically normal distribution with vanishing expectation
and the unit covariance matrix.

Proof is analogous to those of Theorem S and Theorem 6.

Theorem 8 gives the estimates and enables testing hypotheses in the same manner
as in the case of the pure autoregressive model. Similarly it is possible to derive
the asymptotic test of the hypothesis V,, = 0 or that of U, = 0. The procedure
is obvious and we do not present it here.
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Souhrn

O BAYESOVE PRISTUPU V OBECNYCH MNOHOROZMERNYCH
AUTOREGRESNICH POSLOUPNOSTECH

Jiki ANDEL

Necht X, X,, .... Xy je kone¢na ¢ast p-rozmérné normalni autoregresni posloup-
nosti dané relaci
n
Z AX, =Y.
K=0
kde Y, jsou nekorelované nahodné vcktory s nulovymi stfednimi hodnotami a s jed-
notkovymi kovarianénimi maticemi. Za pfedpokladu, Ze A, je regularni, se na zikladé
podminéné hustoty vektora X,.,,..., Xy pii danych X, = x,,..., X, = x, pfi
obvyklé volbé apriorni hustoty odvozuje aposteriorni hustota autorcgresnich para-
metrii. Modus aposteriorni hustoty se voli za bodovy odhad autoregresnich para-
metri. Jsou vypolteny i nékteré marginalni aposteriorni hustoty a pomoci nich jsou
odvozeny testy hypotéz o parametrech. Uvedené testy jsou asymptotické a mohou
byt pouZity zejména pii testovani hypotéz o fadu autoregrese. V zavéru prace je tato
teorie také aplikovana na model generovany vztahem
n m
-1
x’ = Z UJ'xf"j + Z Vj(/)t*j + A0 Yr 5
i=1 j=o
kde ¢, jsou tzv. exogenni proménné.

Uvedeny postup je zcela obecny. Neni tfeba predpokladat ani stacionaritu po-
sloupnosti a kromé regularity A, se nemusi klast zadné dalsi pozadavky na auto-
regresni matice A, ..., A,.
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