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SVAZEK 17 (1972) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

ON A SEMI-VARIATIONAL METHOD FOR PARABOLIC EQUATIONS I 

IVAN HLAVACEK 

(Received July 12, 1971) 

INTRODUCTION 

The popularity of variational methods has grown during the past decade mostly 
due to the finite element method, which combines the versatility of the variational 
approach with the computational advantage of band matrices, the main feature of 
finite-difference procedures. The present paper aims at a further development of the 
finite element technique, when applied to mixed problems for parabolic equations. 

Much work has been done on a special Galerkin-type procedure, derived by an 
analogy with the well-known Crank-Nicholson finite difference scheme [1], [4]. We 
propose here a sequence of approximations with gradually increased accuracy in time, 
generalizing the Crank-Nicholson-Galerkin procedure. 

In Section 1. a heuristic approach is shown for the derivation of the Crank-
Nicholson-Galerkin procedure and then applied to derive the second and third ap­
proximation. In Section 2 we prove the convergence of the second approximation 
and its stability with respect to the initial condition. In Section 3 we show that, in 
case of ordinary differential equations, the sequence of approximations leads to the 
sequence of Pade approximations of the exponential function. In Section 4 a numeri­
cal example is presented for a parabolic equation. 

In Part II of this paper some further properties of the semi-variational approxima­
tions will be shown, namely their independence of the choice of polynomial basis in 
time and a close relation between them and the Pade approximations for general n. 
Moreover, the cases of inhomogeneous mixed problems and setae more general ab­
stract equations will be considered. 

1. SEMI-VARIATIONAL APPROXIMATIONS OF SOLUTION 

In the present section an algorithmus will be presented, which enables to construct 
a sequence of numerical procedures for approximate solutions of the given problem 
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(1.1), (1.2). The first approximation coincides with the well-known Crank-Nicholson-
Galerkin procedure and consequently it is second order correct in time [1], The 
second approximation is shown to be fourth order correct in time (in Section 2) and 
the third approximation may be expected sixth order correct, according to the case of 
ordinary differential equations. Each approximation will be derived in two steps, 
both of the projection type. As the first step is based on a variational formulation 
of the problem under consideration, we call the method semi-variational. 

In order to explain briefly the main features of the derivation, let us consider an 
ordinary differential equation 

-1 + Ay = 0 , A = const (real) , 0 ^ t ^ x , 
dt 

with the initial condition 

y(0) = (Po % 

Let us set 

i = 0 

n positive integer, where {Njn~1)(0}o~1 denotes the Lagrangian interpolation poly­
nomial basis of polynomials of degree n — 1, i.e., 

^"""trr)"*-*' o -s *, fc ̂  n -1 , 

8ik is the Kronecker's delta, N(n~l)(t) are polynomials of degree n — 1. 

The coefficients {a;}",-1 will be determined by means of the variational condition 

[*(/"" U(0 + f A .y("""1)(z) dz - <p0) 8y(n~1)(T - t) dt = 0 . 
Jo Jo 

This condition follows from the "integral convolution principle" (see [9], [2] — Th. 1 
or [3]): if we define a functional 

* T 

*{y) = (y(t) + 
0 

A y(z) dz - 2<p0) y(x - t) dt 
o 

on a sufficiently large class X of admissible functions, then $F(y) attains its stationary 
value on JT, if and only if y is a solution to the initial-value problem under considera­
tion. 

The approximation y{n~1\ however, does not satisfy the initial condition exactly. 
Therefore we construct another approximation 

;=o 

328 



which is polynomial of degree n, satisfies the initial condition 

j/»>(0) = <p0 

and the following conditions 

I [/«)(,) _ yb-Щ] N(Г1}(t) åt = 0 , i = 0, 1, .. . , n - 1 . 

These group of rc equations means that the L2(0, T) projection of y(n) into the sub-
space of polynomials of degree at most n — 1 coincides with ^(n""1). The function 
J (M) will be referred to as the n-th semi-variational approximation on <0, T>. 

In the following we shall apply the main idea of the derivation to an abstract para­
bolic equation in a Hilbert space and construct the first three approximations (for 
n = 1, 2, 3) in detail. 

Let a real Hilbert space H with the scalar product (u, v) and the norm |u | = 
= (u, u)1/2 be given. Let us consider the equation 

(1.1) - = Au(t)=f(t), 0<t<T 
dt 

with the initial condition 

(1.2) u(0) = <p0 , 

where u(t) and f(t) are mappings of the interval <0, T> into H, cp0 e H, A is a linear 
symmetric and positive definite operator in H, which does not depend on t. 

Assume, that a Hilbert space if with the norm ||u||, a bilinear form [u, v\A con­
tinuous and symmetric on f x f and positive constants c, a, C0 exist such that 

(1.3) f c i f , u e f => ||u|| = c\u\, 

the domain D(A) of the operator A is a subset of if, 

(1.4) u, v e D(A) => (Au, v) = [u, v\A 

ueif=> oc\u\2
 = [u, u]A = C0\\u\\2 . 

First approximation 

Consider a finite-dimensional subspace Jt of if, spanned by elements vl9 v2, v3, ... 
. . . , vN. Let us have a fixed T > 0 and set 

(1.5) u(0) = N(0)(l) V0 , 0 = t = T , 

where 
N 

N(0)(t) = 1, V0 = X atVi e Jt. 
f = i 
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Let the function f(t) be approximated similarly by 

(1.6) / ( 0 )( t) = i V ( 0 ) ( O i [ / ( 0 ) + / ( T ) ] . 

The formula (1.6) may be obtained setting 

(1.7) / (0 )(f) = const. , 

/ ( 1 )(r) = N ( 1 )( () /(0) + N[l\t)f(r), 

N ( 1 ) ( 0 = l - t / r , N ( 1 )(0 = t/r 
and 

(1.8) f ( / ( 1 ) - / ( 0 ) ) N (O)(0 d( = 0 . 

