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SVAZEK 18 (1973) A PLI K ACE M ATEM ATI KY ČISLO 1 

ON THE BAYES APPROACH IN GENERAL MULTIPLE AUTOREGRESSIVE 
SERIES 

JiRi A N D E L 

(Received September 6, 1971) 

The p-dimensional autoregressive series are treated in this paper from the Bayes 
viewpoint. The point estimates for the autoregressive parameters have the same form 
(apart from a small modification) as the maximum likelihood estimates. The posterior 
distributions are derived and used for testing hypotheses. The theory is applied to the 
model with exogenous and endogenous variables. 

1. INTRODUCTION 

Let Xu ..., Xn be given p-dimensional random vectors with zero expectations 
and finite covariance matrices. Let Yn+i, ...,YN be uncorrelated p-dimensional 
random vectors such that 

EYt = o, EYtY[ = /, Fxsy; = 0 

for l r g s = fl<t = N, where / is the unit matrix. Define random vectors X n + 1 , ... 
..., Xjy by the formula 

(1) tAjxt-l = Yt> n<t^N, 
j = o 

where A0, ..., An are matrices of the type (p, p) such that |A0 | 4= 0. Then Xi9 ..., XN 

is called the p-dimensional autoregressive series. If An 4= 0, we say that the series 
is of the order n. 

The Bayes theory of one-dimensional stationary autoregressive series is given 
in the Champernowne's paper [3]. A conditional Bayes approach for general one-
dimensional autoregressive series is suggested in [5]. The author of the present paper 
generalized this method to the p-dimensional model (1) under the assumption that 
A0 is diagonal [1]. This restriction is removed here. The generalization to the non-
diagonal regular matrix A0 is not trivial and the derived statistical tests are asymptotic. 

As usual, it shall be supposed that the vectors Xi9...,XN have simultaneous 
normal distribution. 
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2. PRELIMINARIES 

Denote by Ek the k-dimensional Euclidean space. If a matrix A is positive definite 
(or positive semidefinite), we write A > 0 (or A *> 0). The symbol Tr A means the 
trace of A, \A\ denotes the determinant of A and A! is the transpose matrix to A. 

Lemma 1. Let Q = { x u , ..., x l p , x22, ..., x2p, ..., xpp) be such a set in Ep(p+1)/2 

that X = ||xij||f,j-i > 0- where xtj -- xjt for i > j . Let D > 0 be a matrix of the 
type (p, p). Then a constant cpm > 0 exists for any natural m > p such that 

fm(xlu . . . , X P P ) = cpm\D\^~^2 \X\^-r-2y2 e x p { _h T f D X } on Q 5 

= 0 O77 Fp(p+i)/2 - & 

is the probability density. 

Proof. See Cramer [4], §29.5. 

Lemma 2. Denote by I the unit matrix of the type (p, p). Let A, B be matrices 
of the type (p, p) Such that A ^ 0, B ^ 0. 

Then 

(a) |/ + A\ ^ 1 + Tr A , 

(b) |. + A\ ^ 1 + \A\ , 

(c) |f + A| = 1 + Tr A + \A\ if p ^ 2, 

(d) |A + B\ ^ \A\ + |B|. 

Proof. Denote Alf ..., AP all the roots of A. Then |A - ?J\ = (A, - A).. . (Ap - A). 
Putting A = — 1 we get 

(2) |A + /| = (i + i ] ) . . . ( i + ; t p ) . 

If A ^ 0, then A, = 0 , . . . , Xp £ 0. Formula (2) implies 

|/ + A\ ^ 1 + Xx + A2 + .. . + Xp = 1 + Tr A, 

|/ + A| ^ 1 + V . 2 . . . ; . „ = 1 + |A| 

and for p 5; 2 

|/ + A| £ 1 + Xy + A2 + .. . + Xp + A,A2 . . . Xp = 1 + Tr A + |A| . 

