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RANK TEST OF HYPOTHESIS OF RANDOMNESS AGAINST A GROUP
OF REGRESSION ALTERNATIVES!

NGUYEN-VAN-HUU

(Received September 6, 1971)

1. SUMMARY

In this work the problem of testing the hypothesis of randomness against a group
of alternatives of regression in a parameter involved in the distributions of random
observations is investigated and a rank test for this problem is suggested. This
problem is a generalization of the problem of detecting a shift in a location para-
meter of a distribution occurring at an unknown time point between consecutively
taken observations. The latter problem was considered and a rank test for it was
proposed by Bhattacharyya and Johnson (1968). The rank test in this work is shown
to be locally average most powerful within the class of all possible rank tests in the
sense of the definition in Section 3 below. The asymptotic normality of the rank
test statistic and the asymptotic efficiency of the rank test are shown not only for the
case of location and scale parameters but for the case of a general parameter.

The parametric test for a similar problem for the density of a one-parameter
exponential family and a rank decision rule for a combined problem of testing and
classification will appear in subsequent papers.

2. INTRODUCTION

Throughout this paper let X, ..., Xy be independent observations which are
supposed to have absolutely continuous distribution functions with densities f 1(x),
..., fa(x) with respect to Lebesgue measure.

Let H, be the hypothesis under which

(1) [1(x) = ... = fu(x) = f(x)

where f(x) is an element of a certain family % of density functions.

1) This article 1s a part of author’s thesis prepared during his stay in the Mathematical Institute
of the Czechoslovak Academy of Sciences.
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Let K,,, m = 1, ..., s, be the alternative under which
(2> fl(x) :f(x, Acml)’ “'s.fN(x) =f(xs ACmN)

where f(x, 0) = f(x); C,; are the so-called regression constants, 4 is an unknown
parameter. Then K,, is called the regression alternative.
It is required to test H, against K, ..., K,. A special case of this problem where

f(x,0) = f(x — 0) and
(3) C,j=01 if m=2=j, m<j, respectively,

was investigated by Bhattacharyya and Johnson in [1].
The other special cases of this problem are as follows:
Putting

4) Cy=1, C;=0 for isj, i,j=1,..,N
we obtain the problem of slippage in a parameter.
Putting in (2)
Q) C,j=0 or (j—N + m)m
if jSN—m or j=ZN—m+ 1, respectively,

for m=1,.,s (sSN-1)
we obtain the growth problem (I) where the alternatives K,,, m = 1, ..., s, express
the fact that the parameter remains unchanged until the time point k = N — m

and then it grows linearly up to the value 4 so that the rates of growth are different
for different alternatives (see Figure 1 with s = 3, N = 6).

123456, 123456 )
Fig. 1.
Similarly, putting in (2)
6 Cnj=0 or j—N+m

if jSN—-m or j=N-—m+ 1, respectively,

for m=1,...,s (s£N-1),

then we obtain the growth problem (II) where the alternatives K,, corresponding
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to the regression constants (6) express the fact that the parameter remains unchanged
until the time point k = N — m and then it grows linearly up to the value s at the
same rate of growth for all alternatives (see Figure 2 with s = 3, N = 6).

The problem of testing hypotheses of changes in parameters — a special case
of the above problem with the regression constants given by (3) — was investigated

. . 4C3;
ACU AC2/ 34 ___/___7
24F———— 1 24F-——-- b, !
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123456 ] 123456 j 123456 |

by Page [9], [10], Chernofl and Zacks [2] for the mean of normal distribution and
by Kander and Zacks [6] for the parameter of the one-parameter exponential family.
The tests suggested by these authors are based directly on observations and not
on ranks. Bhattacharyya and Johnson are the first who proposed a test based on ranks.

3. RANK TESTS

1. Notations.

Let us denote the ordered sample from X, ..., Xy by XV < X® < |, < X®™
and the ranks of X,,..., Xy by Ry, ..., Ry.

Put X = (X, ,X™) R =(R,,..,Ry) and let x®) = (xV, ..., x®),
r = (ry, ..., ry) be a realization of X and R, respectively.

Let U be the uniformly distributed random variable on (0, 1) and U®) = (UY, ...

...y U™) the ordered sample from the observations Uy, ..., Uy on U . E, denotes
the expectation under H,.

2. Locally average most powerful LAMP rank test of H against K, ..., K.

Let T be any test of H, against K, ..., K; and B its power function under K,,, . B
depends on 4 and m, i.e. By = (4, m).

Put
) Fald, ) = 3 pubi(,m).
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B1(4, p) is called the average power function of the test T with respect to the weights
Pi1s .- Ps Where p,, 20, p, = 1.
m=1

It is required to find a test which maximizes f,(4, p) within the class of all possible
tests for each fixed p = (pl, ..., py) and for all 4. In general such a test does not
exist. Let us confine ourselves to a narrower class — the class of all rank tests.

Definition. The a-level test T* possessing the property that there exists an ¢ >0
such that T* maximizes B‘T(A, p) within the class of all a-level tests for all0 < 4 < ¢
is called the locally average most powerful test with respect to the weights py, ..., ps.

Theorem 1. Assume that f(x, 0) involved in (2) has the following properties:
(A,) For each x, f(x, 0) is absolutely continuous in 0 € J, where J is an open interval
containing the point 0 and

lim [/(x. 0) = £(x)]j0 = /(x.0)

(4) lim j 1 0l ax= [ s o ax

holds where f(x, 0) denotes the partial derivative of f(x, 0) in 0.

Then the test with the rejection region

(8) Ty (R) > C,

where

) Ty (1) = kzzlck(p) E[f(X7, 0)[f(X)]
with

(10) Cup) = m}; Cokm

is the LAMP rank test at the level o within the class of all a-level tests depending
only on R for testing H, against Ky, ..., K.

