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INTRODUCTION

The popularity of variational methods has grown during the past decade mostly
due to the finite element method, which combines the versatility of the variational
approach with the computational advantage of band matrices, the main feature of
finite-difference procedures. The present paper aims at a further development of the
finite element technique, when applied to mixed problems for parabolic equations.

Much work has been done on a special Galerkin-type procedure, derived by an
analogy with the well-known Crank-Nicholson finite difference scheme [1], [4]. We
propose here a sequence of approximations with gradually increased accuracy in time,
generalizing the Crank-Nicholson-Galerkin procedure.

In Section 1. a heuristic approach is shown for the derivation of the Crank-
Nicholson-Galerkin procedure and then applied to derive the second and third ap-
proximation. In Section 2 we prove the convergence of the second approximation
and its stability with respect to the initial condition. In Section 3 we show that, in
case of ordinary differential equations, the sequence of approximations leads to the
sequence of Padé approximations of the exponential function. In Section 4 a numeri-
cal example is presented for a parabolic equation.

In Part II of this paper some further properties of the semi-variational approxima-
tions will be shown, namely their independence of the choice of polynomial basis in
time and a close relation between them and the Padé approximations for general n.
Moreover, the cases of inhomogeneous mixed problems and sdme more general ab-
stract equations will be considered.

1. SEMI-VARIATIONAL APPROXIMATIONS OF SOLUTION

In the present section an algorithmus will be presented, which enables to construct
a sequence of numerical procedures for approximate solutions of the given problem
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(1.1), (1.2). The first approximation coincides with the well-known Crank-Nicholson-
Galerkin procedure and consequently it is second order correct in time [1]. The
second approximation is shown to be fourth order correct in time (in Section 2) and
the third approximation may be expected sixth order correct, according to the case of
ordinary differential equations. Each approximation will be derived in two steps,
both of the projection type. As the first step is based on a variational formulation
of the problem under consideration, we call the method semi-variational.

In order to explain briefly the main features of the derivation, let us consider an
ordinary differential equation

j—y-{—Ay:O, A = const (real), 0 <
t

IA
IIA
a

with the initial condition

y(0) = @ .
Let us set

n—1
P = T NE),
i=

n positive integer, where {N{"~V(¢)}5™" denotes the Lagrangian interpolation poly-
nomial basis of polynomials of degree n — 1, i.e.,

Ngn_l)(i—>=5ika Oéi,kén—l,

n—1

84 is the Kronecker’s delta, N{"~")() are polynomials of degree n — 1.
The coefficients {«,}5~! will be determined by means of the variational condition

T t
J(y(n—l)(t) + J Ay" I (z)dz — @) Sy D(r — 1)dt = 0.
o

0

This condition follows from the “integral convolution principle” (see [9], [2] — Th. 1
or [3]): if we define a functional

0

T t

#(y) = f (1) + f A ¥(z) dz — 200) ¥z — 1) dt

o ¢
on a sufficiently large class 2" of admissible functions, then #(y) attains its stationary
value on &, if and only if y is a solution to the initial-value problem under considera-
tion.

The approximation y®~1), however, does not satisfy the initial condition exactly.
Therefore we construct another approximation

n

Y1) =Y B N{(1)

i=0
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which is polynomial of degree n, satisfies the initial condition
y™(0) = ¢,

and the following conditions
Jpwo_vamNrﬂ@m=o,i=ahmm_1.
0

These group of n equations means that the L,(0, t) projection of y™ into the sub-
space of polynomials of degree at most n — 1 coincides with y®~1). The function
y® will be referred to as the n-th semi-variational approximation on <0, ).

In the following we shall apply the main idea of the derivation to an abstract para-
bolic equation in a Hilbert space and construct the first three approximations (for

n = 1,2, 3) in detail.
Let a real Hilbert space H with the scalar product (u, v) and the norm lu] =
= (u, u)'/? be given. Let us consider the equation

(L.1) §?=Adﬂ=ﬂ0,0<t§T

with the initial condition

(1.2) u(0) = ¢ ,

where u(t) and f(t) are mappings of the interval <0, T) into H, ¢, € H, A is a linear
symmetric and positive definite operator in H, which does not depend on ¢.

Assume, that a Hilbert space ¥~ with the norm |Ju|, a bilinear form [u, v], con-
tinuous and symmetric on ¥~ x ¥ and positive constants ¢, a, C, exist such that

(1.3) VeH, ue? = |u| 2 clu|,
the domain D(A) of the operator A is a subset of ¥,

(1.4) u, v e D(A) = (Au, v) = [u, v],

wer = alul* < [u,ul, < Colul?