If |A| = |B| = 0, then (d) is obvious. If A > 0, then 

\A + B[ = lA 1 ^/ + A-^'BA"1'2) A1'2! 

and (d) follows from (b). 
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Lemma 3. Consider random variables Vu (1 g i g p, ] __ I _̂  k) vvit/i the 
simwItaneous density 

tp,kЛV) = cP,к, 

where cpkm is a constant and 

/ + VV 
m 

-rø/2 

ш > 2 , 

Tl7et2 fOr m —> co 

г llл к 

P fc 

tp,.m(V)-(2я)-^exp{-i^ У ^ Ь 
i = l j = l 

i.e., variables VV] have an asymptotically normal distribution with vanishing 
expectation and the unit covariance matrix. 

Proof. Obviously |/ + (l/m) VV| > 0. Further, according to Lemma 2(a) we have 

for m > 2 

/ + i VV 
m 

-iя/2 

d v n ... dv^ g 
| /> fe \ - m / 2 

1 + ~ I X " í j d t ' i i •••dfp* < co . 

Thus a constant c/; ;< m > 0 exists such that tp k m(V) is the probability density. 
If m -> oo, then 

/ + i VV 
m 

and 

/ + VV 
m 

- m / 2 

exp{-i-VV} 

|exp{ìVV}|"1 

Denote by Xu ...,Xp all the roots of \VV. The matrix exp (|VV) has the roots 
exp{/l1}, . . . ,exp {kp}. (From |VV > 0 it follows that kx ^ 0, ..., Xp > 0.) The 
product of the roots gives the value of the determinant. 

Therefore, we obtain 

l e x p t - i W ' } ! " 1 = e x p { - l , - . . . -lp} = e x p { - T r ± W ' } = 

= e x p { - x f i v l ) . 
i = l j = ì 

The rest of the proof is clear. 

3. THE POINT ESTIMATES 

Rewrite the model (1) in the form 

(3) X , - = f u . X , _ _ , + A;%, n<tSN, 
J = I 
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where 

(4) Uj = - A - M , , l | j ^ . 

., X„, y n + 1 , . . . , y N have a simultaneous 
X-, ..., Xrt = xn, then the conditional density 

of the random vectors X„+1, ..., XN is 

(5) / ( x „ + 1 , . . . , x x | x 1 , . . . , x „ ) = (27r) - ( N ->" / 2 | 6p-"> / 2 . 

. exp {- i i ( x t - i U,x,_,)' 6(x, - £ U,x,_,) | , 
t = n + l j = l j=l 

where G = -AQ^O-

Proof. One starts with the simultaneous density of X, , . . . ,X f i , Yn + , , ..., YN. 
After the substitution (3) the density of X1? ..., XN is obtained and then the evaluation 
of the conditional density gives the formula (5). 

As it is well known, the density / depends on A0 only through G = A0A0. The 
estimate of A0 cannot be determined uniquely from an estimate of G without an 
additional knowledge of the structure of A0. But, fortunately, it is known in some 
applications that A0 is an upper (or lower) triangular matrix and this enables us to 
construct estimates for A0. 

Introduce the matrix 

u = II u,, u ||. 

We shall suppose that the elements of the matrices G and U are random variables 
which were realized before constructing the series X1? ..., XN. Let the prior density 
of the elements of G, U be proportional to |G|~1 /2 if G > 0 and zero otherwise, 
independently of Xl9 ..., Xn. 

The chosen prior density sometimes is called "vague". The following theorems 
can be considered as mathematical consequences of our assumption, but there are 
some reasons leading to our prior density. This density is a straightforward generaliz­
ation of that used in the one-dimensional case (see [5]) and in the special p-dimens-
ional case (see [1.]). Furthermore, the point estimates of the autoregressive parameters 
have the usual form as those derived by the maximum likelihood method (see [6], 
p. 40 and p. 70). 

Given X< = x l 9 ..., XN = xN, then in view of the Bayes theorem the posterior 
density of G and U is 

a(G,U|x) = e|G|(N-w"1)/2. 