Proof. Let

N
(11) qu(x) = Hlf(xj’ Acmj)
j=
be the joint density of X, ..., Xy under K,, and put
(12) qA(x) = lem qu(x) .
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Let Q4(.), Qun(.) be the probability measures with respect to the densities g,and
q4m Consider the problem of testing H, against a simple alternative g, with 4 fixed.
According to Neyman-Pearson’s Lemma (see [7]) the most powerful rank test at
the level o for testing H, against g, is given by the critical function

(13) Dy(r) =1,7,0 if Qf{R=1r}>,=,<C,

respectively, since the vector R is, under H,, uniformly distributed. Hereafter &(r)
denotes the probability of rejecting H, when r is a realization of R. The constants
C,, and y are defined so that the test has the significance level «. Let @'(r) be the
critical function of any rank test. Then the power function of @'(r) under g, is
given by:

(14) o) QR = 1} =m§; I T0) QunfR = 1) =

B Z:'lp,,,[)’d,:(d, m) = Bo(4, p)

where Bg.(4, m) denotes the power of @' under ¢4, and the summation in r is over
all possible permutations of {1, 2, ..., N}. Consequently

(15) Bo.(4, 1) = Pol4. p) -
Let us calculate Q,{R = r}. We have

(16) QA{R=r}=f,fqd(xl,...,xﬁ,)dxl...de=

{R=r}

j Hf(v)dx+Zp,,,f j[ﬂf(x.,acmo T1 )] %

{R=r} {R=r}

x dxy ...dxy = 1/N! + me J J[f(xk’Aka) Jlx)] %

m=
{R=r}

N k-1 s N
H f(xj) H f(xi’ Acmi) dxl e de = I/N‘ + zl kzl kapmgmk(A)
j=k+1 i=1 m=1k=

where
(17) Il ) = [f(x ACn) — 160)] (4C,0) "
I
1169 1o aCa) 85 -
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In view of the conditions of Theorem 1 we obtain:

(18) lim f(x;, ACy) = 1(xi)
(19) iif(l) [f(xt> ACi) — f(x)]/AC ok = f(x1, 0) ,
(20) linAl f&lpﬁ : f |/ ACa) = ()] [AC| ™" x

N k—1
x [T fGx) TT/(xi, AC,) dxy ... dxy =
j=k+1 i=1

0

= 1in} sup J [f(%ks AC) — f(x)] [AC,| ™" dx, =

o
= lim sup
4-0 .

Jim sup —— Jucmk' ( j ww| f(x, 0)| dx> do = j:[f(x, 0)dx, by (A,).

lA kal [

AC K
j J(x, 0) d6] |4C,y| " dx <

[

1t follows from (17)—(20) and Theorem II. 4.2 in [3] that
(21) lm g,u(4) = J - J [FCr O] T ) v, =
(R=r}

= Eo{[f(Xi, O)[f(X)]R = 7} P{R =1} =
= (1/NY) Eo[f(x™, 0)f(X )]

since f(x, 0) = 0 for all @ and in view of the condition (A,), f(x;) = 0 implies f(x,, 0) =
= 0 a.e., therefore the first equality in (20) holds; the last equality in (20) follows
from the independence of X on R (see Theorem II. 1.2. a in [3]).

It follows from (21) and (16) that \
lim [Q,(R = 1} — 1[N/ = (1N) Y, Clp) Exl 0™, O (x)} =

= (1NY) Ty () -

Consequently, there exists an ¢ > 0 such that Q{R = r} is a strictly increasing
function of Ty, for all 0 < 4 < ¢ and hence there is a constant C, such that (13)
may be written in the form

&(r) =1,y,0 if Ty, (r)>, =, <C, respectively.

The function does not depend on 4 € (0, ¢]. Q.E.D.
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Corollary 1. Suppose that f(x, 0) = f(x — 0), i.e. 0 is a location parameter and
that
(A}) f(x)is absolutely continuous,

(A3) F |/'(x)] dx < o0,

where f'(x) denotes the almost everywhere derivative of f(x). Then for testing H,
against K, ..., K, there exists an a-level rank test defined by the rejection region

(22) T (®) > C,
where
(23 TE0) = . Cp) B[~/ (X)X )]

The test is LAMP within the class of all one-sided rank tests at the level o.

Proof. It is easy to see that the conditions (A;), (A,) of Theorem 1 are fulfilled
provided (A}), (A3) are satisfied, hence Corollary 1 follows from Theorem 1.

Remark 1. If the regression constants C,,; assume the form (3) with s = N — 1
then we obtain from Corollary 1 the test given by (22) with

N
(24) TV = 3 Py Eol =/ (X™) 1 (x )]
K=2
k
where P, = Y p,, are the cumulative weights. This test was suggested by Bhatta-
m=1

charyya and Johnson in [1].

Corollary 2. Suppose that f(x, 0) = exp (—0)f((x — n) exp (—0)) where n is
a nuisance parameter, 0 in an unknown scale parameter and that

(A7) f(x) is absolutely continuous,
(A%) J |x f/(x)] dx < oo .

Then the test given by the rejection region

(23) TEAR) > C,
where ‘
(26) Tia(r) = }5 Cp) Eo[ =1 — X f/(X9)[f(X")]

is the LAMP rank test for testing H, against K4, ..., K.
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Proof. We observe that, under H,, fi(x) = ... = fy(x) = f(x — ) and from
(A7), (A%) we obtain
flx,0) = —f[(x — n)exp(=0)]exp(=0) — (x — n) [ [(x — n).

.exp (—0)] exp (—26)
hence

JfV@ﬂwh=ffV&—ﬂHWX—MW@~MNx=ﬁfo®Nx§

< J f(x) dx +j Ixf’(x)] dx =1 + J ’xf’(x)l dx < 0.
Thus the conditions (A,), (A,) of Theorem 1 are fulfilled. Consequently, we obtain
from Theorem 1 a LAMP rank test defined by the rejection region Ty,(R) > C,
where
N

Ty(r) = Y Cup) ES{[ /(X" = n) — (X" — n) /(X = n)][f(XT = n)} =

k=1
N
= 3 Glp) Baf =1 = X LX) = T)

with E§, E, denoting the expectation under the hypothesis that the common density
is f(x — n) and f(x), respectively.
Remark 2. Let F(x) be the distribution function with respect to the density f(x)

and let
F'u)=inf{x:F(x)2u}, O<u<1,

(27) o(u, f) = f(F~"(u), 0)[f(F~'(u)) ,
(28) ay(i, f) = Ee(U, f), i=1,2,..,N.
Then

(29) Tyy(R) =k;10,,(Rk,f ) Cu(p)

(see expression (3) of II. 4.3 in [3]). ¢(u, f) is called the score function, and a(i, f)
are called the scores.

