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SVAZEK 17 (1972) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

NEUTRON TRANSPORT INITIAL VALUE PROBLEM 
IN NON-MULTIPLYING MEDIUM 

JAN KYNCL 

(Received July 22, 1970) 

INTRODUCTION 

T h e problem of finding the n e u t r o n density in a m e d i u m as a function of spatial, 
angular, energetic a n d time coordinates provided the initial density distr ibution is 
known, frequently occurs in the theory of t ranspor t of n e u t r o n s . It is usually formula-
ated in the following form: 

(1) J - + J(2E) o>V + V(2F) £„(*, a>, E, t)\ q>(x, o, E, t) = 

= J day' J dEf
 X /(2E) Z(x, ft/ -» m, E' -> E, t) <p(x, ft/, £ ' , /) + y/(2E) S(x, w, E, t), 

J Q Jo 
cp(x, (o, E, t = 0) = ij/(x, a), E). 

The part icular symbols have the following meaning: 

x, ct), E, t coordinates of location, angle, energy and t ime; 

Q surface area of the unit sphere; 

(p neu t ron density; 

\jj given initial neut ron density; 

S source te rm; 

I macroscopic differential effective cross-section of the medium for neut ron 

scattering; 

Eu total macioscopic effective cross-section of the medium for neu t rons . 

The usual approach most frequently used for solving Problem (1), is the examinat ion 

of spectral propert ies of a certain opera tor in a Banach space . This method requires 

certain simplifications and restrictions concerning the propert ies of the effective 

cross-sections and the source, such as, for example, boundedness in all variables, 

quadratic integrability, etc. (See [ l ] , [2], [3].) Unfortunately, these conditions are 
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often too restrictive to be used in practice. However, even more serious difficulties 
arise in concrete calculations by means of spectral decomposition. In most cases, 
it is very difficult even to find only several eigenvalues and eigenfunctions and, con
sequently, it is almost impossible to specify the behaviour of the density function. 
Some further difficulties appear also in such cases when the characteristics of the 
medium vary with time. 

Examining the behaviour of the initial density distribution or the source function 
y/(2E) S with respect to the energetic variable in practical problems, we meet rather 
frequently with the following two cases: either the functions have the character of the 
Maxwell distribution, or they behave approximately like the Dirac ^-function. In 
such cases, it seems convenient to find the function of the neutron density in the form 
of a series of successive approximations ([4], [5]). The characteristics of the medium 
are considered to be functions of all variables x, o), E, t. The method used in the sequel 
is that of transforming Problem (1) to the integral equation 

(2) cp(x, o), E, t) = 

= j dtt J do)' J dE' k / ( 2 £ ) Z(x - y/(2E) co(t - tx), mf -> o), E' - E, tx) x 
Jo J.Q Jo L 

x exp f j *dt2 yJ(2E) Iu(x - V(2F) o)(t - t2), m, E, tM x 

x cp(x - y/(2E) o)(t - tt), o)', E', tx) + F(x, o), E, t) , 

F(x, o), E, t) = J \l/(x - y/(2E) o)t, o), E) + 

+ J dtx yJ(2E) S(x - y/(2E) o)(t - tt), o), E, t,) x 

x exp ( j ldt2 V(2F) Iu(x - VG2^) <*>(t - h\ o), E, t2) ) | x 

x exp ( j dtx J(2E) Iu(x - N/(2.E) o)(t - tt), o), E, tM . 

Existence and uniqueness of solution of Problem (1) are proved in [5] by the stan
dard iterative method (see [10]) in the case of a sufficiently effective absorption. The 
aim of the present paper is to generalize the results obtained to an arbitrary non-multi
plying (absorbing or non-absorbing) medium. 