First approximation

Consider a finite-dimensional subspace .# of ¥, spanned by elements vy, v,, v3, ...
..., by. Let us have a fixed = > 0 and set

(1.5) u® =NV, 0<t=T,

where
N
NOMW) =1, Vo= aped.
i=1
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Let the function f(f) be approximated similarly by

(1.6) SO) = NO1) 3[10) + /(z)] -
The formula (1.6) may be obtained setting
(1.7) fO(t) = const. ,

FO() = NeX(0) £(0) + NP0 f()
NPt =1 —tfr, N{@t) =t
and

(1.8) .[(f(” —f(")) N“’)(t) dt=0.
0
In order to determine the coefficients a; of V,, we use the variational condition
T t t
(19) j uo j Au) dz — g - j ) dz, 6u(c — 1) dt = 0
0 (1] 0

(see [2] — Th. 1). The term with the operator 4 will be replaced by

j [ j O’u«»(z) dz, 6u(c - t)]Adt ,

so that u®(z) need not belong to the domain D(A), but to ¥~ only (cf. also [3]).
Inserting

(1.10) SuO(c —f)=v;, j=1,2...N

and integrating, we obtain the following system of linear equations for a;
N TZ N ,rZ
(1.11) T.Zlai(vi’ v;) + 5 ‘Zlai["i’ v)]a = "o, v;) + 7 (f(0) + f(x), v)) -
Let us denote
(1.12) (vov;)) = Gy [vivj]a = 45,
(9o: v;) = wo; (f(1), v;) = F(1)
ihj=12,..,N.

Then the system (1.11) may be rewritten in the matrix form')

(113) <G ; %d) a = oy + L (FO) + F(9)

1) We denote

a; wpl F.L(t) Uuqq
a, : :

a=\: » Mg = . , F@) = . , Uy =
ay @y Fy(®) Uy
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The second step starts with the replacing u(®(f) by the linear approximation

(1.14) u(t) = Uy + NO(1) T,
where
N N
(1.15) Uy = Z Woil; » U1 = Z Uyiv; .
i=1 i=1

The initial condition (1.2) is now employed in the projection form
(1.16) Uo,v)) = (9o, v)), j=12,..,N,
which may be rewritten as follows
(1.17) Gw, = w, .

The coefficients #,; will be determined from the projection condition
(1.18) jt(u(l) —u®, su®)dr=0.
0
Inserting (1.14), (1.5) and (1.10), we obtain
j (Uo + N Ty, v)) d = j (Vs v)) dt.
0 0

The integration leads to the system
T ,—
Uy, v)) + E(Ul’ v;) = Vo, v)) 5

which may be rewritten in the following matrix form
(1.19) 1Gu, = Ga — Gw,,
if we use also (1.17). From (1.19) we conclude
(1.20) a=w, + 1u;.

If we substitute for a and w, in (1.13), we obtain

G(lul) + (W, + ) = 3(FO) + F(2)),

T

which is equivalent to

(1.21) G w(z) — U,), v,.> + 3[u®(z) + Uy, v;]4 = Hf(0) + f(z), v;) -
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Obviously, the formula (1.21) is just that of Crank-Nicholson-Galerkin approxima-
tion') [1], [4] for the first step.
If the coefficients w,, of the expansion

N
uD(mr) = Y wpw;
i=1
are known, the next step is to solve the system

(1.22) (G + %d) a, = Gw, + %F,(,f’),

where
Ff,?j) = }(f(mr) + f(mt + 1), ;).

Then the coefficients of u*)(mt + 1) are given by the formula

Wi = 2am - Wy .

Second approximation

Let us apply the approach, which has been used to the derivation of the first ap-
proximation, to polynomials of the first and second degree in ¢, instead of those of
zero and first degree, respectively. Thus we set

(1.23) u®® = NO(1) V, + N{O(1) vy,
where N§", N{" are given in (1.7),

N N
(1.24)_ Vo =.Zla0,-vi, v -—-A;a“v;

and v, (i = 1,2, ..., N) is the base of the subspace .# of 7.
The function f(f) will be approximated similarly by a linear function

(1.25) fO0) = Ngl)(t)fo + N(ll)(t)ﬂ )
where

(126 o= 3[200 + 21 (3) - 1]
fo=3[-r0 21 (3) + 20

1) Some authors replace the average in the definition of £(0) (1.6) by f evaluated at t = 7/2.
The error estimation, however, remains of the same order in ¢,
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The formulas (1.26) may be obtained setting
(1.27) f® = Ng1) f0) + N‘f&(t)f@ + NP(1) f(2)

NP(t) =1 = 31t + 2(1]7)?,
N0 = 4(tfr) (L — tfr), NP(6) = 2(1)7)* — 1=

(Lagrange parabolic interpolation) and
J(f(z) — f(l)) N;cl)(t) dt = 0, k=0,1.
0o

Thus f™)(t) is the L,(0, 7) projection of the Lagrangian second degree interpolate
of f(#) into the subspace of linear functions.

In order to determine the coefficients aq;, ay; of ¥, and V;, we use the variational
condition

(1.28) J:((u“’(t) ; J(:A uO(z) dz — g — J:f(”(z)dz, Su(c — z)) di =0

and replace the term with the operator 4 by

j [ J (:um(z) dz, u(z - t):Ldt .

Remark I.1.1. If some non-homogeneous boundary conditions, associated with
the differential operator A, are assigned by means of a function g(t) on a part I', of
the boundary, we proceed with g(t) in a manner quite similar to that used with f(7),
adding an integral of the form

T t
- J j j 4(2) dz su®(c - ) dT dr
oJr,Jo

on the left-hand side of (1.28) (cf. “a-integral convolution principle” in [3]). We shall
consider such cases in Part II. thoroughly.
We have

(1.29) u®(t) = NP(t)v;; k=0,1; j=12.,N
N{(x — 1) = N{O(1), Nz — 1) = N§(1).