In order to determine the coefficients al of V0, we use the variational condition 

(1.9) fw ( 0 ) + P A M (0 )(Z) dz - <p0 - [' r \ z ) dz , <5U(0)(T - t) At = 0 
Jo Jo Jo 

(see [2] — Th. 1). The term with the operator A will be replaced by 

rrru (o )(z)dz, ov0^- l)i dt, 
so that u(0)(z) need not belong to the domain D(A), but to V only (cf. also [3]). 

Inserting 

(1.10) Su(0)(z - t) = vj, j = 1, 2, . . . , N 

and integrating, we obtain the following system of linear equations for at 

(1.11) T £ afv, Vj) + X~ £ alvlt Vj)]A = z(cp0, Vj) + ~ (f(0) + f(x), Vj) . 

i=i 2 i = i 4 

Let us denote 

(1.12) (vh Vj) = Gij, \yh Vj]A = s/ij, 
(q)0, Vj) = CD0j (f(t), Vj) = Fj(t) , 

U = 1,2 , . . . ,N . 

Then the system (1.11) may be rewritten in the matrix form1) 

(1.13) ÍG + -JЛa = æ0 + - (Ғ(0) + F(т)). 

x) We denote 

, m 
u0NІ 

fW)\ 

lw ЧNІ 
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The second step starts with the replacing u(0)(t) by the linear approximation 

(1.14) «(1>(t) = U0 + N?\t) Vt , 

where 
N N 

(1.15) U0 = ^jwoivi, Ui=YJulivi. 
i = l i = l 

The initial condition (1.2) is now employed in the projection form 

(1.16) (Uo, vj) = (q>09 vj) , j = 1, 2, ..., N , 

which may be rewritten as follows 

(1.17) Gw0 = ©o • 

The coefficients uu will be determined from the projection condition 

(1.18) f V 1 } ~ " ( 0 ) > <5u(0))d* = 0 . 

Inserting (1.14), (1.5) and (1.10), we obtain 

f(Uo + -VTO Vi> VJ)
 dt = f Vo, vj) dt. 

Jo Jo 

The integration leads to the system 

<U0,VJ) + ^(U19VJ) =T(V 0 ,v y ) , 

which may be rewritten in the following matrix form 

(1.19) ^GUi = Ga - Gw0 , 

if we use also (1.17). From (1.19) we conclude 

(1.20) a = w0 + iut . 

If we substitute for a and co0 in (1.13), we obtain 

G ( ì ö Л + Җw0 + iû.) = І(Ғ(0) + Ғ(т)), 

which is equivalent to 

(1.21) ( ì (i.<Ҷт) - U0), » y) + i[«(1>(т) + U0, VJЪ = i(/(0) + /(т), ,,) . 
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Obviously, the formula (1.21) is just that of Crank-Nicholson-Galerkin approxima­
tion1) [1], [4] for the first step. 

If the coefficients wm of the expansion 

N 

u(1)(mT) = £ wmivt 
» = i 

are known, the next step is to solve the system 

om = Gwm + %- Ғi°>, 

2 
(1.22) (G + l^) 

where 

C = K f M + f K + *)>;)• 
Then the coefficients of « (1)(mi + T) are given by the formula 

Wm+1 — 2 d w — Wm . 

Second approximation 

Let us apply the approach, which has been used to the derivation of the first ap­
proximation, to polynomials of the first and second degree in t, instead of those of 
zero and first degree, respectively. Thus we set 

(1.23) «<*> = N^Xt) V0 + N[lXt) V, , 

where N(Q\ JV̂ 1-1 are given in (1.7), 

(i-24) Vo = I > o ^ , r , = X « i ^ 
i = l i=l 

and vi9 (i = 1, 2, ..., N) is the base of the subspace Ji of ir-

The function f(t) will be approximated similarly by a linear function 

(1.25) /<D(0 = N0
lXt)?o + M ^ O / i > 

where 

(126) /o-j[2/(0) + 2/Q-/(,)J, 

/,=i[-/(O) + 2/(0 + 2/W ] . 

1) Some authors replace the average in the definition off(0) (1.6) by f evaluated at t = T/2. 
The error estimation, however, remains of the same order in t. 
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The formulas (1.26) may be obtained setting 

(1.27) j<2> = < > ( 0 / ( O ) + N[%(t)f(A + N[2\t)f(x) , 

N<o2\t) = 1 - 3./T + 2(tjr)2 , 

N[%(t) = 4(./r) (1 - t / t ) , N?(t) = 2(f/T)2 - ./T 

(Lagrange parabolic interpolation) and 

V ( 2 )-/< 1 )X1 )( t)d t = 0, fc = 0,l. Í ' 0 

Thusf (1)(t) is the L2(0, T) projection of the Lagrangian second degree interpolate 
off(f) into the subspace of linear functions. 

In order to determine the coefficients aoi9 au of V0 and Vl9 we use the variational 
condition 

(1.28) fY(u ( 1 ) (0 + f Au(1)(z)dz - cp0 - r f ( 1 ) ( Z M z , O"u(1)(T - O^jdf = 0 
J o \ Jo Jo / 

and replace the term with the operator A by 

Í T Í ' u ( 1 ) ( z ) d z , u^(x-t)\át. 

R e m a r k 1.1.1. If some non-homogeneous boundary conditions, associated with 
the differential operator A, are assigned by means of a function g(t) on a part rg of 
the boundary, we proceed with g(t) in a manner quite similar to that used with f(t), 
adding an integral of the form 

П Í9" 
J 0 J Гg J 0 

\z) dz <5U(1)(T - ř) dE dř 

on the left-hand side of (1.28) (cf. "a-integral convolution principle" in [3]). We shall 
consider such cases in Part II. thoroughly. 

We have 

(1.29) 8u(1\t) = N(1)(f) vj ; k = 0, 1 ; j = 1, 2, ..., N 

]V(1)(T - t) - N(1)(0 , N(1)(T - t) -= N(1)(r) . 