In the sequel we shall deal with the transformed form of Problem (l), i.e., with 
equation (2), and the following assumptions and notation will be used: 

The function of the neutron density and the characteristics of the medium will 
defined on the set M of quadruplets (x, o), E, t): 

M = F3 x Q x (0, oo) x <0, oo). 
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Further we suppose 

a) a non-absorbing and non-multiplying medium 

Zu(x, ft>, £, t) = dco' d£ ' .I(x, co -> o ' , E ~> £' , f) , 
JiQ Jo 

b) validity of the relation of the detailed balance 

(3) Ee~E,lknt)1 Z(x9 o) -> o)\ E -> £', t) = E'e~E'/iknt)1 Z(x9 -o) -> -co', £' -> £, t) 

where Tis the medium temperature and k the Boltzmann constant; 

c) the differential effective cross-section depends on the angle only by means of the 
scalar product of the angular vectors: 

l (x , o) -> o)\ E -> £' , t) = .T(x, o) . ft)', £ -> E'91) — 0 , 

Finally, we denote by C{B; M} the family of functions (p such that the function 

g(x, ft>, £, 0 = f dft>' P d £ ' ^ > g ; ^> £ ~> £'> 0 fiimn ^ ^ E>? r) 
J « Jo -ET^x, «» E9 t) 

is bounded on the set M (B being a constant, T(f) ^ B/k for all t e <0, oo)). 

EXISTENCE OF SOLUTION 

For the sake of brevity, let us accept the following notation: 

{•t /• /»O0 

K(q>) = d*! dco' d£' 7 ( 2 ^ ) £(* - V( 2 £ ) °K' - '-)> w • «>'> £ ' -• £> r i ) • 

Jo Jfi Jo 

x exp ( f dt2 V(2£) Zu(x - V(2£) co(t - f2), ft>, £, t2) j cp(x - V(2£) x 

x co(t - *-_), ft/, £ ' , lt) , 

/ • f /• /»00 

jR(c/>) = dt! dco' d£ ' 7 ( 2 ^ ) Z(x - V( 2 E ) w(* ~ *i)> « . ft)', £ -> £' , *-.). 
Jo JJQ Jo 

x exp J J dt2 V(2£) I t t(x - V( 2 ^) <*>(* - '2), «>> E> h)j x 

x c/>(x - x / ( 2 ^ ) <»(* ~* ti)> <*/> -5', *i) , 

X = exp M dfj V(2 £ :) £«(* ™ V( 2 E ) <*>(' ~~ '0> ft)> £> *i) ) > 

0 = J dt! exp ( J *dt2 V(2£) 2:M(x - s/(2£) co(t - t2), co, £, f2) j . 
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Theorem 1. Let the following conditions be satisfied: 

(a) To each quadruplet (x, co, E,t)e M there exists a nondegenerate interval U in M 
(x, a), E,t)eU so that l(xx, o1 . co', Et -> E', tx) as the function of the variables 
xt, cox, Eu tx is continuous on U for almost all pairs (o', E') e Q x (0, oo) and 
has an integrable majorant on Q x (0, oo). 

(b) The function T(t) ^ Bljk is continuous and non-decreasing on the interval 
<0, oo) (B! a positive constant). 

(c) The functions ij/(x — x/(2£) cot, co, E), y/(2E) S(x, co, E, t) belong to the class 
C{BX; M) and |K(F)| = Ee~E/kT A(x + 0) (A a positive constant), K(F) being 
continuous on M. 

00 

Then the series £K m (F ) where K°(F) = F, Km(F) = K(Km-1(F)) converges on 
m = 0 

the set M and it solves Problem (2) in the class C{Bt; M}. 

N o t e . Conditions (a) and (b) guarantee the continuity of the function Iu(x, co, E, t) 
on M and justify the integration in particular iterations. Obviously these conditions 
are not the most general possible but we use them for our convenience. 

Before proceeding to the proof, let us establish the following 

Lemma 1. Letf(t) be a real function such thatf(t) as well as df/dt are continuous 
on <0, oo) (continuity from the right being consiered at zero) and let conditions (a) 

00 

and (b) Of Theorem 1 be satisfied. Then the series ]T Rm(0i) where 

, = d/, - ^ exp P'd<2 V(2E) Iu(x - V(2£) <o(t - t2), a>, E, t2)) , 
o dh J ( 

Ro(o0 = 0X , R^G,) = R(R"-l(0t)) 

converges absolutely on the set M. 