Inserting (1.29), (1.23), (1.25) and (1.26) into (1.28) and integrating, we are led to
the following two systems (for k = 0 and k = 1)

T T 72 72 T 2, 2
13 (= Vo + =V, 0; )+ | — Vo + — Vv, | = (- + —Jo+ — J1, 05}
( ) <3 0 6 1 ,) [8 0 24 1 ,]A <2 Po 3 Jo 24JT1 ,>

T T 5 72 T 5 . 12
1L31) (= Vo + - Vi, v, = Vo+ — Vi, 0| = (200 + =0 + —J1,0;).
( )(6 73 ‘1”)+[24T T g ‘”’]A (2% 'l 8i1 ’)
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The sum of (1.30) and (1.31) yields
1 T T T T %
1.32 -(Vo+V,v)+|=-Vo+-Vy,v;| = + = fo + =, v;
( ) 2( 0 1 1) [:3 0 6 1 J]A (qDO 3}(0 611 ]>

and their difference yields

‘ T ~ ~
(1.33) (Vi = Vo v)) + E[VO + Vi, 0]a = %(fo + Juv)).
We may insert
(1.34) Wo + Vi =4V + Vo) — %(V1 - V)

into (1.32) to obtain

1 t[1 1
(1.35) o+ Vi) + 5[E(V1 1) = L - o) vj] -

4
T T
= (‘Po*'gfo +gf1’”j>'

Introducing vectors ¢ and b by means of the relations

N N
e+ W) =‘Z Civ; =Z Hag; + agi)v;,

i=1

-V, = va —Z(al,—a()i)vi,

i=1

the systems (1.35) and (1.33) may be written in the following matrix form
(1.36) G+ ld)e— L aab=w,+ -F0)+-F(Z),
2 12 6 3 2
te/c + Gb = — [F(O) + 4 F( ) F(‘c):l

where G, , F(t) and w, were defined in (1.12).
Next let us replace uV)(t) by the quadratic approximation
(1.37) u?® = U, + NGO T, + NO(1) T, ,

where U, and U, were defined in (1.15), (1.16), N7)(f) and N{®(¢) in (1.27),

N
Uy = Z Ui
i=1
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The coefficients i11/2; and i1 ; will be determined by means of the projection condition
(1.38) f(uw — U, suM)di = 0.
0
Inserting (1.37), (1.23) and (1.29) into (1.38), we obtain the following conditions
(k=0,1)

j (Uy + NEY (1) TUs,» + NO(1) Uy, N 0,) di =
0

= f (NSO(1) Vo + NO(t) Vi, NEP(1) ;) de,
0

which yield two systems of equations

T T — T T
(139) (—2'u0 +3U1/2’Uj)=<§ V0+8V|,Uj),

From (1.39) we obtain by subtraction

(Ul’ vj) = (V1 - Vo, Uj) )
consequently

(1.40) a =b.
Using the identity (1.34), the first equation of (1.39) may be rewritten in the form
(buo + 3T1p0,0) = (V1 + Vo) = i3(Vi = Vo) v)),

which is equivalent to
Giuy; = 3Gc — 1Gb — 3w, ,

consequently

The same procedure may be repeated in the following intervals
{7, 27>, {21, 31), ...
If the coefficients w,, of the expansion
N
uP(mr) =Y wpv;, m=0,1,...
i=1
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are known, the next step is to solve the system

(1.41) Ge,, — (ﬁ o + %G) b, = Gw,, + 1—% [F(mt) — F(mt + )],

lem + e, = —61—[F(m't) + 4 F(mf + ;) + F(mt + ’c)] ,
T
which follows from an analogy of (1.36) by elimination of 2/c in the first equation.
Then the coefficients of u®(mt + 1) are given by the formula
(1.42) W,.i =W, +b,
and

N
(143) u(Z)(t) = Z [wmi + Ng?%(’) (%cmi - %bmi - %wmi) + N(lz)(t) bmi] Ui
i=1

holds in the interval mt < t < mt + 7.

Remark 1.2. If G and & are band matrices, with the band width s, the system
(1.41) can be rearranged easily so that the resulting matrix will also turn out to be
a band matrix and its band width equals 2s + 1.

Third approximation

Let us consider the approximate solution of the form

(1.44) u® = NP(0) Vo + NOA() Vi + NP(0) Vs
“where
N
Vy, =Y axw;
i=1

and V,, V; were given in (1.24), N$, N, N¥ in (1.27).
The function f(¢) will be approximated by a quadratic function

(1.45) FO»t) = NP(0) fo + NOO T, + NP@) T, s
where
(1.46) Jo = 4%[31 1(0) + 27 f(%) — 27f(37) + 9 f(‘r):],

B [— 1) + 9f@ +9/(3) - f(r)],

7 = 216 9[f(0) - 27f<§> +27/(37) + 31f(t):,.
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The formulas (1.46) may be obtained by setting

7= NP0 S0+ MO (5) + MO + NP0

and

f(f(” —fP)NP()dt =0; k=041,
where ’
(1.47) NO@) =1 — 1—21 ;t +9 (i)z— %(_93

9t \?
(ls,g(t)~£;(2—5£+3<;>>,
NG 9t t 1\’
2,3(1)_~_;1—4;+3; ,

9t(2 't 1\?
wo =316+ ())

~ Thus f®)¢) is the L,(0, t) projection of the Lagrangian third degree interpolate of

f(t) into the subspace of quadratic functions.