Inserting (1.29), (1.23), (1.25) and (1.26) into (1.28) and integrating, we are led to 
the following two systems (for k = 0 and k = i) 

(1.30) (f K. + I K„„) + [ £ V. + f K.,.,1 = ( j * . + £/„ + £/„ .,). 

(1.31) g V. + | K„ .,) + [ £ * . + £ K„ .^- (I -. + i* + f/„ „) . 
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The sum of (1.30) and (1.31) yields 

(1.32) -(v0 + V1,vJ) + 

and their difference yields 

jғ° H H ф o + з / o + i л ^ ) 

(1.33) (V - V0, Vj) + - [V0 + V, Vj-]A = - ( / 0 + fu Vj) • 

We may insert 

(1-34) Wo + Wi = i (n + V,) - Uvi ~ Vo) 

into (1.32) to obtain 

(1.35) I (V0 + V1? Vj) + I g (V! + V0) - i (V! - V0), 1 ^ = 

= f^o + ^/o + ^ / i ' ^ ) -

Introducing vectors c and b by means of the relations 

N N 

ł(V0 + V) = I Cfflt = X І(«0І + вц) »l , 
i = l 1 = 1 

N N 

У\ - vo = E Ь ^ І = Z (aü - ao0 »* > 
i = l i = l 

the systems (1.35) and (1.33) may be written in the following matrix form 

(1.36) (G + I . - / ) . - -L^/b = co0 + X-F(0) + X-FQ, 

xstc + Gb = - |~F(0) + 4 F ( - ) + F(T)1 , 

where G, sf, F(t) and co0 were defined in (1.12). 

Next let us replace u(1)(r) by the quadratic approximation 

(1.37) «<2> = Uo + N[2\(t) U1/2 + N[2)(t) U! , 

where U0 and U1 were defined in (1.15), (1.16), N^2(i) and N[2)(t) in (1.27), 

Uí/2 = E И Щ ^ І -
i = l 
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The coefficients W1/21 and uu will be determined by means of the projection condition 

(1.38) r ( u ( 2 > - M ( 1 \ <5u(1>)dt = 0 . 

Inserting (1.37), (1.23) and (1.29) into (1.38), we obtain the following conditions 
(k = 0, 1) 

"Vo + N[%(t) Ul/2 + N[2\t) U„ N[l\t) Vj) dt = 
J o 

= f W(t) V0 + N\l\t) V,, *<»>(.) Vj) dt, 

which yield two systems of equations 

(1.39) ( I u0 + X- U1/2, vj\ = ( I V0 + 1 Vu vj\ , 

From (1.39) we obtain by subtraction 

(V» Vj) = (V! - V0, Vj) , 

consequently 

(1.40) u ^ b . 

Using the identity (1.34), the first equation of (1.39) may be rewritten in the form 

(ill0 + iU 1 / 2 , Vj) = (i(V! + Vo) - UVl ~ V<>\ Vj) , 

which is equivalent to 

G Ul/2 = fGc - £Gb - fco0 , 

consequently 

Ul/2 = f c - i b - %w0 . 

The same procedure may be repeated in the following intervals 

<T, 2T>, <2T, 3T>, . . . 

If the coefficients wm of the expansion 

N 

w(2)(mT) = £ wmiv(, m = 0, 1, . . . 
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are known, the next step is to solve the system 

(1.41) Gcm - /~~stf + i G\ bm = Gwm + ^ [F(IWT) - F(mT + T)] , 

- Gbw + j / c m = - F(mr) + 4 F | mr + - ) + F(mT + T) , 

which follows from an analogy of (1.36) by elimination of s/c in the first equation. 

Then the coefficients of u(2)(mz + T) are given by the formula 

(1.42) wm+1 = wm + bm 

and 

(1.43) «<2>(0 = £ K , + N[%(t) (icmi - \bmi - iwmi) + N[2\t) bmi-] vt 
i = l 

holds in the interval m% < t < mx + T. 

Remark 1.2. If G and stf are band matrices, with the band width 5, the system 
(1.41) can be rearranged easily so that the resulting matrix will also turn out to be 
a band matrix and its band width equals 25 + 1. 

Third approximation 

Let us consider the approximate solution of the form 

(1.44) u™ = N0
2\t) V0 + N[%(t) V + N[2\t) V2 , 

where 
N 

V2 = £ a2ivi 
i = l 

and V0, V1 were given in (1.24), N0
2), N[% N[2) in (1.27). 

The function f(t) will be approximated by a quadratic function 

(1.45) f2\t) = JV0
2)(Ojo + N[%(t)J\ + N[2\t)f2 , 

where 

(1.46) / 0 = 11~31 j(0) + 2 7 / 0 ) - 27j(|T) + 9j(T)] , 

h=h [" /(0) + 9/(i) + 9/(|r) ~ / ( T ) ] ' 
j2 = ^ 9[ / (°) - 27fQ + 27f(H + 31/W]-
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The formulas (1.46) may be obtained by setting 

j ( 3 ) = !V(3>(*)j(0) + N ( 3 ) ( t ) j Q ) + N™(t)fQx) + N[3\t)f(r) 

and 

where 
I (j(3)-j(2))N(2>(í)dř = 0 ; k = 0 , i , l , 

«8И0-lí(2-.i + зQ-). 

^-I .O-MЗ r 
N l » ( l ) Лi/?_ í + 

2 T \9 T \T 

Thus f(2\t) is the L2(0, T) projection of the Lagrangian third degree interpolate of 
f(t) into the subspace of quadratic functions. 

In order to determine the coefficients aoi, axi and a2b we employ the variational 
condition 

(1.48) [Y(u ( 2 )(0 + [A u(2\z) dz-cp0- f f(2)(z) dz , <5W(2)(T -t)\dt = 0, 

where the term with the operator A will be replaced, as previously, by the corre­
sponding bilinear form. 