P r o o f will be given in three steps; for the moment, we restrict ourselves to the set 
Mt = F3 x Q x (0, oo) x <0, D>, where D < oo is an arbitrary but fixed positive 
number. 

(i) f{t) = 1: 

By direct calculations, we easily verify relations 

1 ^ R(l) = 1 - x = 0 

R(l) ^ R2(l) = 1 - x - R(x) = o 

n - l 

R(l) ^ ... ^ R"(l) = 1 - 1 Rm(x) = 0 -
m = 0 
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As it can be seen, the sequence {Kn(1)} is non-increasing and bounded from below. 
00 

Therefore, the series £ Rm(x) is convergent on the set Mt. 
m = 0 

(ii) f(t) ;> 0 non-decreasing: 

Again, the validity of the following system of inequalities can be verified: 

f(t)^R(f)=f(t)-f(O)x-01^O 

R(f) ^ R2(f) = f(t) - /(O) X ~ ©i - /(O) R(x) ~ R(@i) ^ 0 

R(f) ^ . . . ^ R»(f) = /(f) - /(0)"X Rm(x) -"Z R^©,) Z 0. 
m=0 m = 0 

oo 

The convergence of the series £ R^O^ for Mx follows from the fact that the se-
m = 0 

quence {Km(f)}o° is non-negative and non-increasing, and from item (i) of the proof, 

(iii) f(t) arbitrary (fulfilling the assumptions of Lemma 1): 
00 

The absolute convergence of the series £ Km(6>1) on M1 follows from the inequalities 
m = 0 

d/(t3) |6>i| £ | dft exp ( I df2 V(2£) Zu(x - V(2e) <o(t - t2), to, E, t2)) max 
Jo VJr /'3e<0,D> 

IR^oOl S Rm(\&i\) 

and from items (i) and (ii) of the proof. 

As the constant D was chosen arbitrarily, Lemma 1 obviously holds for the whole 
set M. 

P r o o f of Theorem 1. According to condition (c) of the theorem 

|K(F)| ^ AEe~E/lkT(t)\x + O) . 

Taking into account the relation of the detailed balance (3) we obtain 

|K2(F)| ^ AEe~Elikn™ [R(x) + R(O)] 

and generally, it holds for an arbitrary n 

|K"(F)| S AEe-^lR"-1^) + Rn~x(@)] • 

Applying Lemma 1 to f(t) = t (then 0t = 0) we can see readily that the series 
00 

]T Km(F) is absolutely convergent for each quadruplet (x, a), E, t) e M. It remains 
m = 0 

to prove that this series of successive approximations solves Problem (2). To this 
purpose, we shall introduce without a proof a well known theorem from integral 
calculus, see e.g. [6]. 
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Theorem B. Let f . , n = V 2, . . . be measurable in M. Let there exist a function 

cp(x) integrable on M such that |f„(-x)| ~ <p(x) almost everywhere in M, n = 1, 2, . . . 
Letf(x) = limf„(x) exist almost everywhere in M. 

B—> 00 

Then fn and f are integrable in M and 

I fáџ = lim fn dд 

(integrable = integrable in the sense of Lebesgue-Stieltjes). 
00 

Now, if we putf, = Y, Km(F), Theorem B may be applied to the series. All assump-
m = 0 

tions are fulfilled and hence we may write 

00 OO 00 

<p(x, to, E,t)=Y Km(F) = F + £ K m ( r ) = F + X K(Km~l(F)) = 
m = 0 m = l m = l 

oo 

= F + K( I Km(F)) = F + K(cp) 
m = 0 

oo 

Consequently the series cp = J] Km(F) solves equation (2). It is evident that 9 e 
eC{Bx\M). m = 0 

UNIQUENESS OF SOLUTION 

The following functions will be introduced for any material medium: 

(4) IA(E -> £') = If — {e- £ '+ £ [erf ( 0 V e - f Ve ' ) ± erf (© V e + C Ve ' )] + 
2£ 

+ erf ( 0 Ve' - C Ve) + erf (o V e ' + C Ve)} . 