In order to determine the coefficients a,;, a,; and a,;, we employ the variational
condition

(1.48) j O ((um(:) . '[(:A u®(z) dz.— 0 - f ;fw(z) dz, SuD(c t)) dt =0,

where the term with the operator 4 will be replaced, as previously, by the corre-
sponding bilinear form.

We have
(1.49) SuP(t) = NP()v;; k=0,4,1; j=1,2,..,N
NP — 1) = NO(1), NP = 1) = NP,
N (T = 1) = NEX() -

Inserting (1.44), (1.45), (1.47) and (1.49) into (1.48) and integrating we obtain the
following system of equations

(1.50) (48G + 547) @, + 4(6G — A7) a, — (12G + %) a, =

— 600, +I361[13F(0) + 6F<§> - 21F(§t> + 2F(r)],
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(6G + 11&&'1) a, + (48G + 20/7) a; + (6G — 1) a, =
3 T 2
= 60wy + — 1|47 F0) + 129F (=) +21 F(Zt) + 3F(x)],
20 3 3
(=126 + [lef7) ay + 4(6G + Il‘szh) a, + (48G + 54&/1) a, =

= 60w, + 'i3”d T [23 F(0) + 96 FG) + 69 F<§ r) + 12 F(‘L’)] ,

where G, o, w, and F(t) were introduced in (1.12).

Let us replace u®)(t) by a cubic approximation
u®(t) = Uy + NOY(1) Uy 3 + NSA(1) Uyys + N0 U,

where U, and U, were defined by (1.15), (1.16), N9 (1), NS (1), N{V(¢) by (1.47) and

M=

U1/3 =

N
U305 Uz,/s = Zl‘Z/Sivi-
i i=1

]

1

The coefficients i, 5, ii5,3; and ii;; will be determined from the projection condition
T
f W® — u®, 5u®)dt = 0,
0

which yields the formulas
(1.51) U, =a,+a, —2w,,
Uy3 = 5(—7a, + 12a;, + 3a, — 8w,),
uy3 = 34(17a, + 24a, — 3a, — 38w,).
If the coefficients w,, of the expansion for u®)(mt) are known, the next step is to solve

the system of the type (1.50) for a$™, a{™, a{"™, where Gw,, is substituted for w, and
to all arguments of Fmz is added. Then the vectors of coefficients in the expansion

N
u(s)(t) = .Zl[wmi + N(lg;)w(t) Uy + Nf/%(t) Uy3; + N(13)(1) a1:‘] v,
=
mt<tsSmt+r7

are given by the formulas (1.51), where @, (k = 0, 1, 2) and w, are replaced by am™
and w,,, respectively.
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2. CONVERGENCE OF THE SECOND APPROXIMATION

The first approximation has been studied by J. Douglas, Jr. and T. Dupont [1] in
detail even for non-linear parabolic equations. These authors proved several a priori
estimates not only for the Crank-Nicholson-Galerkin approximation but also for its
linearization by means of the predictor-corrector procedure or by the extrapolation.

In the present section we shall derive an error bound for the second approximation.
Then the error bound will be used with approximation theory for Hermite interpola-
tion in two variables to give rates of convergence. The fundamental line of thought
is similar to that of Douglas and Dupont [1].

From (1.42) and (1.43) we conclude that

— 3 1 — —
wm+1/2 - W, = 3¢, — 4(wm+1 wm) %wm >

where
T N
2
U@ (mt + =) = Wpiri2.0i -
2 i=1
Consequently, we have

(2'1) Cn = %(wm + 4w, + Wm+1) .

Inserting (2.1) and (1.42) into (1.41) and returning to the scalar products, we derive
that (1.41) is equivalent to the following system of equations

4
(22) ~(Up = 2Upsypp + Unsts V) + [Unss = Up VI = (fus1 = f V),
T

(23) <U_ﬂ V) + U + 4Ups 1z + Upirs V]a =
T

= %_(fm + 4fm+1/2 +fm+1’ V) 5
where

T
U, = uP(mt), Uppypyp =u? <mr + 5) ,

S =1(m1), Sfws12 =f<mr + %), m=0,1,...

and Vis any element of /.

Let Ly(I, 7°) denote the space of functions u(t), mapping the interval I = <0, T)
into 7" and such that

T
f (|2 d < oo .
0
%(I, H) denotes the space of continuous mappings of I into H.
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Let f € 4(I, H). Assume that the solution u of the problem (1.1), (1.2) is such that
ue Ly(I, ¥), du/dt e 4(I, H) and

du
( >+[u,v]A=(f,v), 0<t<T, veY?,

—, v

(2.4) o

(«(0), v) = (@, v), vEV
(for the concepts of weak solutions, see e.g. [5], chpt. IV.) Moreover, suppose that

lim u(r) = u(0) in ¥
>0+

exists, consequently
du .
(2.5) a—(0+),v + [u(0), v]4 = (f(0),v), vev .
t
Remark 1.2.1. We can prove easily, that the system (2.2), (2.3) possesses a unique
solution at each time step. In fact, (2.2), (2.3) is equivalent to (1.41). Note that &/
and G are positive definite symmetric matrices, therefore & ™! exists and is positive

definite as well. From the second eq. (1.41) we obtain

! [F(m‘r) +4F (mr + %) + F(mt + r)]

1
— = 7'Gb,, + ~ A
T 6

c, =
and substituting this expression into the first equation, we are led to the equation

1
lG&i"lG +-G+ ~o\b, = —Gw,, + a2 [F(mt + ) — F(m7)] .
T 2 12
The matrix in brackets on the left-hand side is positive definite and the system

possesses a unique solution b,,. Then the uniqueness of ¢, is evident.