3. Locally average most powerful rank tests of the hypothesis of randomness with
a symmetric distribution

Consider the hypothesis Hy under which the densities of X, ..., Xy satisfy
(3o) fi(x) = ... = fy(x) = f(x) with f(x) = f(—x)
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and consider the alternative K*, m = 1, 2, ..., s, under which

(31) fl(x) = f(x’ Acml): ey fN(x) = f(x’ ACmN)
with f(x, 0) = f(x), C,,’s known, 4 being an unknown parameter.

Let |X|® < ... < |X|™ be the ordered sample from |X,, ..., |[Xy| and Rf, ..., Ry
the ranks of IXII’ oo |XNl; let v = (v, ..., vy) be a realization of the vector sign X =

= (sign X, ..., sign Xy) . v; assume the values 1 or —1.

Theorem 2. Suppose that f(x, 0) occurring in K, satisfies the following conditions:
(AY) For each x, f(x, 0) is absolutely continuous in 0 € J, where J is an open interval
containing the point 0, and there exists

lim [f(x, 0) = f(x)]/6 = f(x, 0)

wheref(x, 0) may be expressed in the form
f(x,0) = u(sign x) t(lx]) with u, t being some functions,

(A3) lim J |f(x, 0)] dx =J‘ £ (x, 0)| dx .
00 J — )
Then the test with the rejection region

(32) Ty (R*,sign X) > C,

where

(m))[f('x

N
(0, 5) = ¥, (o) () Eo[1(1X])11(X] )]
is LAMP within the class of all a-level tests depending only on R* and sign X
for testing Hy against Ky, ..., K¥.

Proof. According to Theorem II. 1.3 in [3] the vector R* and sign X are, under
H,, mutually independent and

P{sign X = v} =27, P{R* =r} = 1/N!.
N
Let gy = [[ /(% AC,) be the joint density of X, ..., Xy under K} and let
k=1

93 =Y, Pm s
m=1
Let QF,, Q% be the probability measures with respect to g,, g%, respectively.
By Neyman-Pearson’s Lemma, the most powerful rank test within the class of all
a-level tests depending only on R* and sign X for testing Hj against a simple alter-
native q% with 4 fixed is defined by the following critical function:

(33) @4 (r,v) =1,7,0 if Qf{R=rsignX =v} >, =, < C, respectively.
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It is easy to see that if @'(r, v) is any critical function depending only on r and v then
Bo,(4, ) = Bo(4, p) where B, (4, p) and Pg(4, p) denote the average powers
of the tests defined by @, and @'. Thus &, defines the average most powerful rank
test within the class of all a-level tests depending only on R* and sign X.

It is easy to prove that if f(x, 0) satisfies the conditions (AY), (A}) then

lim [2"N! Q,{R = r,sign X = v} — 1]/4 =

4-0
s N
=1im2"N! ¥ p, > J. . j [/ AC) — f(x)] 47
4-0 m=1 k=1
{R=r, sign X=v}
N k-1
T ) T1/(x;5 4C,5) dxy, ..oy dxy =
i=K+1 j=1

= 2NN!mglpmk§1kau(vk) jj [t(lxkl)/f(lxkl)] f[1 f(x)dx; =

{R=r, sign X=v}

= 3 Glo) o) Bl x| ) (3

)] = T;p(r’ v) .

Consequently, there exists an & > 0 such that (33) is equivalent to (32) for all
0<A4=e

Corollary 3. Suppose that f(x, 6) involved in KX, m = 1, ..., s, assumes the form
f(x,0) = f(x — 0) with f(x) = f(—x) and that f(x) satisfies the conditions (A}),
(A3) of Corollary 1. Then the test with the rejection region

(34) T{V(R*, sign X) > C,

where
N
() T sienx) = ¥ Culp) sign xc B~ (X[ ®)(X[)]
is the LAMP rank test within the class of all a-level tests depending only on R* and
sign X for testing Hy against K¥, ..., K.

Proof. We observe that under the conditions of this corollary the conditions
(AY), (A3) are fulfilled and f(x, 0) = — f'(x) = — sign x f'(|x|) since f(x) is sym-
metric, thus u(sign x) = — sign X, #(|x|) = f'(|X|), hence (35) follows from (32).

Remark 1. Theorem 1 of Bhattacharyya and Johnson in [ 1] is a direct consequence
of Corollary 3, by letting C,,; assume the form (3).

Corollary 4. Suppose that f(x, 0) occurring in KX m=1,...s, assumes the form
f(x,0) = exp(—0) f(x exp (—0)) with f(x)=f(—x)
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and that f(x) satisfies the conditions (AY), (A3) of Corollary 2. Then the test with
the rejection region

(36) T*P(R*) > C,
where
(37) TE0) = 5,60 Bl -1~ (X[ 7(X|)lr(x )

is the LAMP rank test within the class of all a-level tests dependmg only on R*
and sign X for testing Hy against KT, ..., K¥.

Proof. It is easy to see that under the conditions of Corollary 4, the conditions
(AY), (A3) are also satisﬁed and

766,0) = 7(Jxl, ) = = 7(Jx]) = x| (i)
Thus u(sign x) = 1 and #(|x|) = f(]x|, 0) hence (37) follows from (32).