/*00 

^ ( £ ) = d£ ' I i £ - £') 

where the upper sign holds for s < e' and the lower one for e > e'; 

erf (x) = — e x'2 áx' , O = , £ = -~ , 8 
V71 Jo 

_ Y ' 2 j , л -4 + 1 „ A — 1 F 
/Í) ç = є = — , 

2 VA 2 7 A kT 
F . M 

' k т ' m 

(M is the mass of a particle of the medium while m is the mass of the impinging 

particle which means a neutron in our case), If is a positive constant. 
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Theorem 2. Let the following conditions be satisfied: 

(i) Conditions (a) and (b) of Theorem 1; further, let dT/dt = dljdt = dZ/Sx, = 0, 

i = 1, 2, 3. 

(ii) The function yJ(2E) Su is continuous on the set 

F3 x Q x <0, oo) x <0, oo), 

(Hi) the integral dco' dF' >/(2F') l(x, co . co', E -> F', t) is finite on M. 
J Q Jo 

(iv) TO an arbitrary n > 0 there exists N > 0 such that 

da/ 2 (̂x, co . co', E -^ F', t) 
<>/ 

IX(E - £') 

almost everywhere (in the sense of condition (i)) on the set 

M2 = F3 x Q x (N, oo) x <0, oo) x (N, co) . 

Then there exists in the class C{B1; M} only one solution of Problem (2). 

Lemma 2. Let all conditions of Theorem 2 be satisfied. Then 

6A2 + 2 

£-oo yJ(2E) Iu 

6A(A + 1) 

A2 + 3 
з(A + 1) 

A > 1 

A < 1 

P r o o f of Lemma 2. 

a) Let T -» 0. We obtain from definition (4) 

^ ( A + l ) 2 

£ ' є (ocE, E) 
EA(E ->E') = \E AA 

0 E' є (0, oo) -r (otE, E) 

<A - Г-2 

IA(E) = Ty where a = 
A + 1 

Let US denote 

Ki<7>) 

ř /• oo 

dř. d £ ' V(2E) 2ľ̂ (£ -> £') et'«-»V(2-VА(B) ц ғ > ^ 
э Jo 
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for every cp defined on (0, GO) X <0, OO). Simple modifications then yield 

6A2 + 2 

RÁЏ(2E)Ef)^^(2E)Ef(í-e-^E^)x 
6A(A + 1) 

A2 + 3 

3(A + 1) 

A > 1 

A < 1 

which establishes immediately Lemma 2 (for R = RA). 

b) Now, let T > 0. If we introduce independent variables e, er and T instead of the 
independent variables E, E' and Tin relations (4), then it holds for fixed T: 

IA(E -> E>) = ^ P > ^ C £ ) = f "<»*' ^ ( e > «0 " ^ ( e ) 
^T Jo 

where F^, ^'), P^(£) do not depend on Tand 

Hm M > / M _ 
E - » V ( 2 E ) 2 , 

1 _ в-řV(2вfcT)Eл(в) 

l im x 
є-+oo 2eFA(e) 

/•oo 

f o 0 &e'j(4ee')FA(e')FA(e,e') 

x de' V(4ae0 F^') FA(e, s') = lim ^ - — — . 
Jo *-« 2eFi(e) 

The last term obviously does not depend on Tand hence (according to item a) of the 
proof) 

6A 2 + 2 

| i m RAU(2E) EÁ) 

Í - » . V ( 2 £ ) ^ ( £ ) = 

6A(A + 1) 

A2 + 3 

3(A + 1) 

A > 1 

A < 1 

c) Let us choose some ^. According to conditions (iii) and (iv) of Theorem 2 we 
can write on M2 

f*t /» /»N r 

R{SJ(2E)EU) £ d/. da»' dE' U(2E)E(x- s/(2E)(o(t-ti),io .ca',E -* E'J^x 
Jo J n Jo (. 