Henceforth we shall use the following notation

Oy = Upyy — Uy, 5um+1/2 = Up+3/2 — Um+1/2

(2.6)
Az“m = Uy — 2um+1/2 + Uptt
lyy = $(u, + Ay 1n + “m+1) >
du du du T .
u:":——m‘[,u/=—0+, M,=“T—, =T, Mlnteer’
dt()odt()Mdt()TM &
A N
(2.7) i(t) = Y oft) v,
i=1

a(f) real functions, C a generic constant, which is not necessarily the same at each

occurrence.
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We are going to deduce an a priori estimate, which implies that the second approxi-
mation is fourth order correct in time.

Theorem 1.2.1. Suppose that the solution u(t) of (2.4) possesses continuous de-
rivatives in H up to the fourth order on <0, T and the norms |d°u/dt*| are bounded
uniformly for 0 < t < T. Denote z,, = u,, — U,,, where U,, is the solution of (2.2),
(2.3) with the initial condition (1.16).

Then there exist positive constants y, C and t,, independent of t, such that for
© £ 1o and for any function ii of the form (2.7) the following inequality holds
M-1
(2.8) lzul® + 9 X w(19za]” + [12]*) =

2 M-2
)+ Y
m=0

+ | — @)o|* + |(u — @) + [(u — @)gr-4|> + 1:8}.

2
+

IIA

e (I e + [t - o,

1 .
- 5(“ - “)m+ 1/2
T

Proof. Making use of (2.4), (2.5) and (2.6), we obtain
(2.9) [upv]s = (fi —upv), k=0,3,1,..,M; ve?,

consequently

G&um, v) + [l v]4 = (fo v) = (l ou,, — u;,,",v) = (gmwv), vEY,
T T

m=20,1,2,...M -1,
where

(2.10) lon| < Ct*

(with C independent of m) can be deduced whenever |d*u/dt’| < C holds for
0 < t < T. Theferore we have

(2.11) (l S, v) + [l v]a = (fu + 0w V), vEY,
T

0<msM-—-1.
Using (2.9), we can see that

[oun v]4 = (8f — Uy, v), ve?y, m=0,1,2,...M -1,

consequently
4 2 4 2 '

(2.12) = (4%upy v) + [t V] 4 — (Sf s v) = (- 4*u,, — dup, v = (Cm V) »
T T
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where
(2.13) |ta| < C7°

(with C independent of m). Therefore we may write
(2.19) (‘—‘AZum, v) + [ty v]4 = (0f + Lwov), vEY, 0OSM<M-—1.
T
If we subtract (2.3) from (2.11), with v = ¥V = (@ — U),;, we obtain
1 ~ A Y ~ A 7 A
(2.15) <; 820 (il — U),,,) [ (7 = U)2 T4 = (0w (@ — U)2) -
Subtracting eq. (2.2) from (2.14) with v = V = §(# — U),, we obtain
(2.16) (i‘Azzm, 8(ii — U),,,) - [62m 8( — UTa = (Lo 8( — U)y).-
T
Let us consider the following identity, where
2y =ty — iy + (i — U,)
is used several times:
4, , 12 R
(2.17) ~ (422, 02) + [0Zms 02 ]a + — (0Zpps 21) + 12[ 20 2onlu =
T T
4, ., " o 12 A
= — (472, 8(u — @),) + [0z O(u — @)]s + — (82, (u — WI);) +
T T

+ 12[2,, (u — d)n ] + {g (422, 8(& — U),) + [62,, 8(ii — U),]4 +

+ 11_2(52,,,, (@ = U)p) + 12[ 2, (i — U)p ]a = 12(0s (i = U)) = (L S — U)'")} +

4 12(gn (i = U)3) + (G 8(i = U),)

The expressionin brackets in the right-hand side vanishes because of (2.15) and (2.16).
The right-hand side of (2.17) is bounded by

(2.18) <4A2z,,,, %6(u - a),,,) + %(52,,,, (u—da)) + (1{,,,, %5(& - U)m> +

+ Col|ozu| [6(u — @]l + 12Co[2n] |(w = @)a ]| + 12]en] |(@ — U)a] -

Using the relations
(2.19) (@ = U)p=( — )y + 2z,

AZZm = _32m + %(Zm + Zm+l) ]
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the scalar products in (2.18) may be bounded above by

|
(2-20) 122, %5(14 - u); + 6|z + Zpss] [%5(:4 — i), +
|
+ C 0z 12(u — @) + TC,,,) + |t T%a(a — Uy <
2
< C ez, + C[]zmlz + |zmed|* + “%ts(u — )| + Ircmlz] +
il

+ (% 0z 12(u — d),, + tcm>.