•exp { - I l {xt-iUjXt-jyG(xt-iUjXt_j)} 
t = n+l j = l j=l 

for G > 0, where x denotes the condition X, = x , , ..., XN = xN and c is a constant. 
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Introduce vectors 

and matrices 

xt. 
, n < t < N 

7V 

ľ 
í = n + l 

c o = £ xtxí> c = £ x t°x! > 
r = г t + 1 í = , 

s = v °x,°x;, s0 = c0 c 
c s 

Theorem 5. Suppose S0 > 0. Then 

(6) g(G, U | x) = c\Gf-n'^2 exp { - i Tr DG} 

for G > 0, where 

D = (U - U*) S(U - I/*)' + C0 - C S ^ C , 

(7) U* = CS~l. 

The modus of the posterior distribution is G*, U*, where 

(8) G* = (N - n - 1)(C0 - C S ^ C ) " 1 . 

Proof . Obviously 

(9) « ( G , U | x ) = c | G r - ' - 1 ^ e x p { . 

for G > 0. We have 
N 

Y, Tr UGU*x°x't - £ Tr U Gx,°x; = 
r = Aj + i t = n+i 

= Tr UGU*S - Tr UGC = Tr U G(U*S - C) = 0 , 

N 

Z 
ř = п + l 

N 

I 
í = л + l 

and thus 

X °x'tUGU*°xt - £ °x;U'Gxґ = 0 . 
í = я+l í = п + l 

Using this fact we obtain after some computation 

N 

I 
r = n + l 

£ (x, - Ux,)' G(x( - Ux,) = Tr GD = Tr DG . 

If S0 > 0 then S > 0 and it follows immediately that U = U* maximizes g for 
any G > 0. 
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Define the matrix 
/ -CS1 

0 / 

The matrix L is regular, S0 > 0, and therefore 

c0 - cslc 
0 >o . 

where symbol * denotes the blocks which are not interesting for our purpose. Thus 
we proved C0 — CS~XC > 0. 

It remains to prove that G* maximizes g(G, U* | x). We use Watson's method 
(see Rao [7], Chap. 8 a 5). Denote by Xl9 ...,Xp all the roots of the equation 

Then 
|(N - n - l )" 1 G(C0 - CS^C) - Xi\ - 0 . 

|(N - n - I)"1 G(C0 - CS~'C)\ = XiX2...Xp , 

Tr G(C0 - CS~lC) - (N - n - 1) (Xx + . . . + Ap) . 

From G > 0, C0 - CS^C > 0 it follows that ^ > 0 , . . . , xp > 0. This can be 
proved directly or as a corollary of Exercise V9 in Rao's book [7], Chap. 1. Conse­
quently 

2[log g(G*, U* | x) - log g(G, U* | x)] = 

- - (N - n - 1) log \(N - n - l)"'1 G(C0 - CS~lC)\ ~ (N - n ~ 1) p + 

+ TrG(C0 - CS~lC) - (N - n - 1) [ ~ l o g ( A ^ 2 . . . ^ ) - p + ^ ... + Ap] ^ 0 . 

The last inequality follows from 

- l o g x — 1 + x ^ 0 for x > 0 . 

We remark that the assumption S0 > 0 is not very restrictive and is often fulfilled 
in applications. 

The values of G* and U* can be used as the point estimates of the matrices G 
and U. 

4. MARGINAL POSTERIOR DISTRIBUTIONS AND TESTING HYPOTHESES 

Theorem 6. Suppose S0 > 0 and let g(G, U | x) be defined by formula (6). If 
N ^ (n + 1) p, then the posterior distribution of G is Wishart distribution 

WP(N - n - np + p, C0 - C S ^ C ) . 

Define the matrix 

(10) V = (N - n + P)1/2 (C0 - C S ^ C ' ) " 1 ' 2 (U - U*) S1/2 . 
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If N — n + p ^ 2, then V has the posterior distribution given by the density 
tp np N-n + p(V) mentioned in Lemma 3. 