We have 

(1.49) 5u{2\t) = N[2\t) Vj; k = 0, i, 1 ; j = 1, 2, ..., N , 

N(2)(T - t) = N(
t
2)(0 , N(2)(T - t) = N0

2\t) , 

N(2)(T-t)=N(2)(t). 

Inserting (1.44), (1.45), (1.47) and (1.49) into (1.48) and integrating we obtain the 
following system of equations 

(1.50) (48G + 5J*T) a0 + 4(6G - sśx) aү - (12G + <Ь = 

3 
60co0 -\ T 

10 

ГlЗF(0) + 6 Ғ Ø ) - 2 1 ғ ( | t ) + 2 ř ( t ) l , 
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(6G + 1 Шт) a0 + (48G + 20,s/т) O, + (6G - sđт) a2 = 

60шo + — т 
20 

47F(0) + 129ғg) + 21FØт) + ЗF(т)L 

( - 12G + 1 ìsѓт) a0 + 4(6G + 1 ìsćт) ax + (48G + 

= 60CÖO Ң т 

10 
23F(0) + 96FØ) + 69F^т) + 12F(т)J, 

where G, stf, co0 and F(t) were introduced in (1.12). 

Let us replace u(2)(t) by a cubic approximation 

u(3)(t) = U0 + N(3)(t) U1/3 + N(3

/3(t) U2/3 + N(3)(t) U, , 

where U0 and U1 were defined by (1.15), (1.16), M/KO- M/UO* M 3 ) ( 0 b y (1-47) and 

N N 

^1/3 = E Wl/3f̂  , U2/3 = X u2/3i^ • 
i = l * = 1 

The coefficients u1/3/, u2/3/ and uu will be determined from the projection condition 

f ( u ( 3 ) - u(2), Su(2)) dt = 0 , 

which yields the formulas 

(1.51) ux = a0 + a 2 - 2 w 0 , 

"2/3 = Yi{~lao + 12aJ + 3a 2 - 8MF0) , 

«i/3 = 2^( 1 7 a o + 24<*i - 3a 2 - 38w0) . 

If the coefficients wm of the expansion for u(3)(mT) are known, the next step is to solve 

the system of the type (1.50) for a0

m), a^m), a2

m), where Gv/m is substituted for co0 and 

to all arguments of F mx is added. Then the vectors of coefficients in the expansion 

«(3>W = £ K, . + M3,3(t) "i/3,- + M/KO "2/3. + M3)(t) 5iJ »,, 
i = l 

mT ^ t g mt + T 

are given by the formulas (1.51), where ak (k = 0, 1, 2) and w0 are replaced by a(
k
m) 

and w/m, respectively. 
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2. CONVERGENCE OF THE SECOND APPROXIMATION 

The first approximation has been studied by J. Douglas, Jr. and T. Dupont [1] in 
detail even for non-linear parabolic equations. These authors proved several a priori 
estimates not only for the Crank-NichoJson-GaJerkin approximation but also for its 
linearization by means of the predictor-corrector procedure or by the extrapolation. 

In the present section we shall derive an error bound for the second approximation. 
Then the error bound will be used with approximation theory for Hermite interpola­
tion in two variables to give rates of convergence. The fundamental line of thought 
is similar to that of Douglas and Dupont [1]. 

From (1.42) and (1.43) we conclude that 

Wm+l/2 ~ Wm ~ ~2Cm ~ 4\Wm+l ~ Wm) ~ ~2Wm s 

where 

lmx + ~\ ~YJwm + 1 / 2 J v i . 

Consequently, we have 

(2.1) cm == 1
6(wm + 4wm+1/2 + wm+1) . 

Inserting (2.1) and (1.42) into (1.41) and returning to the scalar products, we derive 
that (1.41) is equivalent to the following system of equations 

(2.2) 4 (Um - 2Um + 1/2 + Um+1, V) + [Um+l - Um, V\A - (fm+1 - fm, V), 
T 

(2.3) 

where 

fUjn+l Un ; y\ + £Um + 4Um + 1 / 2 + Um+1, V]A = 

= Ufm + 4 / m + 1 / 2 +fm+l, V), 

Um = u^(rm) , Um+1/2 = u^ (mx + A , 

fm=f(rm), fm+U2=f(fm+X\ m = 0 , l ( . . . 

and Vis any element of Jl, 

Let L2(I, "T) denote the space of functions u(t), mapping the interval I = <0, T> 
into Y* and such that 

• T 

i ( f ) | | 2 d t < oo Í.W 
^(i, H) denotes the space of continuous mappings of/ into H. 
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Letfe ^(I, H). Assume that the solution u of the problem (1.1), (1.2) is such that 

u e L2(I, r), du/dr G <${!, H) and 

(2.4) (~,v\ + b,v-\A--(f,v), 0<tST, ver, 

(u(0), v) = (<p0, v) , u e f 

(for the concepts of weak solutions, see e.g. [5], chpt. IV.) Moreover, suppose that 

lim u(t) = u(0) in iT 
t-+o + 

exists, consequently 

(2.5) (^(0+),v\ + [u(0),v]A = (f(0),v), ver. 

R e m a r k 1.2.1. We can prove easily, that the system (2.2), (2.3) possesses a unique 

solution at each time step. In fact, (2.2), (2.3) is equivalent to (1.41). Note that stf 

and G are positive definite symmetric matrices, therefore stf'1 exists and is positive 

definite as well. From the second eq. (1.41) we obtain 

c w = s/~1Gbm + -ja/~- F(mT) + 4F (mz + - J + F(mT + T) 

and substituting this expression into the first equation, we are led to the equation 

(- Gst~lG + - G + — s4 ) bm = -Gwm + — [F(mT + T) - F(mT)] . 
\T 2 12 / 12 

The matrix in brackets on the left-hand side is positive definite and the system 

possesses a unique solution bm. Then the uniqueness of cm is evident. 