Remark 2. Let F(x) be the distribution function with respect to f(x), F~'(u) =
=inf{x:F(x) 2 u}, 0 <u <1,

(38) @i(us ) = = S (F @) [/(F (),

(39) @a(u,f) = — 1 = F~Hu) f/(F () [/(F~'(u)
which are the special forms of ¢(u, f) given by (27). Putting

(40) o (u,f) = ¢i(3 + du.f),

(41) | ai(i.f) = Eo{ (U®.f),

(42) 03 (w.f) = ¢a( + Ju. 1),

(43) ain(i.f) = E 3 (U, f)

then the test statistics given by (35), (37) may be written in the form:
(44) T{(R™, sign X) = lﬁ:le(p) sign X, ajn(R . f)
(45) T{O(RY, sign X) =k§1Ck(p) an(ReLf) -

4. Unbiasedness of LAMP rank tests

In this section let us consider the rank test given by

(46) T(R) Z Ci aN(Rk)
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where
(47) ax(i) = E o(U®)

(48) a(i) = o(i[(N + 1))

with ¢ being an arbitrary score function.
Consider the null hypothesis defined above and the alternative K defined by

(49) f1(x) = g(x, d])a "'afN(x) = g(x, dN)

where, as usual, f;, ..., fy denote the densities of the observations X, X,, ..., Xy-

Let g(x, 0) = g(x) and let G(x) be the distribution function with respect to the
density g(x).

Definition. We say that the density g(x, 0) has the property T if for every 0 there
exists a transformation T,:X — T,X such that when X has the density g(x,0)
then TyX has the density g(x, 0) and if 0, < 0,, X; < X; then

(50) LX< TpX;.
It is obvious that Ty must satisfy ToX = X.

Theorem 3. Suppose that g(x, 0) has the property T, then any rank test rejecting
H, as T(R) is sufficiently large is unbiased for testing H, against K provided
(51) (Ci—C)(d;—d)=0 forall i,j=12,...,N

and ¢(u) is non-decreasing.

Proof. With no loss of generality we can suppose that d; < ... < dy.

Let X, ..., Xy have the same density g(x, 0) then T, X, ..., T; Xy have the den-
sities g(x, d), ..., g(x, dy), respectively. Let Ry, ..., Ry be the ranks of X, ..., Xy
and Rj, ..., Ry the ranks of T, X, ..., T, Xy. It is sufficient to show that

(52) T(R") = T(R).

Assume that R; < Rj, i.e. X; < X; for i < j, then, by the property T, T, X; <
< T;X; since d; < d;, thus R; < Rj. Consequently, Rj, ..., Ry is better ordered
than Ry, ..., Ry (see Definition in [8]). Applying Corollary 2 of Theorem 5 in [8]
with a slight generalization, we obtain (52) since (51) together with the assumption
that d; < d; implies C; < C; for all i < j and the assumption that ¢(u) is non-
decreasing implies that ay(j) = ay(i) for all i < j. Q.E.D.

433



Example 1. Let g(x, 0) = g(x — 6); then g(x, 0) has the property T with T,X =
=X + 0. Put in (49)

(53) dy=...=dp=0, dypp;=...=dy=1

with m arbitrary fixed (m = 1,...,N — 1).
Then (51) is fulfilled provided C; < C; for all i < j and Theorem 3.2 of Bhatta-
charyya and Johnson in [1] may be obtained from Theorem 3.
Example 2. Let f(x, ) = exp (—0) f(x exp (—6)) for x > 0
=0 forx £0;
then f(x, 0) has the property T with T,X = (exp (6)) X. Consequently, Theorem 3
applies to this density.
Example 3. Let g(x, ) = exp (—x/(1 + 6))/(1 + 6) for x > 0,
= 0 otherwise, where 1 + 60 > 0 ;

then g(x, 0) has the property T with T,X = (1 + 0) X and Theorem 3 also applies
to such a density.

5. Asymptotic normality of rank test statistics under H,

In this section we shall show that under some conditions the test statistic Ty,(R)
given by (9) or (27)—(29) is asymptotically normal under H,. However, the test
statistic Ty,(R) is only a special case of the following statistic:

(54 Ti(R) = 3,64 ay(R)

where the scores satisfy
1

(55) J [an(1 + [uN]) — ¢(u)]*du -0 as N - o
0

([uN] denotes the entier of uN) with ¢(u) square integrable and Ci(p) are defined
by (10).

Actually, if ¢(u, f) given by (27) is square integrable, then by Theorem V.1.4.b
in [3] the scores of the test statistic Ty,(R) given by (29) satisfy (55). Consequently,
we shall consider the statistic Ty,(R) instead of Ty,(R).

Theorem 4. Assume that ¢(u) is square integrable and

1

(56) 0 <J1[¢(u) — ¢]*du < o0 where @ =J o(u) du

0
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and that

) L1G(0) = CTfmax [G) ~ )T~

with €(p) = 3, (PN

Then the test statistic Ty,(R) given by (54) is under H, asymptotically normal
N(1eps 0.p) Where

1

(58) Nep =k€:le(p)i§1aN(i)/N ='-_k§1 Ck(p)‘[ o(u)du,

0

N 1
(59) o, = LIC0) ~ COIT [ o) = 9 du.
= 0
This Theorem follows from Theorem V.1.5.a in [3].

Corollary 5. Assume that ¢(u) is square integrable and (56) holds and that
. v
(60) kgl(cmk - Cm) (an - Cn) - bmn

forallm,n =1,2,...,s with s fixed, not depending on N,

(61) max (C,;, — C,) =0 forall m=1,..,s

12k<N
_ N
where C,, =3 Coui/N.
k=1

Then the statistic Ty,(R) is under H, asymptotically normal N(n.,, o.,) for any
p = (P1 ---» Py) which are arbitrary real numbers.

Proof. First we suppose that Y. pPubm, > 0, then (57) is fulfilled since
) o
2 [Cp) — Clp)Tfmax [Clp) — Cp)] 2
2 %;(ka - C,)(Cu — C)) Pmpn/ﬁﬁx (Coie = C)? ~
~ égpmpnbm,,/n;?: (Cor = Cp)* = 0.
Consequently, the asymptotic normality of Ty, (R) in this case follows from Theo-

rem 4.
Suppose now that 3.3 PuPubms = 0, then according to Theorems IL3.1.c and
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11.4.3 in [3] we obtain:

war (7) = (V= )7 3 (an() = ) $[Cp) - COIF =

i=1

< NIV = )V Za30) L0 - TP -

1
- Zzpmpnban‘ (p(u) du =0

mn 0

with @y = ) ay(i)[N. Consequently, Ty,(R) has the asymptotically degenerate normal
distribution.