Proof. The marginal posterior density h(G I x) of G is evaluated by the formula 

h(G|x)= f g(G,U\x)duil...dup>np. 
J Enp2 

In order to evaluate the integral we use the substitution 

Q = Gl/2(U - U*) , 

the Jacobian of which is (in the absolute value) |G|~wp/2. Thus we obtain 

h ( G | x ) = c1 |G| ( i y-n"w^1 ) / 2 e x p { - i T r G ( C 0 - CS-'C)} 

for G > 0. If N ^ (n + 1) p, /i(G | x) is the density of the Wishart distribution 
Wp(N - n - np + p, C0 - C S ^ C ) (see Rao [7], Exercise 11.6, Chap. 8, or 
Anderson [2], Chap. 7.2). 

We obtain the marginal posterior density q(U | x) of the matrix U using Lemma 
1. We get 

(11) q(U | x) = f g(G, U | x) dgx x ...dgpp = c 2 | D | - ^ " + *>/2 = 

= c2\c0 - cs'c + (u - u*) s(u - u*y\-(N-n+p)/2. 

Let us use the linear substitution (10), the Jacobian of which is constant. Then 
we get the density 

Ch(y | x ) = c3\l + (N - n + p)"1 w | - (A l -« + p)/2 ? 

which is the same as tp,np^-n + p(V). The constant c3 depends, of course, on x, but 
it is fixed in the Bayes approach. 

Theorem 6 enables us to test some statistical hypotheses. The simplest case is the 
testing hypothesis U = U°, where U° is a given matrix. The test statistic will be the 
sum of the squares of the elements of the matrix 

yo = (N _ n + P ) 1 / 2 ( C 0 - C S " 1 C ) ~ I / 2 ( U ° - U*)Sl/2 . 

This sum equals to 

Tr V0V0 = (N - r; + p) Tr [(U° - U*) S(U° - U*) (C0 - C S " ^ ' ) " 1 ] . 

The last formula is more appropriate for the evaluation. 
If the hypothesis U = U° is true, then V0 has the distribution with the density 

tp,np,N-n + p(y)' Unfortunately, the exact distribution of the statistic Tr V0V0 is not 
known. Some work on this problem would be useful. We give only the asymptotic 
solution of the problem. 
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In view of Lemma 3 the elements of V0 have for N —> oo an asymptotically normal 
distribution with vanishing expectation and with the unit covariance matrix. Thus 
the sum of the squares of the elements of V0 has an asymptotically ^-distribution 
with np2 degrees of freedom. If the value Tr V0V0 exceeds the a per cent critical 
value of x2(nP2)> w e reject the hypothesis U = U° on the level a per cent. 

If we put particularly U° = 0 then it is tested that random vectors Xt are mutually 
independent. (The covariance matrix EXtX[ is not specified.) 

We defined U = ||U., . . . , U„||. We often want to test the hypothesis Un = Un, 
where Un is a given matrix. This hypothesis does not specify the values of the matrices 
U l 9 . . . , U n„ t . Particularly, the hypothesis Un = 0 means that the order of the 
autoregressive model is smaller than n. In order to construct such a test we derive 
the marginal posterior distribution corresponding to the matrix Un. 

Denote 

R K12 

R„ 

where the block R22 is of the type (p, p). S > 0 implies R > 0. Thus we have R{1 > 0, 
R22 > 0 and R n — -^12-^22-^21 > 0 ( l n e ^as t assertion can be proved in the same 
way as in the proof of Theorem 5). Introduce matrices 

Pt = ( R n — R j 2 ^ 2 2 ^ 2 l ) 

P2 = —R22 R21(RU — R12^22 ^21) 1 / 2 > 

P - R~~ 1 / 2 
r3 — i*22 J 

p = 
p. o 
p, P 

We can verify easily that S = PPf. Consider the density q(U | x) given in (11) and 
write U* = ||U*, ..., U*||, where U*, ..., U* are the blocks of the type (p, p). 
Obviously 

O(u | x) = c311 + (c0 - cs-'cy112 (u - u*) PP'(U - u*y. 
.(c0 - cs^c)"172!"^""-^72 

holds, where c3 is a positive constant. Make the linear substitution 

(12) (C0 - C S - 1 C ) - 1 / 2 ( U - U*)P = W, 

the Jacobian of which is a constant. Write W in the form 

W |Wj, W21I , 

where Wx is of the type (p, np - p) and W2 is of the type (p, p). Note that (12) 
implies 