Here we have used (1.3) and the well-known inequality
|ab| < ea® + b?[4e,

so that ¢ > 0 is arbitrary, C,; does not depend on ¢, C = C(¢). Proceeding similarly
with the other terms in (2.18), we obtain the bound for the whole right-hand side in
the form

(2.21) Col|0z, | + Cae|2,]* + ¥,
where

2
b= e[ o = D2 el 4+ |+

+ (T1 0z 12(u — @) + rC,,,)

and the constants C,y, C, do not depend on ¢, 7, m.
The left-hand side of (2.17) can be bounded below, using (2.19) and (1.4), by

6 .
< ([zmes|* = |zal?) + of0za]* + 122 2,]*
Altogether we have the inequality
6
22) & (il — [2nf?) + (o = Cot) 327 + (122 — Caf) 2 < v

Multiplying (2.22) by t/6 and increasing the constant C, we conclude that
(2.23) (1 = €O |zpss|* = (1 + CO) [zaf* + y2([[0z,]* + [2a]?) =

=cf = DR ool + e = ol +

holds for sufficiently small ¢ and with positive constants y and C, independent of 7, m.

Em_m

+1 (l 5z 2(u — @) + c,,,)
T 6
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Let us introduce a function
k(‘r) = (l — CT)/(I + Cr)

and multiply (2.23) by k(r)"(1L + Ct)~'. One can derive easily, that such constants
ko, k, and 7 exist for which

(2.24) 0 < ko < k(t)" < k,

holds forall1 £ m < M = T|tand t £ 1,. Using (2.24) we can see that

(2.25) D)™ 2w 1> = k()" |20 + 917(0za)? + [|20]?) <

§CT|:

2
= D2+ fonf? + |w:m;2] ot +

Em-m

1
+1 (; 0z,,, k()" W,/(1 + Cr)) ,
W, =2(u — i), + 31,

holds fort £ 75,0 S m =M — 1.
Let us sum (2.25) on m = 0, 1, ..., M — 1, making use of the following estimates
M-1 1
>t (; 02y, k(7)™ W, /(1 + C'r)) =
m=0
1

= ] G M G kD ) +

+ Mz ( (K o — k() Wm))} <

>

(s~ KO W)

M-1
< |zo| [Wol + kilzaa| [War—s| + X thi|zu]
m=1

=

!%(mel — k(o) W) = E(Wm_1 — W+ (1 — k(z) Wy)

|
1
T

+ 2C|W,| O(u — @)p-y

lIA

! +

d

CHEﬂu—@m

<[t o=

= 020+ ) + 156l |

+ ”%5(14 L)

Thus we may write
M-1 7y _
zfc&wk@mmﬂy+a0g
0

m=

=< %[zo|2 + kqelzp|* + C[|(u — a3 + [tCol* + |(u — D> + [tCa-a]?] +
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2 1 2
+ ‘;5(14 — ), +

M-1 1 .
+ m;1r |:k18|z,,,|2 + C(H; O(u — @),

+ = Dl 156l

1 "
[; (S(M - u)m,l,z
The sum of (2.25) yields the following inequality
M-1
(2.:26) (k)" = Kio) [zml* = 2o + T vus([0z]* + [2]*) <

ol = D2 ¢ ol + b |+

T [

M-1
+1 Y (ke — 92) |zw]® + 3|zo)* + € [](u — @) + [(u — @)p-e|* +
m=0

)

-2

M
el 4 b P 2 %, (10 4 [0 s

From (2.4) and (1.16) we conclude that

Vel = ((u— Uy V)=0,
consequently
|20* = (20, (u = @)g + (@ = U)o) = (zo: (u — )o) < |2o] [(u — 1) ,
hence
(2.27) |zo| < |(u — @),| .

If & is sufficiently small, we deduce from (2.26), (2.24) and (2.27) that

feal? + 5 e+ o) = €l = 0P+ = 3+ o= i+

M-1 Il
+ [l + [l + X 1 (“%5@ — 1),
m=0 !

?
i

2

= D2 el + () +

Ui

The terms |g,,|* and |t{,|%, m = 0,1, ..., M — 1 are 0(c®). By virtue of the bounded-
ness of |d°u/dt*|, we can prove easily, that also

2
+ [6L,

M=-2 1
+ Y 'c(”é(u = W12
m=0 T

|60, < C°,

where C does not depend on m, 7. Hence (2.8) follows and the proof is complete.
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We shall demonstrate how the estimate (2.8) can be used to get rates of convergence,
on the same example as in [1]. Let us consider the parabolic equation on Q =
= (0,1) x (0,1) of the following form

Ju 20 ou
—_ = — | a;\X)— | = X, t N
ot i,jz=1 é‘x,-I: A )6xj] S0
the initial condition )
u(-, 0) = po € Wi(Q)
and the boundary condition

u(x, 1) =0, xedQ.