Remark 1. Theorem 4 and Corollary 5 remain true for the test statistic Tx(%(R™)
given by (45) provided H,, is replaced by Hg since R* is under H{ uniformly distri-
buted.

6. Asymptotic distribution of the test statistic under contiguous alternatives

Consider a sequence {p,, g,} of simple alternatives g,’s and simple hypotheses
p,’s defined on measure spaces {Z,, 7,} respectively.

Definition 1. We say that the sequence of densities {q,} is contiguous to {p,}
if for any sequence of events {4} (4, € #,), P,{A} - 0 implies Q,{A} — 0 where P,
and Q, are the probability measures corresponding to p,, q,, respectively. If H,
and K, are simple or composite hypotheses and alternatives, we say that the sequence
{K.,} is contiguous to {H.,} if for each v there exists a p, € H, and g, €K, such that
q, is contiguous to p,.

Definition 2. We say that the density g(x, 0) has the property U if for every 0
there exists a transformation X — Uy(X) such that if X has the density g(x, 0)
then Ug(X) has the density g(x, 0) and vice versa; we denote this briefly by

[X = g(x, 0)] = [Ug(X) = g(x, 0)] -

Moreover, suppose that Uy has the following properties:
1) Uy(X) = X; _
2) Uy(x) is a strictly increasing function of x for each 0;
3) For every 0 and h there exists a function Vy(h) such that

Ug+n(x) = Uy, Uo(x)] with V,(0) =0 forall 0.
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Theorem 5. Consider the alternative K, defined by (49) with N = N,, d, = d,,
and consider the test statistic Ty, (R) with the scores satisfying (55).

Suppose that the conditions of Theorem 4 are fulfilled and that the density
g(x, 0) occurring in K, satisfies the conditions (A;), (A,) of Theorem 1 and

6) 0<Ig) = lez(u, g)du = J " L4(x. 0)/g(x, 0)] g(x. 0) dx < oo

0

bles)

with ¢(u, g) given by (27) where g, G play the role of f, F.
Further, assume that one of the following conditions is satisfied:

N
(i) I(g) Y. d, > b* > 0,max d; —0;
=1 k
(i) g(x, 0) has the property U and
N
(63) 1(9) Y. Vi(dy — d) — b** > 0, max Vy(dy — d) — 0 .
K=1 k

Then the statistic Ty, (R) given by (54) is, under K,, asymptotically normal
N2, o.,) under the condition (i) and N(ull), o.,) under the condition (ii), where

(64 1y = ey + S0 = 0] [ o) . 9)
(69 Hid = oy 2 LG00) = CON T = D [ o) o)

With U, 0., given by (58), (59), d = N~'Y d}.
Proof. First we shall show that the assertion about the asymptotic normality
of Ty,(R) under the condition (ii) holds provided it holds under the condition (i).

As a matter of fact, the distribution of T,(.p(R) does not change if we carry out
the transformations X, — U(X,) for all k = 1,...,N, where U(x) is a strictly in-
creasing function, namely U(x) = Upy(x).

We have, by the property U,

[Xi = g(x, di)] = [Ua(Xi) = g(x, Vi(di — d))]

since
Us(Xt) = Uzt @e-0(Xs) = Upya-a[Ua(Xi)]
and
[Xi = g(x, di)] < [UalX) = g(x, 0)]
imply

[Uva(dk—a)[Ua(Xk)] = g(x, 0)] < [Ua(X,) — g(x, Va(di — d))] -
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Consequently, we can suppose without any loss of generality that X, has the density
g(x, d;) with d;, = Vy(d, — d) for all k = 1, ..., N. It follows from (ii) that

N
I(9) Y. di, > b** > 0, max (d;) > 0.
=1 koo

Thus the condition (ii) reduces to the condition (i).
Let us now prove the assertion of this theorem under (i). We need the following
propositions:
N
Proposition 1. Denote the expectation with respect to the density p(x) = [] g(x; 0)
i=1

by E, and put
N

W = zkz {lo(Xi di)]g(X,, 0] — 1},
'I:i —_ —

=1
N

kzldkg'(Xk, 0)/g(X4, 0) .

Then under the condition (i) we have
(66) EW, - — b*4,
(67) var (W, — T,) > 0.

Proof. We omit it since it is carried out quite similarly as the proof of Lemma
VI.2.1.a, bin[3].
Proposition 2. Assume that the condition (i) is satisfied, then log L, — T, + b*2
N
with Ly =Y log [g(X,, di)[9(Xy, 0)] converges, under p(x), in probability to zero.
k=1
Furthermore, log L, is, under p(x), asymptotically normal N(—b?[2, b) and q,(x) =
Ny Ny
=Y g(x; dy) is contiguous to p(x) = p(x) =[] g(x;, 0).
i=1 i=1
Proof. According to Theorem V.1.2 in [3] and (i), T} is asymptotically normal
N(0, b), since by the assumption that g(x, 6) satisfies the conditions (A;), (A,),
[% d(x,0)dx = 0. This together with (66), (67) implies that W, is, under p(x),

asymptotically normal N(—b?/4, b). By LeCam’s second Lemma (see VI.1.3 in [3])
Proposition 2 is proved since the condition (i) entails (4) of Section VI.1.3. in [3].