W2 = (C0 - C S - ' C ) - " 2 {Un - U„*) RJ,1 '2 . 
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The probability density of the matrix W is 

q2(W\x) = c,|l + WW'|-(jV"" + p) /2 = 

= c:4|f + W^W', + W2W2 |- (N-"+" ) / 2 = 

= c4\\ + W2W'2\-
{N-" + p)'2 |f + (f + W2W'2)-

1'2 . 

. w tw;(f + w 2w 2 ) - 1 / 2 | - ( N -n +" ) / 2 . 

In order to obtain the marginal distribution of the matrix W2, we make the 
substitution 

(f + w2w'2)-"
2 w . = v . . 

The Jacobian is 

|/ + w2w2\
(np-p)/2. 

This leads to the marginal density 

ch(W2 \ x) = c5\l + W2W'2\-'
N~n-"p+2^2 

and thus the posterior density of the matrix V2 = (N — n — np + 2p) l / 2 W2 

is given by the formula 

(13) q4(V2 | x) = c6\l + (N - n-np + 2p)~l v2V'2\^
iN~n-np+2p)/2 

(c4, c5 and c6 are constants). The result may be formulated as follows: 

Theorem 7. Suppose S0 > 0 and let the density g(G, U | x) be given by the formula 
(6). Then the marginal posterior distribution of the matrix 

v2 = (iV _ „ _ np + 2py
2 (c0 - c s - ^ ' ) ' / 2 (u„ - u„*) R2r-

has the density q4(V2 | x) given in the formula (13). 

Thus the density of V2 is the same as tppN^n^np + 2p(V2). The testing of the hypo­
thesis Un = U^ (where U° is a given matrix) can be done quite similarly as in the 
previous case. The elements of the matrix V2 have an asymptotically normal distribu­
tion with vanishing means and fhe unit covariance matrix. Therefore, the sum of the 
squares of the elements of the matrix 

r2={N-n-np + 2Py2 (C0 - C S ^ C ' ) - " 2 (U„° - U„*) R22
1'2 

has an asymptotically ^-distribution with p2 degrees of freedom. The sum is the 
same as 

Tr V°V°' = (N - n - np + 2p) Tr [(U„° - U„*) R22\U°n - U„*)' (C0 - CS"^' )" 1 ] . 
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If the value Tr V^V®' exceeds the a per cent critical value of the ^-distribution with p2 

degrees of freedom, we reject the hypothesis Un = Un on the level a per cent. As we 
mentioned, the hypothesis Un = 0 occurs most often in the practice. 

5. MODEL WITH EXOGENOUS AND ENDOGENOUS VARIABLES 

The model (1) may be regarded as a pure autoregressive model. Sometimes a more 
general model is used. 

Let X1,...,Xn be (p-dimensional) random vectors with vanishing mean values 
and finite second moments. Let Yn+U ..., YN be uncorrelated random vectors such 
that 

EYt = o, EYtY[ = i , Fxsy; - 0 

for 1 <; 5 _g n < t ^ N. Further let <pn~m+l9 <P„-m + 2 > •••> <Ps b e given (generally 
non-random) vectors, where m is a non-negative integer. Define random vectors 
X w + 1 , ..., XN by the formula 

(14) 

where Uj9 Vj and A0 are matrices of the type (p, p) with real elements. The elements 
of the vectors Xt are called endogenous variables and those of (pt exogenous ones. 

The main problem is to find estimates for the matrices Uj, Vj9 A0. This problem 
sometimes is complicated with respect to the fact that some elements of these matrices 
are dependent on the others or that they have given values. We shall not consider 
such conditions and we deal with the simplest case. 