We shall employ the Hermite interpolation theory in the (x,, x,)-plane [6]. We have
H = L,(Q), V = W{"(Q) (the well-known Sobolev space of functions vanishing on
the boundary). Let us denote

h =J~', J apositive integer,

a*f(x)

aq as
0x7' 0x5

Df(x) =

. |a| = o + a5 «, a, non-negative integers.

Let H{" denote the set of real-valued functions g such that, forall0 < oy, 2, < n — 1,
D%g is continuous on & and such that on each square (kh, kh + h) x (lh, lh + h),
where k and [ are integers satisfying 0 < k, | < J — 1, g is a polynomial of the form

2n—1
iJ
Y oexixy .
i,j=0

Suppose that f is a function on @ such that D%f is continuous on Q for 0 < ay, a4, <
< n — 1. We say that “f, , is the H™-interpolate of f” if f, , € H}” and

D“‘(f - f,,,,,) (kh, lh) =0
for all k, I, o; and «, integers such that 0 < k, I £ Jand 0 £ «;, a, < 0 — 1.
In the following we shall need a special case of Theorem 5 of [6], namely

Lemma L2.1. Let D*f be continuous on @ for |a| < 2n and D*f € L,(Q) for |o| =
= 2n. Let f, , be the H{-interpolate of f. Then there exists a constant Q, which is
independent of h and such that

ID*(f = fumle, = Qh*" 11,

where !oc| £2n-1,0=5 a4, o, < n. Further,
0-¢ 3 |07l
where Q' does not depend on f and h.
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Theorem 1.2.2. Let .4 = H{" n W$"(Q). Let u, U and z be as in Theorem I.2.1.
Suppose that for every t € 0, T u and du[ot satisfy the hypotheses of Lemma I.2.1
and that

229 5, |Dut i, 5 €
L ou
5 o2 = 0.
a=2n ot Ls

where C' is independent of t, y € L,(0, T) and D* denotes spatial derivatives only.
Then there exist constants C, t, independent of h, T such that for v < 7,
M-t 2 2
(229) |zullz. + kZOT(”ZkH =z + 3+ 4212 + ) i) <
g C(hZ(Zn—l) + 18) .

Proof. Let ii(x, t) be the H{"-interpolate of u(x, ), t € 0, T). Using Lemma I.2.1
we see that fork =0, 4,1,...,. M

(2.30) [ = @), = @CH*", (= @)]e, = QCH",

I[(u - ﬁ),f ”ﬁ’z(” < Cth—l .

Note that dii[ot is just the H{"-interpolate of 0u/ot, because of the coincidence of
D°u and D% along the straight lines (kh, lh, t)for 0 < o,, @, < n — 1. We may there-
fore write for 0 < k < M — 1, using also (2.28), the following estimate

1 . . 2 1 (k+ 1)t a u — i 2
(2.31) “~ [ - Dr — @ —a)]| =L J LA Call) Y
T W T ke ot W)
(k+ 1) o 2 k+1)c 2
< lz(f ou — @) dt) < %(f J@) B2 (1) dt) <
T kt ot Vi’z(‘) T kt

(k+ 1)t

é 2(Ql)2 :Il:_ h2(2n—1)f Xz(t) dt.

kt

Inserting (2.30) and (2.31) into (2.8) we obtain the estimate (2.29).

Finally, we shall briefly discuss the stability of the process (2.2), (2.3), (1.16) with
respect to the initial condition.

Theorem 1.2.3. Let f = 0 in (2.2), (2.3). Then

(2.32) |Unsa] < [Unl = 0ol
(2.33) [Onl < [Unl> |Uns1y2| < 2|Us|

hold for every m =0,1,2,..., M — 1.
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Proof. If we insert V = dU,, into (2.2) and ¥ = U,, into (2.3), we can see that

4 8
? (lUm+1I2 - lUmlz) - '? (Um+1/2’ 5Um) + [5Um» 6Um]4 =0 s

1 2 .
—6_7.-' (‘ljm+1|2 - lUm|2) + 5 (6Uma Um+ 1/2) + [Uma Um]A =0.
Consequently
2.34 6 U,..* = U + [6U,, 6U, 14 + 12[0,, 0,1 =0
T

holds. Further, we have
(2.35) |Uo|?> = (90, U) < |@o] - |Uo] -
Then (2.32) results from (2.34) and (2.35).

In order to derive (2.33), let us insert V = U, into (2.2) and V = 6U,, in (2.3).
Using also (2.19), we derive by subtraction that

(8U,, 8U,,) = 4(=30,,) + 3(U,, + Upy,), 0,),
consequently
(2:36) |Upsr — U + 12|0,)* = 6(U,,,, + U,,0,) =
S 6|U, + Uiy [0 -
Then (2.33) follows from (2.36), (2.32) and (2.6).

Remark 1.2.2. If the base-functions v,(x) correspond with Lagrange interpolation
polynomials, then the coefficients (w,, + iy,,); and (w,, + i;); = (w, + b,); co-
incide with the nodal values of the second approximation. Then the inequality (2.32)
means that the corresponding two-steps difference scheme is unconditionally stable
with respect to the initial condition. The same result can be obtained on the base of
certains theorem of A. A. Samarskij [7], transforming (1.41) to the canonical two-

steps form. See also Remark 1I. 1.2, which yields somewhat stronger relation.