Proposition 3. Assume that the condition (i) and the conditions of Theorem 4 are
fulfilled. Then (Ty,(R), log L,) is, under p(x), asymptotically jointly normal

N(ltl’ K2 6%’ G%a 012) = N(ucpﬂ - b2/2’ azpa bz: I’Lt(i::)p - ,ucp) .
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Proof. We shall denote X, ~ Y, if (X, — Y,) (var (¥,))"*/%> - 0 in probability
under p(x) as v — oo. Let

S? = kilck(p) af(R,) where af(i) = E@(U®)
for i =1,2,...,N. Note that
EyS? = C-(p)igla%(i) = NC(p) J.:(p(u) du = p,, = Ey Ty,(R) .
It is easy to see that
(68) Typ(R) = fep ~ S? — EoS? =k§1[Ck(p) — C(p)] af(Ry)
(see the proof of Theorem V.1.6.a in [3]) and that

(69) S? — E,S? ~k§1[Ck(p) - C(p)] o(Uy) = T (say)

(see the proof of Theorem V.1.5.a in [3]).
On the other hand, it follows from Proposition 1, 2 that

(70) log Ly~ T, — b?[2

where T, was defined in Proposition 1 or equivalently by
N
’Td = _‘kZldk q)(Uk’ Q) .

Consequently, (Ty,(R) — pep, log Ly) ~ (TS, T, — b*[2). Moreover, we can show
that (T, T, — b?[2) is asymptotically two-variate normal N(0, — b?/2, 62, b?,
Hicp = Hep)- Q-E.D.

Finally, we observe that the assertion of Theorem 5 under the condition (1) follows
from Proposition 3 and LeCam’s third Lemma (see Section VI.1.4. in [3]).

Remark 1. Assume that g(x, 6) = g(x — 0), i.e. 0 is a location parameter. Then
g(x, 0) has the property U with Uy(x) = x — 0 since the function is strictly increasing
and Upy,(x) = x — (0 + h) = Uy(Uy(x)), thus Vg(h) = h and (63), (65) reduce
respectively to

(71) I(g) i:: (dy — d? > b** >0, max(d, —d)*—0,
() 43 = 210 = O = D) ot ol 5) .

Remark 2. Assume that g(x, ) = exp (—0) g(x exp (—0)), i.e. 0 is the scale
parameter. Then g(x, 0) has the property U with U,(x) = x exp (—0) since Up4(x) =
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= xexp (—(0 + h)) = Uy(Ug(x)), thus Vy(h) = h and (63), (65) reduce to (71), (72),
respectively.

Remark 3. Let g(x, 0)=[2n(1 + 6)] "/?exp(—x?/2(1 + 0)) with 1 +
+ 0 > 0. Then g(x, 0) has the property U with U,x = x/(1 + 0) since Upin(x) =
= x/JJ(1 + 0 + h) = Up1+0[Us(x)], thus Vy(h) = h/(1 + 0) and (63), (65) reduce
respectively to .

(73) I(g)‘i(dk — d)?*[(L + d)? - b*? > 0 (for this density I(g) = 2),
. max (d, — A/(1 + ) - 0,

(79 W=+ 3)—1k§1[ck(p) — ()] (dy - Q) J o(u) plu. g) du

An analogous remark applies to the exponential density
g(x,0) = (1 + 0)exp(—(1 + 6)x) for x>0,
=0 for x£0, where 1 +6>0.

Remark 4. Theorem VI.2.4 in [3] may be obtained from Theorem 5 and Re-
marks 1,2.

Remark 5. Theorem 4.1 of Bhattacharyya and Johnson in [1] is only a special
case of Theorem 5.

As a matter of fact, the test statistic given by (24) and the alternative considered
by these authors is only a special case of the statistic T,(,,,(R) and of the alternative K
defined by (49) with g(x, 0) = g(x — 0) and d;, = 0 for i < m; d; = O/[N'/* for
izm+1,1=mIN-—1.

Assume that the conditions (A,), (A,) in [1] and lim m/N = 2 are fulfilled, then

N—-ow

N
Y (d; — d)* = 0*[1 — m/N]m|N - 60*(1 — 2) >0,
i=1
max (d; — d)*> = (0*)/N) max {(1 — m/N)*, (m|N)*} - 0.
This together with (A ) in [1] entails (57) and (71). Thus the conditions of Theorem 5

are fulfilled, hence the asymptotic normality of the test statistic (24) under the
alternative considered by Bhattacharyya and Johnson follows from Theorem 5.

7. Asymptotic distribution of the signed rank test statistic
In this section we shall show the asymptotic normality of the following statistic:
N
(75) Tyy(R, sign X) = Y C(p) sign X, ay (R;)
k=1
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with Ci(p) given by (10) and the scores satisfying
1

(76) f [ai(1 + [uN]) — @* ()2 du — 0as N — oo
0

where ¢(u) is square integrable on (0, 1). The signed rank test statistic given by (35)
or (44) is only a special case of the statistic (75) with the scores satisfying (76) (see
Theorem V.1.4.b in [3]).

Consider the hypothesis Hg defined by (30) and the alternative K} defined by
(77) f1(x) = g(x — dy), ..., falx) = g(x — dy)

with dk = dkv’ Nv = N and g(x) = g(._.x)'

Theorem 6. Consider the statistic Ty, given by (75) with the scores satisfying (76).
Assume that

(78)

b=

Ci(p)[max Ci(p) - o ;
1 k

then Ty (R, sign X) is, under H§, asymptotically normal N(0, o) where
1 N
(79) (02 = | [o* (@ du 3, cilr).
o =
Proof. Theorem 6 follows from Theorem 1.1 of Huskova [4].

Corollary 6. Assume that s does not depend on N and that the regression constants
C,.’s satisfy

N
(80) Y CotCoke = by, maxCh >0 forall mn=12,..s.

k=1 k
Then the statistic Tyy(R, sign X) with scores satisfying (76) is, under H, asymptotic-
ally normal N(O, a:;) for any real numbers py, D2y« Ps-

Proof. First suppose that Y. p,p,b,, > 0. It is easy to see that (80) entails (78)
m,n

and the conclusion of this corc;llary follows from Theorem 6.
The case where Zmep,,b,’,,,, = 0 may be treated similarly as in the proof of Co-
mn

rollary 5.