Henceforth we shall use the following notation 

(2-6) Oum = uw+i — um , °Um+i/2 = um + 3/2 ~~ Um+l/2 

A um = um — 2u m + i / 2 + uw + i 

Um = UUm + 4 u w + J / 2 + um+i) , 

/ du , v , du /f. v , du /__, s T _,_, 
«« = - W , u0 = — ( 0 + ) , uM = ~(T-), T = — , M integer, 

dt dt dt M 

(2.7) й(t) = _ > ( ( t H , г 
i = l 

af(t) real functions, C a generic constant, which is not necessarily the same at each 

occurrence. 
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We are going to deduce an a priori estimate, which implies that the second approxi­

mation is fourth order correct in time. 

Theorem 1.2.1. Suppose that the solution u(t) of (2.4) possesses continuous de­

rivatives in H up to the fourth order on <0, T ) and the norms |d5u/df5 | are bounded 

uniformly for 0 < t < T Denote zm = um — Um9 where Um is the solution of (2.2), 

(2.3) with the initial condition (1.16). 

Then there exist positive constants y, C and T 0 , independent of T, such that for 

T ^ T 0 and for any function il of the form (2.7) the following inequality holds 

(2.8) 
M - 1 

I 
fj = 0 

Ы 2 + У I <|K| | 2 + ||!ra||
2) < 

2\ M - 2 

+ I * 
m = 0 

-<5(u - u)ш+1 = c fzV| |(« - «)« II2 + I1 %-«)„ 
l m = 0 V llT 

+ \(u - «)0 |
2 + |(« - u~S)|2 + |(« - u ) ^ x | 2 + T 8 | • 

Proof. Making use of (2.4), (2.5) and (2.6), we obtain 

(2.9) \uk9v\A = (fk-uf

k9v)9 k = 0 , i , l , . . . , M ; v e r , 

consequently 

f - <5uw, v J + [um, v]^ - (/m, v) = ( - 8um - um

A, v J = (<?m, t?) , v e TT, 

m = 0, 1,2, . . . , M - 1 , 

where 

(2.10) Ы < c?4 

(with C independent of m) can be deduced whenever |d5u/df5| < C holds for 

0 < t < T Theferore we have 

(2.H) ( - <5uw, v\ + [um, v\A = (fm + Qm9 v), VE iT , 

0 = m ^ M - 1 . 

Using (2.9), we can see that 

l^um9 v\A = (8fm - 8um9 v)9 D e f , m = 0, 1, 2, ..., M - 1 , 

consequently 

(2.12) 1 (zl2

M m, ») + [8um, v]A - (dfm, v) = ( 1 i 2 « r a - 5um, ») = (Cm> ») , 
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where 

(2.13) \Q < Cr3 

(with C independent of m). Therefore we may write 

(2.14) ( - A2um, v\ + [Sum, v JA = (8fm + Cm, v) , veV, 0 = m = M - 1 . 

If we subtract (2.3) from (2.11), with v = V = (u - U)m, we obtain 

(2.15) 0 5zm, (u - U)A + [zm, (u - U)*JA = (Qm, (u - U)ra) . 

Subtracting eq. (2.2) from (2A4) with v = V = S(u — U)m, we obtain 

(2A6) (* A2zm, 5(u ~ U)m\ + [<5zw, 8(u - U)m]A = (£m, S(u - U)m) . 

Let us consider the following identity, where 

Zm = Um - Um + (Um - Um) 

is used several times: 

(2.17) - (A2zm, dzm) + [Szm, 8zmjA + - (bzm, zm) + \2\i„ zmjA = 
T T 

4 12 
= - (A2zm, <5(u - u)m) + [<Szm, <5(u - u)m~\A + — (<5zw, (u - u)*) + 

T T 

+ 12[zm, (H - n) ra]x + ft (J2zra, <5(H - U)ra) + [8zm, S(u - U)mjA + 

+ ^ (5zm, (u - U)ra) + 12[zra, (H - U)mjA - 12(0ra, (u - U)m) - (Cm, S(u - U)m)\ + 

+ 12(Qm, (u - U)ra) + (Cm, 5(u - U)m). 

The expression in brackets in the right-hand side vanishes because of (2.15) and (2.16). 
The right-hand side of (2.17) is bounded by 

(2.18) (AA2zm, i 5(u - u)m\ + ^ (8zm, (u - u)*) + Um, ± <5(H - U)ra) + 

+ C0||<5zra|| \\S(u - u)m\\ + 12C0||zm|| ||(H - fi)*|| + 12|?ra| |(u - 17)*| . 

Using the relations 

(2A9) (H - U)ra = (H - n)ra + zm, 

A2zm = -3zm + i(zm + z r a + 1), 
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the scalar products in (2.18) may be bounded above by 

1 
+ -\-m + z m + 1 (2.20) 12|žm| \-d(u - ú\ 

+ (}-dzm,n(u-u)m + T U + K | 

S(u - u)„ + 

<5(w - u)m\ ^ 

^ Cl£||zw||2 + C z j 2 + z w + 1
2 + S(u - u\ 

+ í-<5zm, 12(u - u)m + TCWJ. 

m | 2 ] + Ш2 + 

Here we have used (1.3) and the well-known inequality 

\ab\ S ™2 + b2l4e, 

so that s > 0 is arbitrary, Cx does not depend on e, C = C^). Proceeding similarly 

with the other terms in (2.18), we obtain the bound for the whole right-hand side in 

the form 

(2.21) 

where 

Co£||<5zJ|2 + C2e||źи||
2 + ф , 

Ф — C\ - 5(u — ů) 

LIIT 
'+ |(« - «%1I2 + M 2 + K l 2 + \-m\2 + | z m + 1 | 2 ] + 

+ (15zm, i2(« - »)* + rcm) 

and the constants C0, C2 do not depend on ,̂ T, m. 
The left-hand side of (2.17) can be bounded below, using (2.19) and (1.4), by 

^ ( k + 1 | 2 - | z m | 2 ) + a| |^zm | j 2 + 1 2 a | z m | | 2 . 