3. THE COMPARISON OF THE THREE APPROXIMATIONS
FOR ORDINARY DIFFERENTIAL EQUATIONS

The case of one ordinary differential equation

(3.1 g—:—)+Ay=f,y(0)=J’0, te0,7), A>0

may serve as an interesting example to compare the efficiency of the three semi-

variational approximations, introduced in Section 1.
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Assuming that f() is sufficiently regular, the solution of (3.1) at t = ©
¥(t) = yoe " + '[ f(z) e 472 4z
0

may be written in terms of power series as follows

1 1 1 1
3.2 ) =yo (1l — At + = A%1% — Z 4373 + — A%* — — A%7° +
(2 ) ’°< 2 6 24 120
1 6,6 1 7.7
+ — A% — —— AT+ )+
720 5040

1 "
+ I:rf - 5Arzf + 2—1413(4A2f + 241 + f) — 21%14(2,43)‘ + 242 + Af") +

+

5
1;20 (16A4*f + 24A431" + 164%f" + 44f" + ) — ]'

t=1t/2

The first approximation at t = 7 is

1—2A4t 1 fo+ f
3.3 M(7) = e e i
(33) ) Yo A 21+ 34r

= yo(l = A7 + 14%7% — 2430 + ) + [of — 34 + PGAS + 3f) = ] |e=e2 -

Hence the error y(t) — y(r) = 0(c3).
The second approximation is equal to

(34) yP(z) = yo L= 3o+ A’ + §ofo + H1po + f1) + 1547(f1 — fo) _
1+ 347 + A% 1 + At + 547

= yo(l — At + 14277 — 3437 + A% — A% + ) +
+ [of = AT + (B4 + 241 + f7) — St QA + 242 + AF) + . |icg2 s
consequently y®(z) — y(z) = 0(z°).
The third approximation, applied to homogeneous equation (3.1) only, is equal to

1 1
69 V) = gy AT A
1 + At + 5A4%% + ;55437

= yo[l = At + A 12— JAP At - A% LS AT ],

consequently y3X(z) — y(z) = 0(z”).

The rational functions standing by y, in (3.3), (3.4), (3.5) agree with Padé approxi-
mations of e~ “* (see e.g. [8]). In Part II, we shall prove the latter coincidence for the
general n-th approximation.
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4. NUMERICAL EXAMPLES — COMPARISON OF THE TWO APPROXIMATIONS
FOR A PARABOLIC EQUATION

Obviously, the mixed problem for parabolic equations represents the most impor-
tant application of the method of semi-variational approximations. We consider the
following problem in 2 x <0, o), @ = (0, 1):

u 6 (zu

il S =e (1 =) x*(1 — x)* — 12te™"(1 — 6x + 6x?),
at P
u=0 for x=0, x=1,

u=0 for t=0,
the solution of which is
u=te” ' x*(1 — x)>.

According to the formulas (1.21) and (1.41), the first (Crank-Nicholson-Galerkin)
and the second approximation, respectively, were calculated with piecewise cubic base
functions v,(x) (Hermite interpolation polynomials for n = 2). The relative errors

() = [u(x, ) — u(x, Dlfu ) (= 1,2)

for x = 1/2and 0 < t < 1.6 are presented in the following

Table 1
‘ i
h=1/12 h=1[8 |
t =01 =02 =02 T =04
! 10* M) | 10*eP() | 10* M) | 10* )
01 6-188 0-497
02 1-472 0-089 15:319 2:302
02 1-657 0-401
0-4 1-000 0-014 1-702 0-561
05 0-957 0-358
0-6 0-749 0-078 5102 2:172
0-7 0-701 0-332
0-8 0-602 0-121 1-582 0-378
09 0-570 0-315
10 0-509 0-149 3-143 2:078
11 0-488 0-303
12 | 0446 0-170 1-480 0-209
|13 0-433 0-295 _
| 14 0-400 0-185 2-350 1-997
15 0-392 0-288
16 0-365 0-196 1393 0-053
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Note that even the four-times greater time increment t = 0.4 gives a pproximately
twice better results in the semi-variational method than the increment 7 = 0.1 in
Crank-Nicholson-Galerkin method, when the errors at the basic time instants ¢t =
= 0.4;0.8; 1.2; 1.6 are compared.
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Souhrn
O JEDNE POLOVARIACNI METODE PRO PARABOLICKE ROVNICE
IvaN HLAVACEK

Cilem této préce je dalsi rozvoj metody konecnych prvkil, aplikované na smisené
ulohy pro parabolickou rovnici. Hodné jiZ byla prostudovdna metoda Galerkinova
typu ¥adu 72, (kde 7 je &asovy krok), obdobnd zndmé Crank-Nicholsonové metodé
siti [1], [4]. Zde se navrhuje posloupnost aproximaci s rostouci presnosti vzhledem
k &asu. Prvd aproximace se ztotoziluje s uvedenou metodou Crank-Nicholson-
Galerkinovou. Pro druhou aproximaci se dokazuje rychlost konvergence fddu t*
a stabilita viadi po&dte¢ni podmince. Uinnost metody je doloZena numerickymi
priklady.

Author’s address: Ing. Ivan Hlavddek, CSc., Matematicky ustav CSAV v Praze, Zitnd 25,
Praha 1.
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