Theorem 7. Consider the alternative K} defined by (77). Assume that (78) and
N
(81) Y d? - bl >0, maxd; -0

i=1 i
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hold and that the density g(x) satisfies the conditions (A}), (A3) of Corollary 1.
Moreover, if

(82) o< j:qaz(u, g)du < oo with o(u,g) = — g(G '())[g'(G™(u))

where G denotes the distribution function with respect to g, then the statistic
Ty,(R™, sign X) with the scores satisfying (76) is, under K¥, asymptotically normal
N(pieps o) where

(83) ,u;:p =k§1C,‘(p) dy I:¢+(u) ¢©*(u, g) du

and o, is given by (79), ¢*(u, g) = o(} + 1u, g).

Proof. It follows from Proposition 2 that the condition (81) is sufficient for the
contiguity of K¥ to H,. On the other hand, under the conditions of Theorem 7 the
conditions of Theorem 17 in [5] or Theorem 2.2 in [4] are fulfilled and the assertion
of Theorem 7 follows from the cited theorems.

Remark. Theorem 4.3 of Bhattacharyya and Johnson in [1] may be obtained
from Theorem 7.

8. Asymptotic efficiency of rank test

We say that an a-level test T* is based on a statistic T if the critical region of the
test assumes the form {T > Ca}.

Suppose that T¥, T are based on T, Ty, respectively, and that T,, T, are asympto-
tically normal N(0, o,), N(0, ¢,) under H, and N(uy, 04), N(i, 0,) under the alter-
native KX. Then the asymptotic powers of T, T, under K, are given by

(84) 1 - ¢(k1—a - ﬂl/”l) , 1= d)(kl—a - #2/0'2) >

respectively, where k,_, is the 100(1 — «) percentage point of the standardized
normal dictribution function ¢(x).

The quantity
(85) e[ T3 : ] = [(12]0) (11]01)]* = (204 [p105)?

is called the asymptotic relative efficiency of the test T, compared to T;*. If T}* is
asymptotically most powerful with respect to the definition below, then ¢[T, : T;| =
= ¢[T,] is called the asymptotic efficiency of the test T,". Note that the definition
of the relative efficiency is meaningful only as p;, u, are positive since if, for example,
py < O the test T;* is worse than the test defined by the critical function @(x) = a.

442



Definition. A test with the probability & (x) of rejecting the hypothesis is called
the asymptotically maximin most powerful for testing H, against K, at the level

a if
(A) lim sup {sup JQ”(X) de(x)} <a,
v—= oo PyeH
(B) Jim [ﬁ(a, H,,K,) — inf f¢v(x) dQv(x):I ~0
v= o Qveky
where

B(e, H,,K,) = sup inf Jdic(x) dg,(x)

D,’e¥y(a) QveKy

with ‘I’v(oc) being the class of all tests satisfying sup (@, dP < o.
PyeH,

For the sake of simplicity, let us delete the subscript v in what follows, writing

for example N Ny
d? > b* for lim ) dj = b>.

i=1 v=o i=1

Let Ho(Ho = H,,) be the hypothesis defined by (1) with respect to the sample
size N,

Theorem 8. Consider the problem of testing H, against the K(K = K,) defined
by (49). Assume that the conditions (i), (ii) of Theorem 5 are fulfilled. Then the
following relations hold:

(86) B Ho, q) = 1 — ¢(ky_ — b)  under (i) ,

(87) B(o, Ho, ) = 1 — ¢(ky_, — b*) under (ii)
N

where q(x) = [ g(x, d;) and b and b* are defined by the conditions (i), (ii).
i=1

The maximum powers (86), (87) are asymptotically attained by the rank tests
based on the following statistics:

(59 5 =Y diaRo0),
(59 S = Y Wld, - D ar(Ro 0)

respectively, where ay(i, g) are defined by (27), (28) with f, F replaced by g, G and
Vy(h) are defined by Definition 2 of Section 6.

Proof. First suppose that the condition (i) of Theorem 5 is fulfilled. It is clear that
(90) ﬁ(“’ HO’ Q) é B(O(, Pos q)
N
where po(x) = [ g(x: 0).
i=1
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On the other hand, from LeCam’s third Lemma (see V1.1.4 in [3]) and from
Proposition 2 of Section 6 it follows that log q/ Do 1s asymptotically normal N ( — b/2, b)
under p, and N(b/2, b) under q. Consequently, a test based on q/p, has the following
power:

(1) B pos g) = 1 — d(ky_o — b).

On the other hand, this asymptotic power belongs to the test based on S, accord-
ing to Theorem 5. Consequently

(92) lim inf f(o, Ho, q) = 1 — (ky_, — b)

and (86) follows from (90)—(92).

Suppose now that the condition (ii) of Theorem 5 is fulfilled. Note that U(x)
has an almost everywhere derivative U;(x) in x and its inverse function U, '(x)
exists for each 6 since Uy(x) is strictly increasing in x. First, it is clear that

(93) B, Ho, 4) = (o, Fos q)
where p = ]‘—v[ g(x;), d).
On the olt_hler hand, we have, under the condition (ii) of Theorem 5,
[X ~ g(x, d)] < [Ua(X,) - g(x, Va(ds d))]
for k =1,...,N, hence
P{UyX,) <y} = P{X, <Uj'(y)} entails
9(»: Va(d — ) = (U3 '(y), d) [U7'(»)] -
Putting y = Uj(x) we obtain
Uil(x) g(Ua(x), Valdi — d)) = g(x, d) -
Consequently

108 (X X) = 3 T (6% 4)fo (e 8) =

= 3 108 o(U(x), e — D)oV, )

since ¥3(0) = 0, Uj(x) > 0.
Putting Y, = U/(X,), we obtain

tog afF) = 3, Iog o(%, d)la(%



with d; = Vy(d, — d). Note that Y, has the density g(x,0) under p and g(x, dy)
under g and d,, satisfy the conditions

N
I(g) Y d;? > b** > 0, maxd? -0, by(63)
k=1 k

It follows from LeCam’s third Lemma in [3] and from Proposition 2 of Section 6
that log (q/p) is asymptotically normal N(—b*?/2, b*) under p and N(b*?/2, b*)
under q. Consequently, the test based on g/p has the following power:

(94) B, . ) > 1 — d(k, -, — b¥).