Altogether we have the inequality 

(2.22) -% ( | z m + 1 | 2 - |z m | 2 ) + (a - C0fi) ||<5zm||2 + (12a - C2e) | | z m | | 2 < tfr . 

Multiplying (2.22) by T/6 and increasing the constant C, we conclude that 

(2.23) (1 - Cт) (l + Cт)|zm|2 + ľ т( | |ázm | | 2 + | ž m | | 2 ) ^ 

< CT -- ð(u - ü)„ 
Lìr 

+ ll(м-й)m

лl2 + |Єи|
2 + | т q 2 ] - т | 

+ J~ðzm,2(u-Ü)m +~Cm) 

-m\ + 

holds for sufficiently small e and with positive constants y and C, independent of T, m. 
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Let us introduce a function 

/C(T) = (1 - CT)/(1 + Cx) 

and multiply (2.23) by k(T)m(l + Cx)"1. One can derive easily, that such constants 
k0, k! and T0 exist for which 

(2.24) 0 < k0 ^ k(T)m ^ k! 

holds for all 1 = m = M = T\T and T = T0. Using (2.24) we can see that 

(2.25) %) m + 1 | z m + i P - k(x)- \zm\2 + yix(\5zmf + ||_m|2) < 

< Cx ð(u - ü)„ y2T z»r + + l(« - W + M2 + Kp] 

+ x(±dzm, k(x)™ WJ(1 + Cx)) , 

Wm = 2(M - fi)* + K m 

holds for T :_ T0, 0 g m :_ M — 1. 

Let us sum (2.25) on m = 0, 1, ..., M — 1, making use of the following estimates 

M - l / , N 

I T ( - & _ , *(-)« Wm/(1 + CT) -
m = 0 V / 

= p ^ T [ - (zo, Wo) + (zM, /C(T)M_1 W _ - I ) + 

M - 1 

_ i 
m = l 

+ _ т zm, -(fc(т)- 1 FF__Ł - fe(т)и

 m )) _ 

á |Z0 | \W0\ + fcl|z_| I^Af-ll + E Tfcx|Zjf| 
M - l 

m = l 
(łҚ,,. -fe(т)Жm) 

•(и.-l-fc(т) .--) - - ( ^ — i - »_ + (1 - fc(т)) F_) < 

< •(wя-wя-1) + 2C\Wm\ < C -<5(M - u)„ 
Lir + <5(u — û)n + 

+ 5(w - ü)m_1/2 + ll(«-*)£l + KI + K-1ІJ. 

Thus we may write 
м - i 

2 T V<5Zm,fe(T)mTYm/(l'+CT) _ 
.=0 \ T 

^ i | Z o | - + fel£|zMp + C[|(« - «)0
AP + |TC0|- + |(« - fi)£_.|- + ITCM-^2] + 

344 



M-í г 

}_ T l̂фml 
m=l L 

+ c Ô(U - fl)w_! + - S(u - u\ + 

+ \\-ô(u - fl)w_1/2 
T 

+ ll(»-«)m
All2 + Km|2 + K - 1 | 

The sum of (2.25) yields the following inequality 

M - l 

(2.26) (k(x)M - fc.e) |zM |2 - |z0 |2 + ~ y,x{\dzmf + ||fm||2) ^ 

M - 1 Г I U 

йCx £ ЏK«-*\ 
m = 0 L l ! T 

+ l("-iW + k ľ + K ľ + 
M - 1 

' I 
m = 0 

+ т - (fcl£ - ľ 2 ) | z m | 2 + -i |z 0 | 2 + C |(Ы - Ы) 0

Л | 2 + |(ы - Ы ) ^ . ! ! 2 + 

1 xt ~\ \\2W 
-Ó{U - M ) m + 1 / 2 I • + K I 2 + K - 1 | 2 + T I K|2 + 

m = 0 \ 

From (2.4) and (1.16) we conclude that 

VeJi=>((u - U)0, V) = 0 , 

consequently 

|^o|2 = (zo> (w - A)o + (A - u)o) = 0?o> (" - A)o) _i |zo| \(u - t7)o| > 

hence 

(2.27) \z0\ g |(ti - fl)0| . 

If 8 is sufficiently small, we deduce from (2.26), (2.24) and (2.27) that 

M - l c 

l-*l2 + _ MIKII2 + INI2) = cm - u)0\
2 + \(u - s)s\2 + |(» -s)*_.|- + 

м - i 

+ Kc-ľ + K » - i ľ + _ t 
m = 0 

M - 2 

+ _ ' 

<5(ы - ы)„ 

<KM - «) ,„+ 

+ ll(« - ")™ll2 + k l 2 + K l 2 ) + 

+ K 1/2 

The terms |OW|2 and | T C W | 2

9 m = 0, 1, ..., M — 1 are 0 ( T 8 ) . By virtue of the bounded-
ness of |d 5u/dt 5 | , we can prove easily, that also 

K | 2 _ C T 8 , 

where C does not depend on m, T. Hence (2.8) follows and the proof is complete. 
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We shall demonstrate how the estimate (2.8) can be used to get rates of convergence, 

on the same example as in [1], Let us consider the parabolic equation on Q = 

= (0,1) x (0,1) of the following form 

- Z j-[-«(*) j4 = /(*.о. 
ÍJ=Í dXf |_ oxjj 

du 

dt 

the initial condition 

ii(-,0) = c p o e W i 1 ^ ) 

and the boundary condition 

u(x, t) = 0 , x e dQ . 