Let the random vectors Xl9...9 Xn, Yn+l9 ..., YN have a simultaneous normal 
distribution. Then given Xx = xu ..., Xn = x_, the conditional density of Xrt + 1, ... 
. . ., XN is 

/ ( x „ + 1 , ..., xA- I x,, .... x„) = (2n)~^-^12 |6 |<w-> l 2 . 
N n m n m 

t = n+l j=l j = 0 j=l j = 0 

where G = -40.40. Introduce a matrix U = | |U 1 ? ..., L/n, V0, Vl5 ..., Vm||, vectors 

x ř _, 
</>r = 

! 
<Př j |°x, 
•?_-_ |. z< = |>. 

|<rVж 

n < t < N 

and matrices 
тv 

: I 
í = л + l 

I xřx;, c = £ Xřz;, s = ^ zt*'t • 
ІV 

Г = л + 1 

c0 cl 
c s 
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Using this notation we have 

/ ( x „ + 1 , ..., xN I x „ ..., x„) = (27r)-(^">" /2 |G|<W-*2 . 

. e x p { - ± f (x, - Uz,)' G(x, - Uz,)} , 
t = n + 1 

which is analogous to the formula (5). But in our case the matrix U is of the type 
(p, np + mp + p) and the vectors zt are (np + mp + p)-dimensional. Taking into 
account these differences, we can proceed analogously as in the previous Section 
and construct the estimates by the Bayes method. 

Theorem 8. Suppose that the elements of G and U are random variables with 
the prior density proportional to |G | - 1 / 2 for G > 0 independently of Xu ..., Xn. 
Let S0 > 0. Then under the assumption of normality the modus of the posterior 
density is U* = CS\ G* = (N - n - 1) (C0 - CS'^Cy1. If N ^ np + mp + 
+ 2p, then the posterior distribution ofG is the Wishart one Wp(N — n — np — mp, 
C0 — CS~lC). The posterior density q(U | x) Of the matrix U is given by the 
formula 

q(u | x) = c|c0 - cs lc + (u - u*) s(u - u*y\~(N~n+p)/2 

and the elements of the matrix 

V = (N - n + p)1/2 (C0 ~ CS-'C)-1''2 (U - U*) S1/2 

have for N —> oo an asymptotically normal distribution with vanishing expectation 
and the unit covariance matrix. 

Proof is analogous to those of Theorem 5 and Theorem 6. 

Theorem 8 gives the estimates and enables testing hypotheses in the same manner 
as in the case of the pure autoregressive model. Similarly it is possible to derive 
the asymptotic test of the hypothesis Vm = 0 or that of Un = 0. The procedure 
is obvious and we do not present it here. 
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S o u h r n 

O BAYESOVĚ PŘÍSTUPU V OBECNÝCH MNOHOROZMĚRNÝCH 

AUTO REGRESNÍCH POSLOUPNOSTECH 

JIŘÍ ANDĚL 

Nechť X 1 ? X2, ..., XN je konečná část p-rozměrné normální autoregresní posloup­
nosti dané relaci 

k = 0 

kde Yt jsou nekorelované náhodné vektory s nulovými středními hodnotami a s jed­
notkovými kovariančnimi maticemi. Za předpokladu, že A0 je regulární, se na základě 
podmíněné hustoty vektorů Xn+ u ..., XN při daných Xj = xu ..., X,t = xn při 
obvyklé volbě apriorní hustoty odvozuje aposteriorní hustota autoregresních para­
metrů. Modus aposteriorní hustoty se volí za bodový odhad autoregresních para­
metrů. Jsou vypočteny i některé marginální aposteriorní hustoty a pomocí nich jsou 
odvozeny testy hypotéz o parametrech. Uvedené testy jsou asymptotické a mohou 
být použity zejména při testování hypotéz o řádu autoregrese. V závěru práce je tato 
teorie také aplikována na model generovaný vztahem 

n m 

x. = £u>x.-7 + £V.-J, + A0-
1v., 

i= t y=o 

kde (pt jsou tzv. exogenní proměnné. 

Uvedený postup je zcela obecný. Není třeba předpokládat ani stacionaritu po­
sloupnosti a kromě regularity A0 se nemusí klást žádné další požadavky na auto­
regresní matice A0, ..., An. 
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