On the other hand, this asymptotic power belongs to the test based on §’, according
to Theorem 5 under the condition (ii), hence

(95) lim inf B(e, Ho, ) 2 1 — ¢(ky—, — b¥).

Finally, (87) follows from (93)—(95).

Remark. By the argument of this proof and LeCam’s second Lemma in [3],
q(x) = INII g(x, d;) is contiguous to H, under the condition (ii) of Theorem 5.

Let us now show the asymptotic efficiency of the test based on Ty,(R) given by (9)

or (29).

According to Theorems 5,8 and the definition of the asymptotic efficiency we have
(96) e[TNp(R)] = e[TNp(R) : S] = QZQ%
under K defined by (49) and under the condition (i),
97) e[ Ty, (R)] = e[ Ty,R : S'] = 0%@*
under K and under the condition (ii), provided

N N N

09 X(Cn) — CO) AL [CR) — COF T = 0o

09 $(Cus) ~ Co) Wl ~ DI (Clr) — CoF 5 (e — DY
and with

(100) e= r“’("’f ) @(u, g) du(I(f) 1(g))~ "> .

It is of interest to study the sensitivity of the asymptotic relative efficiency of the
tests on Ty,(R) corresponding to different choices of the weights.

Let us restrict ourselves to the cases where the alternative K defined by (49) satis-
fies the condition (i) of Theorem 5 or the parameter 6 involved in the density g(x, )
under K is a location or a scale parameter and (74) holds.
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Denote by T,(R) the special form of Ty,(R) with respect to the uniform weights,
by T,,(R) the special form of Ty,(R) with respect to the weights degenerate at m, i.e.
Pm =1, p; = 0 for i # m, then we have

(101) T(R) = 3.(Cs = ) x(Re )
(102) TlR) = . (Cos ~ Cu) (Res )
where

Assume that

(103) {m;ix (C — 5)2}"1k;1(5.k -0 > o,
(104) {msx (Coue — Cm.)z}"léll(cmk ~Cp)? > 0.

Then, according to Theorem 4,5, the statistics T,(R) and T,,(R) are asymptotically

normal both under H, and under K and we obtain the asymptotic relative efficiency
under K

(105 T Tl = [3(Co = O) (b~ A 5 (Cou ~ Tl
AL~ C) (@ - A 3 (Co = O

with the convention that d = 0 if the condition (i) is fulfilled.
If d, = 4C,, for all k, i.e. K coincides with alternative K,, defined by (2) and
Pm = 1, p; = 0 for i & m are the correct degenerate weights, then we obtain

(106) o, Ty) = {él(é.k &) (Cou — T )2 {él(cmk —C)

(Ch— TP}t <1,

TTMz

1

Especially, putting C,,; = 0, 1if j S m,j = m + 1, respectively, i.e. K is the alterna-
tive of shift occuring at m, and m[N — 4 (0 < 4 < 1), then (106) becomes

(107) e[T,: Ty =341 — 1)< 3.
This was shown in [1].

446



Acknowledgement. The author wishes to express his indebtedness to Dr. Z. Siddk
under whose guidance the thesis was written.

References

[11 G. K. Bhatracharyya, R. A. Johnson: Nonparametric tests for shift at unknown time point.
Annals of Math. Stat. 39 (1968) No. 5, 1731—1743.

[2] H. Chernoff, S. Zacks: Estimating the current mean of a normal distribution which is
subjected to changes in time. Annals of Math. Stat. 35 (1964), 999—1018.

[31 J. Hdjek, Z. Siddk: Theory of rank tests. Academia, Publishing house of the Czechoslovak
Academy of Sciences, Praha 1967.

[4] M. HuSkovd: Asymptotic distribution of simple linear rank statistics used for testing sym-
metry hypotheses. (Czech.) Thesis, Prague 1968.

[5] M. HuSkovd: Asymptotic distribution of simple linear rank statistic for testing of symmetry.
Z. Wahrscheinlichkeitstheorie. Geb. 14, (1970), 308—322.

[6] Z. Kander, S. Zacks: Test procedure for possible changes in parameters of statistical distri-
bution occurring at unknown time point. Annals of Math. Stat. 37(1966), 1196—1210.

[7]1 E. L. Lehmann: Testing statistical hypotheses. J. Wiley, New York, 1959.

[81 E. L. Lehmann: Some concepts of independence. Annals of Math. Stat. 37 (1966) No. 2,
1137—1153.

[9] E. S. Page: Continuous inspection schemes. Biometrika 41 (1954), 100—116.

[10] E. S. Page: A test for a change in parameter occurring at an unknown point. Biometrika
42 (1955), 523—526.

Souhrn

PORADOVE TESTY HYPOTEZY NAHODNOSTI
PROTI SKUPINE REGRESNICH ALTERNATIV

NGUYEN-VAN-HUU

V ¢&lanku se studuje problém testovani hypotézy nahodnosti proti skuping regres-
nich alternativ v nezndmém parametru. Pro tento problém je navrZen pofadovy test.
Jde o zobecnéni problému testovani posunuti v parametru lokace, které se objevuje
v neznidmém Casovém bodé& v fadé postupné pozorovanych veli¢in. Pro tento posledni
problém potadovy test byl nalezen Bhattacharyyou a Johnsonem (1968). Pofadovy
test navrZzeny v na$i praci je lokalné praméroveé nejmohutn&jsi ve tfid€ viech mozZnych
poradovych testli ve smyslu definice v § 3. Dale je studovana asymptotickd normalita
statistiky naSeho pofadového testu a jeho asymptotickd vydatnost nejen pro piipad
parametru lokace a $kaly, ale i pro pfipad obecného parametru.

Author’s address: Dr. Nguyen-van-Huu, Can bo giang day Khoa Toan, truong Dai hoc Tong
Hop, Ha-Noi, Viet-Nam.
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