We shall employ the Hermite interpolation theory in the (xl9 x2)-plane [6]. We have 
H = L2(Q)9 V = W2

1}(Q) (the well-known Sobolev space of functions vanishing on 
the boundary). Let us denote 

h = J~l , J a positive integer, 

d^f(x) 
D*f(x) = ±-+-, |a| = ax + a2 ; a l s a2 non-negative integers. 

dx\l dxl2 

Let Hh
n) denote the set of real-valued functions g such that, for all 0 = a1? a2 = n — 1, 

Dag is continuous on Q and such that on each square (kh, kh + h) x (lh, Ih + h)9 

where k and / are integers satisfying 0 = k, / = J — 1, g is a polynomial of the form 

2 n - l 

2 J CijXlX2 • 
i,j = 0 

Suppose that f is a function on Q such that D°fis continuous on Q for 0 = a l5 a2 = 

= n - 1. We say that "/Bffc is the Hn
n)-interpolate of f" if fnM e H^} and 

i ) a ( f - / ^ ) ( / c h , / h ) = 0 

for all k, /, a t and a2 integers such that 0 = k, / = J and 0 ^ a1? a2 ^ n — 1. 

In the following we shall need a special case of Theorem 5 of [6], namely 

Lemma 1.2.1. Let D°f be continuous on Q for |a| < 2n and D*feL2(Q)for |a| = 

= 2n. Let f„ih be the H{
h
n)-interpolate of f. Then there exists a constant Q, which is 

independent of h and such that 

\Mf - fn*)\\L^ Qh2^ > 

where |a| = 2n — 1 , Org a1? a2 = n. Further, 

Q = Q' Z Infill, 
| a | = 2« 

where Q' does not depend on f and h. 

346 



Theorem 1.2.2. Let Jt = H(
h

n) n w£\ti). Let u, U and z be as in Theorem 1.2.1. 

Suppose that for every t e <0, T ) u and dujdt satisfy the hypotheses of Lemma 1.2.1 

and that 

(2.28) £||/)*«(•, Olk = c \ 

~„ du , ч 

д--(,0 = x(t), 
L2 

where C is independent of t,^e L2(0, T) and D* denotes spatial derivatives only. 

Then there exist constants C, T 0 independent of h, T such that for T ^ T 0 

м - i 

fc = 0 
(2-29) | | z M | 2

2 + X..<ll z*+i - Zt||#.,<o + \\i(zk + 4zk+1/2 + z 4 + 1 ) | ^ l ( „ ) < 

^ C(h2V-» + T8) . 

Proof. Let u(x, t) be the HJ^-interpolate of u(x, t), t e <0, T>. Using Lemma 1.2.1 

we see that for k == 0, \, 1, ..., Af 

(2.30) («- «)k | t 2 ^ e'c'ft2B, ||(« - fl)í lk = ech2-, 
\\(u - u)cy2(l1 Ú ch2"-1. 

Note that dujdt is just the Hj,n)-interpolate of dujdt, because of the coincidence of 
Daw and D"u along the straight lines (kh, Ih, t) for 0 = a l 7 a2 ^ n — 1. We may there­
fore write for 0 — k = M — 1, using also (2.28), the following estimate 

(2.31) [(" - «)*+! - (" - "%] ' < 1 
— 2 

ţ F 2 ( U T 

/»(fc+l)T 

JfcT 

ð(u — й) 

ðí 
dí < 

» V > 

"*ҶJь 
^(u — w) 

õt )
2 i / f ( f c + l ) т \ 2 

= i ( Víг)**-1^)*) = T VJfcт / /*(fc+l)T 

^ 2 ( е ' ) 2 - й 2 С 2 " _ 1 ) Z2(0 df. 
Z JfcT 

Inserting (2.30) and (2.31) into (2.8) we obtain the estimate (2.29). 

Finally, we shall briefly discuss the stability of the process (2.2), (2.3), (1.16) with 

respect to the initial condition. 

Theorem 1.2.3. Let f = 0 in (2.2), (2.3). Then 

(2.32) \Um+1\ = \Um\S\(Po\, 

(2.33) \0m\£\Um\, \Um+1/2\ = 2\Um\ 

hold for every m = 0, 1,2, ..., M — 1. 
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Proof. If we insert V = dUm into (2.2) and V = Um into (2.3), we can see that 

7 ( l 1 7-^! 2 - K\2) - T (u«+i/2» 5Um) + [5Um, <5Um]A = o , 

f (|Um+1|
2 - |Um|2) + f (5Um, Um+1/2) + [Um, UmL = 0 . 

6T 3T 

Consequently 

(2.34) 6- (|Um+1|
2 - |Um|2) + [8Um, 5Um-\A + 12[Um, Um]A = 0 

holds. Further, we have 

(2.35) |U0|
2 = (q>09 U) ^ \<p0\ • \V0\ • 

Then (2.32) results from (2.34) and (2.35). 

In order to derive (2.33), let us insert V =\Jm into (2.2) and V = SUm in (2.3). 
Using also (2.19), we derive by subtraction that 

(8Um, 8Um) = 4(-3Um) + f(Um + Um+1), Um) , 

consequently 

(2.36) |UW+1 - Uw)|2 + 12|UW|2 = 6(UW+1 + Uw, Vm) ^ 

= 6|Um + Um + 1 | |Uw | . 

Then (2.33) follows from (2.36), (2.32) and (2.6). 

Remark 1.2.2. If the base-functions vt(x) correspond with Lagrange interpolation 
polynomials, then the coefficients (ww + w1/2)i and (ww + Mj),. = (ww + bm)i co­
incide with the nodal values of the second approximation. Then the inequality (2.32) 
means that the corresponding two-steps difference scheme is unconditionally stable 
with respect to the initial condition. The same result can be obtained on the base of 
certains theorem of A. A. Samarskij [7], transforming (1.41) to the canonical two-
steps form. See also Remark II. 1.2, which yields somewhat stronger relation. 