x exp ( | df2 V(2£) E„(x - V ( 2 £ ) «>0 - tz). «>> £> '2)J x 

x %/(2£') r„(x - V(2£) «(( - tt), « ' , £' , f t) 1 + 

. (1 - >?)2 (1 - exp ( - 1 V(2£) EA(E)(l + „))) x 

(I + ^ I ^ E ) 
/ • 00 

x d£ ' £ , ( £ -* £') V(2£ ) £<(£ ' ) , 
J/v 
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R(y/(2E) Iu) S f df, f dco' f d£' h(2E)l(x- J(2E)co(t- t,),<o.m',E^E', t,)x 
Jo Jfl Jo ( 

x exp ( J df2 7(2E) Iu(x - V(2£) co(t - t2), to, E, t2)\ x 

x V(2£') Ia(x - V(2E) co(t - tt), to', £', fi)! + 

| (1 + r,)2 (1 - exp (-t V(2£) I^(£) (1 - „))) ?, 

(--•O-U-O 
/*oo 

x dE'SA(E-+E')y/(2E')£A(E'). 
JN 

According to conditions (i) and (ii) of Theorem 2 we then have 

/1-^Ylim MV(MW s lim *(V(2E)*-) < /I + ^Ylim ^ M ^ 
\l + !// E-oo V(2£) ^(.E) E-oo V(2F)Ztt ~ \1 - I,/ E— V(2F)^(F) 

Items a) and b) of the proof together with the fact that rj may be chosen arbitrarily 
small complete the proof of Lemma 2. 

Proof of Theorem 2. Let us suppose that two different solutions <?i, <p2 e C{Bt; M} 
of Problem (2) exist. Then also q>3 = q>t — (p2 e C{B1; M} and 

(5) <P3 = K(<p3) 

on M. Hence we obtain easily the inequalities 

(6) \<p3\£K(\<p3\), 

(7) \<p3\ S CEe~E'kT 

where C < oo is a non-negative constant. Substituting (7) into inequality (6) we 
obtain as the second approximation 

\tp3\ =S C£e"^r(l - x) 

(see Theorem 1 and Lemma 1). Using (6) recursively we obtain finally |<p3| S CEe~Ek/T 

Xi on M, where 

Xl = l - f K m ( z ) ^ 0 . 
m = 0 

Applying formally the operator R and considering Lemma 1 and Theorem B we obtain 

(8) Z . - * ( Z i ) . 
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However, Xi is then also a solution of the problem 

(9) j - + V(2.E) iX Xi = f dcof f °°dF V(2F) I(x, o>. co', E -* E\ t) Xi{x, <o\ £', t) 

Xl(x9 a>, £, / = 0) = 0 

which can be verified by differentiating equation (8). Further it can be seen from the 
conditions of Theorem 2 that the function 

7 - - - - -

is also a solution of problems (8) and (9) on M. The equation of Problem (9) makes 
it easy to estimate 

\X2\S j{2E)Zu 

and hence, according to (8), 

(10) \X2\^RU(2E)EU). 

For every real medium, the constant A satisfies the inequalities A > 0, A < oo and, 
consequently, the terms 

6A2 + 2 A2 + 3 

6A(A + 1) ' 3(A + 1) 

are always less than one. 

Lemma 2 then implies the existence of E0 < oo such that 

ídc>'Г 
Jß Jo 

' Z(a> . p ' , Æ -> E') J(2E') Iu(a>', E') J(2Ë) 

(V(2£)I„(a,,£))2 

(q a constant) for all E > E0 and an arbitrary o. (In accordance with condition (i) 
of Theorem 2 we do not write the arguments x, t in the functions I and Eu.) 

The last inequality together with condition (iv) guarantee the existence of a constant 
D ^ 0 such that for each t0 ^ 0, 

(ii) 

f 'dt. f da,' f d E ' ---- • " ' ' E - F ) ^ ( 2 £ < ) ^ F )
 e-J^ 'W(2^(m .E) g g i < ! 

JK. Jfl Jo £„(«>,£) 

(<jrx being a constant) everywhere on the set M'3 = E3 x Q x (0, oo) x <f0, t*0 + D> . 
Let us put first f0 = 0. Inequalities (10) and (l 1) yield the estimate 

\X2\£qiy/(2E)Zja,E). 