3. THE COMPARISON OF THE THREE APPROXIMATIONS 
FOR ORDINARY DIFFERENTIAL EQUATIONS 

The case of one ordinary differential equation 

(3.1) ^ + Ay =f,y(0) = y0 , t e <0, T> , A > 0 
dt 

may serve as an interesting example to compare the efficiency of the three semi-
variational approximations, introduced in Section 1. 
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Assuming that/(f) is sufficiently regular, the solution of (3.1) at t = T 

y(T) = y 0 e - 4 l + Ff(z) e~A^^ dz 

may be written in terms of power series as follows 

(3.2) y(x) = v0 (l - AT + - AV - - A3T3 + — AV - — A5T5 + 
V 2 6 24 120 

_ L _ _ v _ j _ _ A7Ti + _ 
720 5040 

+ | T / - - AT2/ + — T3(4A2/ + 2A/' + /") - — T4(2A3/ + 2A2/' + A/") + 
L -- 24 48 

T5 1 
+ (16_44/ + 24A*ff + ^A2f" + 4Afw + fIV) - ... 

1̂ 20 J f = r/2 

The first approximation at t = T is 

(3.3) 3*->(T)_ ,„_____! + I _ _ ± £ _ 
1 + iAT 2 1 + iAT 

= y0(l - Ax + iA2T2 - ± A V + . . . ) + [T/ - iAT2/ + T3(iA2/ + i/") - . . .] |,=t /2 . 

Hence the error y(1)(r) — y(x) = 0(T3). 
The second approximation is equal to 

.3 4) V<
2>M = v -Zj___t_____ + K_o + 4/i / 2 + /i) + __M/i ~ /o) = 

V " ' W 1 + 1AT + ^ A V 1 + -.AT + ^ A V 

= y0(l - AT + i A V - £ A V + _^AV - ^ A V + ...) + 

+ IV - \Ax2f + _^T3(4A2/ + 2A/' + /") - i_T4(2A3/ + 2A2/' + A/") + .. . ] | , = t / 2 , 

consequently yi2\x) — y(x) = 0(T5). 

The third approximation, applied to homogeneous equation (3.1) only, is equal to 

1 _ 1AT 4. -LA2T2 —• /43T3 

(3.5) V(3)(T) = y0 ~ 1 0 _ _ _ _ _ _ 
V U l + iAT + AAV + r ^ A V 
_ 3 , o [ l _ __T + A2 iT2 _ ^ 3 . 3 + 1_AS4 _ _1_A5T5 + ^ . S _ _1_^7 T 7 + J ? 

consequently )>(3)(T) — J/(T) = 0(T7). 

The rational functions standing by y0 in (3.3), (3.4), (3.5) agree with Pade approxi­
mations of e~Ax (see e.g. [8]). In Part II, we shall prove the latter coincidence for the 
general rc-th approximation. 
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6 "-Ą = e~\ì - t) x2(l - x)2 - Пte-Џ - 6x + 6x2) 

4. NUMERICAL EXAMPLES - COMPARISON OF THE TWO APPROXIMATIONS 
FOR A PARABOLIC EQUATION 

Obviously, the mixed problem for parabolic equations represents the most impor­

tant application of the method of semi-variational approximations. We consider the 

following problem in Q x <0, oo), Q = (0, 1): 

du d2u 
6 

dt 

u = 0 for x = 0 , x = 1 , 

u = 0 for t = 0 , 

the solution of which is 

u = te~* x2(l - x)2 . 

According to the formulas (1.21) and (1.41), the first (Crank-Nicholson-Galerkin) 

and the second approximation, respectively, were calculated with piecewise cubic base 

functions vt(x) (Hermite interpolation polynomials for n = 2). The relative errors 

eU\t) = \u«\x, t) - u(x9 t)\lu(x9 t) , (j = 1,2) 

for x = 1/2 and 0 < t ^ 1.6 are presented in the following 

Tablе ] l 

t 

h = 1/12 h = 1/8 

t x = 0-1 x = 0-2 x = 0-2 x = 0 - 4 t 

1 0 4 e ( 1 ) ( t ) 104 e(2)(t) 1 0 4 e ( 1 ) ( t ) Ю 4 e(2)(t) 

0 1 6-188 0-497 
0-2 1-472 0089 15-319 2-302 
0-2 1-657 0-401 
0-4 1000 0014 1-702 0-561 
0-5 0-957 0-358 
0-6 0-749 0078 5102 2-172 
0-7 0-701 0-332 
0-8 0-602 0121 1-582 0-378 
0-9 0-570 0-315 
1 0 0-509 0149 3143 2-078 
11 0-488 0-303 
1-2 0-446 0170 1-480 0-209 
1-3 0-433 0-295 
1-4 0-400 0185 2-350 1-997 
1-5 0-392 0-288 
1-6 0-365 0196 1-393 0053 
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Note that even the four-times greater time increment T = 0.4 gives approximately 
twice better results in the semi-variational method than the increment T = 0.1 in 
Crank-Nicholson-Galerkin method, when the errors at the basic time instants t = 
= 0.4; 0.8; 1.2; 1.6 are compared. 
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Souhrn 

O JEDNÉ PÓLO VARIAČNÍ METODĚ PRO PARABOLICKÉ ROVNICE 

IVAN HLAVÁČEK 

Cílem této práce je další rozvoj metody konečných prvků, aplikované na smíšené 
úlohy pro parabolickou rovnici. Hodně již byla prostudována metoda Galerkinova 
typu řádu T 2, (kde x je časový krok), obdobná známé Crank-Nicholsonově metodě 
sítí [1], [4]. Zde se navrhuje posloupnost aproximací s rostoucí přesností vzhledem 
k času. Prvá aproximace se ztotožňuje s uvedenou metodou Crank-Nicholson-
Galerkinovou. Pro druhou aproximaci se dokazuje rychlost konvergence řádu T 4 

a stabilita vůči počáteční podmínce. Účinnost metody je doložena numerickými 
příklady. 
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Praha 1. 
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