Applying once more these inequalities we obtain 

\x2\Sq\j(2E)Zu 

263 



and, generally after n steps 

\x2\£fiy/(2E)ZH. 

Consequently Z2 = 0 on M3. 

Let us consider the set MD. In this case, the right-hand side of inequality (10) 
coincides with the left-hand side of inequality (11). Hence 

\x2\£qly/(2E)Zu 

and analogously as above, x2 = 0 on MD. 

The same argument proves the equality x2 = 0 on the set M\D, M | D , . . . Therefore 
the function Xi i§ equal to zero everywhere on the set M. From the equations dxijdt = 

= Xi ar*d (9) we have then X\ — ®-> hence (p3 = 0 and the proof is complete. 

FINAL REMARKS 

a) The set C{B; M} is defined in such a way to provide the possibility of working 
with generalized functions. In this sense one can make the same remarks and present 
examples similar to those presented in [5]. 

b) If the neutron absorption cannot be neglected, i.e. 

лoo 

?„ = ÚE' I(E ->£ ' ) + I. , ZaŁO 

and Za is continuous on M, Theorems 1 and 2 evidently remain true. To show this, 
it is sufficient to observe that 

*Uo(M)= --5..o(M) 
for any positive integer n. 

c) Let us present one interesting mathematical consequence of Theorems 1 and 2. 

Let f be a real function such thatf(t) as well as df/dt are continuous on the inter
val <0, 00) (continuity from the right being condidered at zero) and let all assump
tions of Theorem 2 be fulfilled. Then 

00 00 

/(0=/(o)I«"(z)+ Z*m(0i)-
m=0 m=0 

Proof . According to Lemma 1, the function 

00 00 

<A=j(t)-j(o)IRm(z)-Z^m(o1) 
m=0 m=0 

is a solution of the problem \j/ = R(\J/). However, it can be seen from the proof of 
Theorem 2 that this problem has only the trivial solution. 
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d) Knudsen's gas. Let us consider a set of non-interacting particles having a mass m, 
which are present in a material medium (a thermal bath) with particles of a mass M. 
The particles of the set are scattered by the medium and their distribution varies with 
time. 

If we put — without any loss of generality — m = 1 (the mass is measured in the 
units m), the problem of finding the density of particles of the set for a given initial 
density if/ may be formulated in the following way [7] (we follow the notation used 
above and assume the same conditions as above for I and Iu): 

(12a) J - + N/(2F) o)\ + V(2F) Zu\ cp(x, o), E, t) = 

= do/ d£' yJ(2E) Z(x, oj' -> o), E' -> F, t) cp(x, o)', E', t) 
J Q JO 

(12b) cp(x, <o,E,t = 0) = \jj(x, o), E). 

However, it can be seen that Problem (12) is formally identical with Problem (l) . 
Therefore, Theorems 1 and 2 fully apply. 

Problem (12) has not yet been solved generally. The most usual approximate method 
is the approximation of equation (12a) by a second order differential equation (see 
[7], [8], [9]). In papers [7] and [8] the cases 

i/f == 8(E - E0), \jj = Ee~E/kT 

are solved in this way. 

Theorems proved in the present paper make it possible to obtain accurate results. 

Acknowledgement. The author is grateful to Dr. Rocek for his careful reading of 
the manuscript. 
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S o u h r n 

P O Č Á T E Č N Í Ú L O H A V T R A N S P O R T U N E U T R O N Ů 
P R O N E N Á S O B Í C Í P R O S T Ř E D Í 

JAN KYNCL 

V článkuje diskutována transportní rovnice pro funkci hustoty neutronů v nenáso-
bícím prostředí, je-li známo jejich počáteční rozložení. Charakteristiky prostředí 
a zdroje jsou obecně uvažovány jako funkce času. Je dokázána existence a jednoznač
nost počáteční úlohy a zobecněny některé autorovy předchozí výsledky. Jako důsle
dek je provedena stručná diskuse chování Knudsenova plynu v termální lázni. 

Authoťs address: Jan Kyncl, Ústav jaderného výzkumu ČSAV, Řež u Prahy. 
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